Pre prints.org

Article Not peer-reviewed version

On Superization of Nonlinear Integrable
Dynamical Systems

Anatolij K. Prykarpatski ~ , Radoslaw A. Kycia , Volodymyr M. Dilnyi

Posted Date: 28 November 2024
doi: 10.20944/preprints202411.2057v1

Keywords: supersymmetry; super-differentiation; Lie superalgebra, algebra of pseudo-differential operators;
coadjoint action; Lax integrability; Lie-algebraic approach; gradient-holonomic scheme; Casimir invariants;
super-Poisson structure

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/103160

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 November 2024 d0i:10.20944/preprints202411.2057.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
On Superization of Nonlinear Integrable
Dynamical Systems

Anatolij K. Prykarpatski '*, Radostaw A. Kycia ! and Volodymyr M. Dilnyi 2

Cracow University of Technology, Poland
Lviv Polytechnic National University, Ukraine
*  Correspondence: pryk.anat@cybergal.com

2

Abstract: We study an interesting superization problem of integrable nonlinear dynamical systems on functional
manifolds. As an example, we considered a quantum many-particle Schrodinger-Davydov model on the axis,
whose quasi-classical reduction proved to be a completely integrable Hamiltonian system on a smooth functional
manifold. We checked that so called "naive" approach, based on the superization of the related phase space
variables via extending the corresponding Poisson brackets upon the related functional supermanifold, fails to
retain the dynamical system super-integrability. Moreover, we have demonstrated that there exists a wide class of
classical Lax type integrable nonlinear dynamical systems on axis regarding which a superization scheme consists
in a reasonable superization of the related Lax type representation by means of passing from the basic algebra of
pseudo-differential operators on the axis to the corresponding superalgebra of super-pseudodifferential operators

on the superaxis.
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1. Introduction

Main modern field theoretic string theories of fundamental interactions are essentially grounded [19,
20,36] on supersymmetric extensions both of the space-time variables and canonical field variables,
making possible to construct governing evolution systems free of singularities and nonphysical pe-
culiarities. As often from the very beginning there are considered field equations on usual classical
phase spaces, an important problem of constructing their corresponding supersymmetric extensions
[20,32,33] arises and which during past decades has been solving by means of various mathematical
tools and approaches. In particular, within the two-dimensional completely integrable field theories, like
Sin-Gordon, Thirring, Nonlinear Schodinger, Born-Infeld and others their supersymmetric integrable
extensions were constructed by means of natural supersymmetric generalizations either of physically
motivated reasonings [8,15,16,23,29-31,34,35,39-41,58] about the system evolution regarding the en-
ergy interaction Hamiltonian structure or the related hidden supersymmetry Lie algebraic structure
[1,8,12,24,25,38,43,45,47-50,56,59] responsible for their complete integrability. Being interested in more
detailed analysis of these superization schemes, we considered a physically motivated [11,52,55] spatially
one-dimensional quantum interacting manyparticle model, described by the Hamiltonian operator
82
Hy=-)_ ﬁ+2 Y. n(x)), (1)
j=LN 77 j=1LN
of N € N charged bose-particles, specified by the position dependent intensities 1(x;) € R at points
xj € R,j =1,N, and acting on the Hilbert space L, (RN; C) of the corresponding quantum states. In
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case of a medium with the infinite number of particles the Hamiltonian operator should be naturally
considered [5,6,13] within the secondary Fock representation

A =[xy ()ge) + 200" ()p(x)], @

acting already on the tensor product Fock space ® @ ©, generated by a vacuum state [0) € ® ® © and,
in part, creation-annihilitation operators ¢ (x), ¥ (x) : & — ® respectively, satisfying the following
canonical operator commutation brackets:
[p(x), 97 ()] = o(x =), (3)
[p(0), ¥(W)] =0=[p"(x), 9" (v)]

supplemented with the operator commutation brackets

[p(x),n(y)] = 0= [n(x), " (y)], (4)
9d(x —y)/ox

at arbitrary points x,y € R for the intensity operator n(x) : ® — ©, describing the simplest self-
interacting quantum medium, whose quantum states are modeled by the related Fock space ©. The
corresponding Heisenberg evolution in time t € R equations [5,6,13] for the dynamical operator
varibales ¢(x), ™ (s) and n(x) : @ @ © — ® ® O read as

