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Abstract: A sonochemical synthesis of SnS2 quantum dots using acetone as a solvent is investigated. Two 

different tin sources (SnCl2∙2H2O or SnCl4∙5H2O) as well as two different sulphur sources (thioacetamide or 

Na2S2O3) were applied. The sonication time was also varied between 60 and 120 minutes. Resulting products 

of syntheses were characterized with the following techniques: powder X-ray diffraction, electron microscopy 

(SEM and HR-TEM), Raman and FT-IR spectroscopies, the Tauc method, and X-ray photoelectron 

spectroscopy. Obtained SnS2 nanostructures were in the form of quantum dots in the case of synthesis lasting 

60 minutes (size of crystallites in the range of 3.5 – 7 nm) and in the form of elongated nanorods of length c.a. 

25-30 nm and width of 5-6 nm in the case of synthesis lasting 120 minutes. XPS analyses revealed that the 

surface of the obtained products contained significant amount of tin at the second oxidation state (i. e. SnS). 

The quantum dots produced in the synthesis lasting 60 minutes showed value of energy bandgap of 2.7 eV 

indicating potential applications in photocatalysis. 

Keywords: sonochemistry; quantum dots; tin(IV) sulphide 

 

1. Introduction 

Tin chalcogenides are a well-known group of inorganic chemical compounds. Their specific 

structural properties allow for formation of very interesting, possible new mixed-valence tin 

chalcogenides [1]. For example, tin together with sulfur forms two basic tin sulfides (SnS and SnS2), 

however they may be ‘mixed’ to form other two known tin sulfides (Sn2S3 and Sn3S4) [1–3]. These 

compounds compose of SnS and SnS2 “units” mixed in certain proportions (e.g. 1 : 1 and 2 : 1 for Sn2S3 

and Sn3S4 respectively) [2–4]. This fact contributes to rich and interesting chemistry of tin 

chalcogenides [5]. 

Tin chalcogenides, due to their wide properties, are interesting also from the perspective of 

materials science. Tin(II) sulfide is a semiconductor with optical energy band gap lying typically in 

the range of 1.1 – 1.5 eV [6]. It is also characterized by p-type conductivity and relatively large optical 

absorption coefficient. Thus SnS is an attractive material for utilization in fields such as photonics, 

photovoltaics, and optoelectronics [7,8]. Other two tin sulfides, Sn2S3 and SnS2, have conductivity of 

n-type which is caused by sulfur vacancy related to the Sn(IV) oxidation state [6]. 

Wide applications of tin sulphides often require preparation of this compounds in the form of 

nanostructures.  Among methods that have been used to prepare tin(II) and tin(IV) sulphide 

nanostructures one can mention: solvothermal (including hydrothermal) routes, the hot injection 

method, polyol methods, and precipitation from aqueous solutions [9–16]. However, these methods 

typically involve usage of toxic high-boiling solvents and/or toxic reagents. A promising alternative 

for these methods is the sonochemical synthesis which meets the criteria of the so-called “Green 

Chemistry” [17]. The sonochemical synthesis was successfully used for the preparation of inorganic 
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nanostructures of simple (e.g. ZnS, CdS) and complex (e.g. Cu3BiS3, CuInS2, Cu2ZnSnS4) inorganic 

compounds [18–22]. By the manipulation of the parameters of the sonochemical synthesis one can 

achieve many morphologies and sizes of products, however the control of product may be 

additionally enhanced by merging sonochemical and electrochemical syntheses [23–26]. 

Tin sulphides were prepared via the ultrasound-assisted synthesis many times. Nanoparticles 

of SnS were synthesized using direct sonication and reagents such as SnCl2, Na2S2O3 or Na2S, and 

CH3COONH4 in unknown solvent [27–29]. Indirect sonication was also used in the sonochemical 

synthesis of SnS resulting in nanoparticles of 7 nm in the mean size, however also in unknown solvent 

[30]. Using a mixture of ethanol and ionic liquid (1-buthyl-3methylimidazole tetrafluoroborane), and 

thioacetamide as a source of sulphur  allowed for the synthesis of SnS with particles of sizes in range 

from 50 to 700 nm [31]. On the other hand, starting from the same reagents but using ethylene glycol 

mixed with a amine (ethanolamine, diethanolamine or triethanolamine) it was possible to achieve 