oY /ot = %[H P] = iy — 20y, (5)
on/ot = %[H 0] = —2n(p p)s,
1

oy /ot = —[H y] = —ipy +2ny7,
and were before intensively studied in [11,55] as a dynamical model for describing the mechanism
of muscle contraction in living tissue. The obtained system of operator Schrodinger-Davydov type
equations (5) allows the following quasi-classical Hamiltonian form

op/ot = {H,p}p = ithrx — 217, (6)
on/ot = {H,n}p = -2n(¢p ¢*)y,
opt/ot= {Hp"}p = —iyy, +2ny”

endowed with the following quasi-classical Poisson brackets

{p(x), v W)tp = o(x —y) {g(x), n(y)}p = 0 = {n(x), " (y) }p, )
{p(x), p@)te = 0= {p"(x), 9" () }p, {n(x),n(y)}p = 9 (x —y)/9x

at any points x,y € R on a smooth functional manifold M C {(¢,n,¢*) € C3(R;C x R x C)}, easily
following from (3) and (4) within the classical Dirac’s correspondence [13] principle.

As it was stated in [7,42,52], the derived there naturallySCHEME related to the system (7)
hydrodynamic and Boltzmann-Vlasov type kinetic equations proved to be completely integrable
Hamiltonian systems. Moreover, as it will be demonstrated below, the derived above nonlinear
quasiclassical Schrodinger-Davydov type system (6) proves to be also a completely integrable [42,57]
bi-Hamiltonian flow on the functional manifold M and whose possible superization schemes are
analyzed in detail in our work under regard.
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2. Quasi-Classical Integrability and a Simple Superization Scheme

Let us begin with analyzing the integrability of the derived above quasi-classical Schrédinger-
Davydov type nonlinear dynamical system

0P/t = ity — 211,
on/ot = —2n(p v*)y = K[y, n, "], 8)
dY* /ot = —ipt, + 2nyp*

with respect to the evolution parameter ¢t € R, considered as a smooth vector field K : M — T(M) on
the functional manifold M, via making use of the gradient-holonomic scheme, devised in [3,42,54].
As a first step we need to demonstrate the existence of an infinite hierarchy of conservation laws and
to state their commuting to each other with respect the Poisson bracket (7), presented above. Namely,
for any smooth functionals 7, 4 € D(M) their Poisson bracket is calculated via the expression

{7, u}p = (grady|Pgradp), ©9)

where grad : D(M) — T*(M) denotes the Gateau derivative with respect to the usual bilinear form
(-]-) : T*(M) x T(M) — C and the Poisson operator P : T*(M) — T(M) is skew-symmetric, satisfies
the following weak functional relationship:

{(W(x),n(x), 9" ()T, (), n(y), ™ (y)) }p = Pé(x — y) (10)

for any x,y € R, 6(x —y) - the classical generalized Dirac delta-function, acting on an arbitrary
continuous function f € C(R;C) via the symbolic integral operation f(x) := [ d(x —y)f(y)dy,
satisfied for all x € R. To calculate the infinite hierarchy of conservation laws for the vector field (8) it
is enough to study special solutions to the governing linear Noether-Lax equation

1 +K"9 =0, (11)

where K'* : T*(M) — T*(M) denotes the adjoint to the Frechet derivative operator K' : T(M) —
T(M) of the vector field (8) and a covector ¢ € T*(M) can be chosen as

o= (1,a,b)Texp(—iA’t +0 lo(x; 1)), 9/ox-97 1 =1, (12)
and the expressions
oA~ Y gl AT a(cA) ~ Y alp,n gtIAT (13)
jez.uf{-2,-1} ez,
b(x;A) ~ Y bl mp* AT,
JEZ+

are considered to be asymptotical with respect to an arbitrary complex parameter C > A — oo. Taking
into account that
i0> —2in 2p*d  2in
K" = —2iyp 0 2iyp* , (14)
0 2 2in —i0?

one easily obtains a system of recurrent differential-algebraic relationships, giving rise to the following
functional expressions:

02 = 0,0 = 0y = gy = Yo = IR i — Lo = i 207y, (19

1 1 . o e \
04 = 51 = 6(Pp")* — Sn3 + 6in (P Py — YY) — 20(4 Yax — PY3), -

d0i:10.20944/preprints202411.2057.v1
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and so on. Since, owing to the representation (12), the quantity y(A) := [ dxo(x; A) is conservative
with respect to the evolution parameter t € R for all A € C, we find that all functionals