SnS nanoparticles with size in range of 4 to 15 nm [32]. There are fewer reports on the sonochemical 

synthesis of SnS2 in comparison with SnS. However, SnS2 nanoparticles of sizes in range 24 – 30 nm 

were prepared in aqueous solutions of SnCl4 and thioacetamide with optional addition of 

concentrated hydrochloric acid [33–35]. Finally, quantum dots of both tin sulfides, with sizes varying 

from 1.5 to 10 nm for SnS2 and from 3 to 8 nm for SnS, were sonochemically obtained using the most 

technologically desirable solvent, which is water [36]. Despite described approaches for the 

sonochemical synthesis of SnS and SnS2 (preferably in the form of quantum dots), the influence of 

utilized solvent on the product is still unclear and more studies (using other solvents) need to be 

conducted. 

This study presents the investigation of possible application of acetone as a solvent in the 

sonochemical synthesis of SnS and SnS2 quantum dots. Following starting reagents were used: SnCl2 

or SnCl4 (as a source of tin) and thioacetamide or sodium thiosulfate (as a source of sulphur). 

Resulting products of syntheses were isolated, purified and subjected for investigations with 

following techniques: powder X-ray diffraction, Raman and FT-IR spectroscopies, UV-Vis 

spectrophotometry (estimation of energy bandgap with the Tauc method), electron microscopy (SEM 

and HR-TEM), and X-ray photoelectron spectroscopy (XPS).  

2. Materials and Methods 

2.1. Materials and Reagents 

All chemicals used in this study were pure for analysis (producer: POCH – Polskie Odczynniki 

Chemiczne). For sonochemical syntheses, SnCl2∙2H2O, SnCl4∙5H2O, Na2S2O3, and thioacetamide 

(TAA) were used as reagents. Acetone was used as a solvent in the syntheses and ethanol was used 

for the purification of prepared suspensions. 

2.2. Sonochemical Syntheses 

The sonochemical syntheses were conducted in conical flasks of 50 ml volume in an ultrasonic 

cleaner (PS 10A) generating an ultrasound of 40 kHz frequency with nominal power of ultrasounds 

60 W. The acoustic power determined by the calorimetric method was 27.9 W/L. 

20 ml of acetone was measured with a graduated pipette and placed in a flask. Weighed reagents 

(see Table 1 for detailed information on amounts) were placed in the solvent in the conical flask and 

the mixture then was stirred magnetically for 20 minutes. Next, the flasks were closed with glass 

stoppers and placed in the ultrasonic cleaner so the level of liquid in cleaner was the same as the level 

of liquid in the flasks. The duration of sonication was 60 or 120 minutes.  

Immediately after the reaction the conical flasks were opened and kept under laboratory hood 

for a c.a. 1 hour to remove the potentially toxic gases produced during the reaction. After that, the 

produced powders were purified by subsequent centrifugations according to the following 

procedure: first, the reaction mixture was centrifuged and the supernatant was removed; next, the 

sediment was suspended in fresh ethanol (10 ml) in the ultrasonic cleaner for 10 minutes; then the 

obtained suspension has been centrifuged, supernatant was removed and the sediment was 
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suspended in fresh portion of ethanol (10 ml) in the ultrasonic cleaner for 10 minutes (this point was 

repeated additionally 2 times). Such a procedure resulted in a suspension in ethanol of the 

synthesized powders. 

Table 1. Summary of experimental conditions of conducted sonochemical syntheses. 

No. (and sample 

name if available) 

Tin source Amount of tin 

source [mg] 

Sulphur source Amount of 

sulphur source 

[mg] 

Sonication time 

[min] 

Result of 

synthesis 

1 SnCl4∙5H2O 702 Thioacetamide 376 60 Clear, yellow 

solution (no 

precipitate after 

centrifugation) 

2 SnCl4∙5H2O 702 Thioacetamide 376 120 Yellow 

suspension (no 

precipitate after 

centrifugation) 

3 (A35) SnCl2∙2H2O 452 Thioacetamide 376 60 Yellow 

precipitate 

4 (A36) SnCl2∙2H2O 452 Thioacetamide 376 120 Yellow 

precipitate 

5 SnCl4∙5H2O 702 Na2S2O3 1242 60 Reaction mixture 

unchanged 

6 SnCl4∙5H2O 702 Na2S2O3 1242 120 Reaction mixture 

unchanged 

7 SnCl2∙2H2O 452 Na2S2O3 1242 60 Reaction mixture 

unchanged 

8 SnCl2∙2H2O 452 Na2S2O3 1242 120 Reaction mixture 

unchanged. 

2.3. UV-Vis Spectrophotometry 

The UV-Vis spectra of diluted transparent suspensions in ethanol of synthesized powders were 

recorded within the wavelength range of 380-1000 nm using a spectrophotometer Model UV1600 

(AOE Instruments). The collected spectra were subsequently used to perform analyses based on the 

Tauc method. 

2.4. SEM Investigations 

SEM observations were carried out on the Filed Emission Scanning Electron Microscope (FE-

SEM) made by Hitachi High Technologies company, model SU8000. The images were taken with 

upper detector which is semi in-lens type detector, and provide best resolution. The magnification 

range of 20 000x up to 100 000x at 5keV and short working distance was used to determine the fine 

structure of particles. 

2.5. Raman Spectroscopy 

Raman measurements were conducted using an Aramis spectrometer of Horiba Jobin Ivon in 

backscattering geometry. The 633 nm line of the He-Ne–ion laser was used as the excitation. Raman 

spectra were collected using a 2400 l/mm diffraction grating and thermoelectric-cooled Synapse CCD 
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at room temperature and under normal conditions. The spectral resolution of the measured spectra 

in this configuration was about 1cm-1. A low-power laser beam was used to avoid thermal effects. 

2.6. FTIR Spectroscopy 

The Fourier-transform infrared spectroscopy measurements were conducted using NICOLET 

6700 FT-IR spectrometer. Synthesized, dry powders were grounded with KBr and formed as pellets.  

2.7. HR-TEM Investigations 

One drop of the powder suspended in ethanol was deposited on a standard TEM copper grid 

coated with an amorphous carbon film. The grid was dried afterwards and then used for the TEM 

investigation.  

Investigations were conducted with the use of FEI Titan Cubed 80-300 TEM operating at 300 kV. 

The overview images were registered in bright-field TEM mode for magnifications ranging from 

27.000x to 89.000x. For the purpose of high-resolution imaging magnifications from 380.000x - 

420.000x range were used. In both cases, the images were obtained with the Gatan BM-Ultrascan CCD 

camera. 

2.8. XPS Investigations 

The suspensions of samples were dripped on Cu conductive tape and left to dry in laboratory 

fume cupboard. The procedure was repeated until a visible sample layer was obtained then samples 

were introduced to the spectrometer. X-ray photoelectron spectra (XPS) were recorded by Prevac set-

up equipped with high intensity monochromatic X-ray Al Kα (1486.69 eV) source Scienta MX 650 (set 

at 300 W), Scienta R4000 hemispherical analyser, and charge neutralization. The narrow scans were 

acquired with pass energy 200 eV and the step 0.2 eV. The full width at half maximum (FWHM) for 

the Au 4f 7/2 line measured at the same experimental condition was equal to 0.6 eV. The energy scale 

was calibrated setting the C 1 s line at the position 285.0 eV. Spectra were analysed using the 

commercial CASA XPS software package (Casa Software Ltd, version 2.3.17) with Tougaard 

background and a GL (30) line shape (70 % Gaussian, 30 % Lorentzian). The wide spectra were 

registered with pass energy 500 eV and the step 0.5 eV. 

3. Results and Discussion 

According to data presented in Table 1, only two experimental setups led to the formation of 

precipitates that were possible to separate by the centrifugation. Such yellow precipitates had a color 

characteristic for tin(IV) sulphide (SnS2) which can’t be matched with any other known tin sulphide 

(SnS – dark brown, Sn2S3 – brown). Yellow precipitates were obtained using SnCl2∙2H2O as the tin 

source and thioacetamide as the sulphur source, with no relation to the sonication time. Using the 

same sulphur source but with SnCl4∙5H2O as the tin source the reaction mixture turned to yellow 

color after the sonication but no precipitate was possible to separate by the centrifugation. The 

opacification was greater in the case of longer sonication time. The resulting yellow color without 

separable precipitate indicates the formation of ultrasmall nanoparticles of SnS2 with probably 

greater yield in the 120 minutes long synthesis. On the other hand, in the case of usage of Na2S2O3 as 

the sulphur source, the reaction mixtures remained unchanged even after 120 minutes of sonication 

which indicates no reaction, at least toward the formation of tin sulphides. 