Hy= [t b= [ gt Hy = 172 [ 0 =iy ge = gyl Hy = [ (9l + 209" )i,
(16)

Hy= & [ [0 = 1200 )2 — n + 120" — ) — 49" e — Py, .
2 Jr

ar also conservative. To confirm now that the vector field (8) on the functional manifold M is
Hamiltonian, it is enough within the gradient-holonomic scheme [3] to show that the respectively
constructed conservation law

Hy = @pl (¢, nx, 97)7) 17)
for some suitably chosen p € N generates the Poisson operator P : T*(M) — T(M) for the flow (8) as
-1
p= (g;;* - g;) . (18)
For the case p = 2 one obtains that
Hy = 1/2 [g[n® —i(p*ypx — pypi)ldx = ((—iy*, =0~ ", itp) 7| (, mx, 3)7) = (19)
= (G2l (9 0, 92)T), G2 1= (=g, =97 n,ip)T,
ensuing the following Poisson operator
0 0 ¢
P=(&-&) =] 0 a0 (20)
—i 0 0
Doing a similar way, as above, for the case p = 4 one derives the second Poisson operator
—12¢0~ 1y 40 + 240 1290~ 1y* — 4i9* + 8in
Q= (& &) "= 4po+20p —3%+4nd +40n 4*0 + 299" , @

—i 49" + 249 —12¢* 0y

where, by definition, Hy = (4|(¢x, nx, P5)T). Moreover, one can check that the following recurrent
relationships
QgradH; = 2PgradHj (22)

hold for all j € Z,, meaning that the Poisson operators (20) and (21) are compatible, that is the affine
sum AP+ Q: T*(M) — T(M) is also a Posson operator for all A € C. The latter makes it possible to
state that the infinite hierarchy of conservation laws (16) is commuting to each other with respect to
the both Poisson brackets

{Hj, Hy}p = 0 = {Hj, Hc o (23)

for all j, k € Z. . Since our dynmical system (8) allows the Hamiltonian representation
(§r,ne, 91)T = {Hs, (Y, n,9")T)}p = —Pgrad Hi [y, n, 9], (24)

coinciding with that (6), we can formulate our first proposition.

Proposition 1. The nonlinear Schrodinger-Davydov dynamical system (8) possesses an infinite hierarchy of
commuting to each other c onservation laws (16) and is an integrable bi-Hamiltonian flow on the functional
manifold M.
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Remark 1. Since there holds the representation ((y, ny, Yf)T = —Qgrad Hy [y, n, ¢*], one sates that the
dynamical system (8) is bi-Hamiltonian with respect to the both Poisson structures (20) and (21) on the
functional manifold M.

Recall now the Poisson brackets (7) on the functional manifold M

{p(), 9" (y)}p = i6(x =), {p(x), n(y)}p = 0= {n(x), " (y) }», (25)
{9(), pW)te = 0= {p"(x), 9" () }p, {n(x),n(y)}p = 9 (x —y)/9x

at all points x,¥ € R and observe that they are canonically ultra-local [6,14] except the field variable
n € M, depending on the delta-function derivative. The latter, in particular, means that this variable
can not be secondly quantized on some suitably chosen Fock space ®. Nonetheless, this quantization
can be performed, if to superize the functional manifold M by means of the following scheme:
(Y, n,9*) > M — (§,7,§*) ~ (§,4,¢*) € M€ C3(RW;Ag x A; x A}), where R := (x,0) €
R x Ay, Ag @ Aq := A s the classical one-dimensional Grassmann algebra over the complex field C.

If to assume that the superfield 7i := ily = Dyii, where Dg = 9/06 + 89/9x, is the usual supersymetry
derivation with respect to a variable (x,8) € R!I?, satisfying the useful relationship D3 = 9/0x, the
Poisson brackets (25) naturally pass into the following ultra-canonical super-Poisson brackets

21

{9(x,0), 9" (y,m)}p = i6(x, 6ly, ), {P(x,0), d(y, ) }p = 0 = {&(x,0), §" (v, 1)}, (26)
p wmip =0=L9"(x,0), 9" (v, m)}p, {a(x,0),a(y, n)}p = 6(x,0ly, 1)

at all super-points (x,0), (y,7) € R!! on the functional supermanifold M, where
S(x,Bly, i) =6(x —y —6m)(8 —1) (27)

denotes the supersymmetric Dirac delta-function, satisfying for any continuous super-function f €
CO(R!'; A) the determining relationship

f(x,0) = /R dy/dné(xﬁlw)f(yrn) (28)
for all (x,0) € R jointly with the following Berezin integrals [2,32,33], assumed to be fulfilled:
/d6 - 0,/6d6 —1. (29)
The introduced above super-variables (), i1, *) € M possess the following superalgebraic expansions:
P(x,0) = o(x) + 091 (x) € Ao, " (x,0) = 95 (x) + 091 (x) € A, (30)
i(x,0) = up(x) + 0up(x) € Ag

and cotangent T*(M) spaces can be endowed

The corresponding supersymmetric tangent space T(M)
M) x T(M) — A, where for any f € T*(M),§ €

with the following super-bilinear form (-|-) : T*(

T(M) :
/dx/de F(x,0)|3(x, 0))gs (31)

Having now applied the super-Poisson operator P : T*(M) — T(M) brackets (26) to the superized
Hamiltonian operator H3 € D(M) in the form

T = /Rdx/de(lﬁé‘olf’ee + 259" 9), (32)
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one derives the following super-Hamiltonian system:

P = {Hs, §}p = ihag — 21, 1y = —2(P* )y, (33)
¥ = {H3, 0%} p = —ihge + 211997,

regarding which one poses the following natural question: does it inherit the classical integrabil-
ity property of the Schrodinger-Davydov dynamical system (8) as considered on the functional
supermanifold M, and which will be analyzed in the section to follow.

3. Superintegrability Analysis

To analyze the super-integrability problem regarding the super-Hamiltonian system (33) we
will present it, as the vector superfield

0P /ot = itpyg — 2ilgip, )
i1/t = —2(P*P)g = K[, i, ¢, (34)
AP* /ot = —ihy, + 2dpp*

on the superized functional supermanifold M, and look for special solutions [3,53] to the corresponding
Noether-Lax equation

~ /%

Pr+K =0 (35)

in the following asymptotical as C > A — oo form:

¢ = (1,4,b)T exp[—iA*t + D, '5(x,6)], (36)
where
F(x,0;,A) ~ Y i, 0, ¢ AT, a(x, 0;A) ~ Y a1, A, (37)
jeZ+u{—2 -1} JEZy
b(x,0;A) ~ Y bl a,§*]A

JEZ+

at arbitrary point (x,0) € R, Taking into account that the adjoint operator K : T*(M) — T*(M) -is
given by the expression

iDg —2illy  —2¢* Dy 0
K" = 2iDy 0 —2iDgp* |, (38)
0 —2¢Dy—  2iily — iDj

one obtains easily the following infinite recurrent system:

—i(5 2+ Di [7] k00ko + i~ xo — 2iilgd 0 — 21,[7*17]',9 + Zlﬁﬁj,kﬁk =0,
djp — id; j+2 + LZ] ng Ukt +2le)95 0 +211[JU ZingE] — 2il[3*~]9 — 2ip* Ej—k 0 =0,
b](; Zb]+2—|—b] koDg ‘Tkt —21[7{1]9 +21[J{1] k0’k+21u9b —
—i(bjxx + 2bj 0k p + bj kT ox + bj—kT—s005,9) =0

(39)

forall j € Z; U{—2,—1}. Trying to dissolve recurrently the above system (39), we obtain that first its
coefficients are equal to

1=296, (40)
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but the second 7- coefficient satisfies the locally unsolvable differential-algebraic relationship
. 1_ o
G0 = — 510 + 39" (41)

meaning that the recurrent system (39) fails to be infinitely continued. As an inference from this failure
we need to state that our naively constructed super-Hamiltonian system (33) does not possess an
infinite hierarchy of conservation laws and suitably is not super-integrable on the superized functional
supermanifold M. This negative result is also teachable, per say, informing us that a simple naive a
priori superization of a classical integrable nonlinear dynamical system generally loses its integrability,
or in other words, "Der Irrtum ist eine ebenso wichtige Lebensbedingung wie die Wahrheit.”, i.e. "Error is as
important a condition for the progress of life as truth.” ( C.G. Jung)

In order to construct a more feasible and in some sense natural superization of the nonlinear
dynamical Schrodinger-Davydov system (8), we first proceed to presenting its classical Lax-type
operator representation, and then to its suitably superized generalization that will generate a priori
integrable super-Hamiltonian flows, which we are interested in finding.

4. The Lax Type Representation Scheme

We will start from the infinite hierarchy of gradient relationships (22) and observe that it can be
rewritten as

Qgrad 7(A) = 2A%Pgrad v(A), (42)
where, by definition,
Y(A) = /Rdxa(x; A~ Y AT /RH]'[IP, n, p*|dx (43)
JEZ+

is a generating as C > A — oo function of conservation laws for the dynamical system (8), which can
be identified [3,14,42] with the trace-functional of the monodromy matrix S(x;A) € End E”, x € R,
naturally assigned to a matrix Lax type "spectral" problem

of /ox =1y, n, ¥*; Alf, (44)

where [[ip, n, p*; A] € End E™ for some finite m € N is considered, for brevity, 27t- periodic in x € R
and f € Lo (R; E™). Namely, if to put

Y(A) == trS(x; A), (45)

where, by definition, S(x;A) := F(x 4+ 277, x;A) and F(x,y;A) € End E™, F(x,x;A) = [,x € R,
denotes the fundamental matrix to the linear problem (44), depending on a point (¢, n,9*) € M.
Taking into account that the gradient element ¢(x; A) := grady(A) € T*(M) for all (x;A) € Rx C
satisfies the gradient relationship (42) and can be simultaneously represented as

p(x;A) = te{l[p,n,9"3A) S (x:1)), (46)
where the monodromy matrix S(x; A) € End E” solves [46] on the axis R the linear Novikov equation

9S/9x = [1,S], (47)
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one can construct within the gradient-holonomuc scheme [3,42] a finite set of differential algebraic
matrix relationships in I[p, n, *; A] € End E™, trl [y, n, p*; A] = 0, whose solution gives rise via simple
enough but cumbersome calculations to the following result: m = dim I[¢, n, *; A| = 3 and

2=k ¥ %
1, n,p*;A] = LA 0 L (48)
2202 21 O
o pr S —2iA

It is now easy to observe that the linear Lax type spectral problem (44) reduces to the next
pseudo-differential form:
—?f/3x® +2nf —2ip* 9 Ly f = 4A%f, (49)

where f € W C Lo (R;C) is a scalar function and A € C serves as a true spectral parameter.

Remark 2. If to denote the pseudo-differential expression from (49) as
L:= —9%/0x* 4+ 2n — 2ip*a~ 'y, (50)

it allows to construct [3,4,44,54] the same infinite hierarchy of conservation laws as (16) by means of the
operator traces

Hy =Tr (LV21)), (51)

where L,L’? € YOP,j € Zy, and Tr :-YOP — C is the trace operation on the algebra YOP of pseudo-
differential operators on the axis and coinciding with the integral over R of the functional coefficient at the
inverse differentiation 971

The spectral problem (49) looks very interesting and represents [17,18,36,51] the Backlund type
operator transformation
DOP 5 Ly — Lo+ ap*d~ 'y € YOP (52)

from the algebra DOP of differential operators to that YOP of pseudo-differential operators, where, by
definition, ¢ and ¢* € W serve, respectively, as the eigenfunctions of the spectral problem

Loy = py (53)

for some y € C and its adjoint:
Liy* =v* ¢y~ (54)

for some v* € C.

Remark 3. More details of this Backlund type operator transformation (52) can be found in [18]. Mention
here only that the found before compatible pair of Poisson operators (20) and (21) follows from thje canonical
Poisson bracket on the space YOP x W x W* via the operator mapping (52).

Since the obtained above pseudo-differential operator (50) is a shifted classical Sturm-Liouville
operator on the axis R of the second order, whose natural superization was first studied in [28], we can
logically proceed to generalyzing this result on the subject of the corresponding superization of the
completely integrable Schrodinger-Davydov dynamical system under regard.

5. Spectral Operator Problem and Related Superization Scheme

Let us consider the classical Sturm-Liouville operator expression

Lo:= —9*/9x> + 2n(x) (55)

d0i:10.20944/preprints202411.2057.v1
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on the real axis with a real potential n(x) € R for all x € R on the functional space W and its
super-differential analog
Lo := —D} + 2ii(x,0) (56)

on the super-axis, constructed in [28], where 7i(x,0) € A; for all (x,0) € R, The related to (56)
super-differential spectral problem

Lop = (=Dy+21)§ = pg, (57)
where it € Ay and € W C Loo(R'; Ag), and its adjoint problem
Liy" = (D +2)§ =v'd, (58)

where v* € A} and §* € W* C Lo (R ;A§) make it possible to superize the super-differential
operator (56) as
Ly — L:= —Dj +2ii —2ip*D,;'¢ (59)

by shifting on the Backlund transformed term —2i(*D, 1% € sYOP from the algebra s¥OP of super-
pseudo-differential operators. Based on the super pseudo-differential expression (59), one can
calculate [30,31,40,41,45,47? -50] the corresponding conserved super-laws as the following Casimir
invariant functionals

H; = sTr (L7/3), (60)

j € Z4, of the related Lie superalgebra Lie(sYOP), where the super-trace operation sTr :s¥OP —
A is defined as the super-integral over the super-axis R!! of the coefficient at the inverse super-
differentiation D, ! In particular, taking into account that

V3 ~ —Dg+ @} + (@} + @Dg)d ™" + (@ + @IDg)d 2+ (61)
+ (@} + @3Dg)0 2 + (Wi + WDg)d %) + ...,

whith the coefficients satisfying the conditions @}(§*§ — @} ,) = 21, —Dy(@i@)) = §*, ..., and so
on, we can easily calculate the super-conservation laws

i = [dx [dogg, Fia= [dx [ do(Gsdu — Fiodo+ 26" — Foy), (62)

and so on, invariant with respect to the super-evolution flow on M, equivalently represented as the
following Lax type dynamical super-operator flow

aL/ot = [, (i2)+], (63)

where the sign "+" denotes the strictly nonnegative super-differential part of an expression in the
bracket (...) above.

Remark 4. One needs here to mention that the flow (63) is naturally interpreted [3,4,14,44,54] from the Lie-
algebraic point of view as the coadjoint action of the operator Lie susperalgebra element (i2/ 3) N € Lie(sYOPy)

on the element L € Lie(sYOP)*, where Lie(sYOP..) denotes the nonnegative part of the natural direct sum
spliting Lie(sYOP) = Lie(sYOP; ) & Lie(sYOP-).
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Having recalculated the flow (63) regarding the superized variables (¢, i, *) € M, one obtains
the following Schrédinger-Davydov evolution flow
AP/ 0t = iPgge — 20MiY* P + iw} 4,
0ft /0t = =2(§" ) — (P59 — ¥" o) y), (64)
Ap* /Ot = —itpggg + 2ip* P + W 4y,

which is a super-Hamiltonian system with respect to the following super-Poisson structure

{9(x,0), 9" (v, m)}p = i0(x,6;y, 1), {P(x,0), Ay, ) }p = §*(x,0)0(x, 6;y,7),
{7i(x,0), 9" (v, m) }p = ¥(x,0)5(x, 6;y,7 ) {7(x,0), 1y, 1)} p = Ded(x,6;y,1),
{9(x,0), ¥y, m}p =0={P"(x,0), 9 (v, 1)}p

on the functional supermanifold M, thatis (¢, 7i;, ;)T = {Hs, (¢, 71, §*)T}, coinciding with that of
(64), where the evolution parameter ¢t € A is considered to be odd. The supersymmetric integrable
flow (64) presents a suitable superization regarding the classical integrable Schrodinger-Davydov
dynamical system on the functional manifold M. It is worth to note that in some cases one can
anticipate that such super-evolution vector field d/dt : M — T(M) on the functional supermanifold
M can be represented as the supersymmetric super-differentiation D = 9/06 + 69 /9t with respect to
the super-variable 6 € A and the real evolution parameter ¢ € R.

6. Conclusion

We have studied two interesting examples of the superization scheme regarding the classical
Schrodinger-Davydov integrable nonlinear dynamical system on functional manifold. In particular,
we checked that so called "naive" approach, based on the superization of the phase space variables
and extending the corresponding Poisson brackets upon the related functional supermanifold, fails
to retain the dynamical system super-integrability. Nonetheless, for a wide class of classical Lax
type integrable nonlinear dynamical systems on functional manifolds a possible superization scheme
consists in a reasonable superization of the related Lax type repreentation by means of transition from
the basic algebra of pseudo-differential operators on the axis to the corresponding superalgebra of
super-pseudo-differential operators on the superaxis.

Acknowledgments: Authors are cordially indebted to Victor A. Bovdi and Dmitri Leites for fruitful discussions of
super-integrable nonlinear dynamical systems on functional supermanifolds. A.P. and R K. are much appreciated
to the Department of Computer Science and Telecommunication at the Cracov University of Technology for the
local grant that fruitfully contributed to our cooperation.
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