The results of the X-ray powder diffraction investigations conducted on the two yellow 

precipitates suggest the presence of tin(IV) sulphide in the nanocrystalline form. This is indicated by 

the broadening of the reflexes in the powder diffractogram, as well as by the absence of the large and 

wide peak in the range of angle from 10 to 15 ° (see Figure 1). 
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Figure 1. X-ray powder diffractograms of yellow precipitates obtained in the sonochemical syntheses 

performed in acetone using  SnCl2∙2H2O and thioacetamide as reagents and with sonication time 60 

minutes (bottom curve) and 120 minutes (upper curve). 

Raman studies confirmed the formation of SnS2 nanograins in the sonochemical synthesis 

process. There were no precipitations of another phase. The Eg and A1g symmetry peaks indicate a 

trigonal crystal structure of SnS2 with a 2H polytype. This is evidenced mainly by a clear peak of A1g 

for about 315 cm-1 (Figure 2) [37,38]. The intensity of the Eg peak at about 205 cm-1 is very low and 

hardly observed.  

A slight shift of this peak of about 0.5 cm-1 towards higher frequencies in the case of A35 sample 

compared to the A36 sample was observed. This may be attributed to small amounts of polytypes 

different from 2H in the A35 sample [39]. Some asymmetry of the peak was observed for both types 

of samples. Such asymmetry may be caused by phonon-free carriers interaction or is due to phonon 

constraints in nanostructures [40]. In the case of SnS2, this broadening may result also from the 

disorder activation of forbidden phonons with A2u symmetry [41]. 

The asymmetry of the Ag peak is greater in the case of A35 samples. At the same time, a much 

higher luminescence background is observed for these samples. Hence, it can be concluded that the 

broadening of the Ag peak results from a higher concentration of defects and activation of phonons 

normally forbidden by the selection rules. 
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Figure 2. Typical Raman spectra of samples A35 and A36. A vertical dashed line was placed for 315 

cm-1. Arrows indicate asymmetry of the A1g peak. 

Additional FT-IR spectroscopy investigations were conducted to confirm the presence of tin(IV) 

sulphide (Figure 3). In both yellow precipitates a Sn-S bonds are presented (region of 1000 – 1300 cm-

1). The FT-IR spectra show the occurrence of trace amounts of solvent used in  purification (C2H5OH) 

as indicated by peaks corresponding to C-C and C-H bonds, and –OH groups (1400, 1600, and 3000-

3500 cm-1). The bands related to Sn-S bond are similar in both samples of SnS2 what is in line with the 

XRD and Raman results. 

 

Figure 3. FT-IR spectra of samples A35 and A36. 

The morphology of the dried yellow precipitates was investigated by the scanning  electron 

miscroscopy (SEM) observations. The dried product of reaction that durated 60 minutes formed 

submicron agglomerates (Figure 4a) made of nanometric particles (Figure 4b). On the other hand, the 

dried product of 120 minutes long reaction formed submicron particles with interesting, flower-like 
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morphology (Figure 4c). Observations in higher magnitude revealed that the flower-like particles are 

made of elongated and narrow nanostructures (Figure 4d). The EDX elemental analyses confirmed 

the presence of desired elements (Sn and S) in the obtained powders, however with deviations from 

ideal atomic ratio of Sn to S which in bulk SnS2 is 1 : 2. For the powder obtained in the 60 minutes 

long synthesis, the Sn : S ratio is 1.75 : 1, while for the powder obtained in the 120 minutes long 

synthesis, the Sn : S ratio is 0.73 : 1. The difference from the ideal ratio may be likely caused by the 

formation of nanoparticles in the syntheses, however it may be seen that with longer sonication time 

the Sn : S ratio changed its value toward the ideal one. 

 

 

 

 
(a) (b) 

 

 

 

 

(c) (d) 

Figure 4. SEM images of dried products of syntheses with duration: a, b) 60 minutes; c, d) 120 

minutes. 

Observations made by the HR-TEM technique proved the presence of nanocrystallites in the 

prepared samples of SnS2 (Figure 5). In the product of synthesis lasting 60 minutes, nanocrystallites 

with sizes in range from 3.5 to 7.5 nm were confirmed (Figure 5a). Elongated and narrow 

nanostructures were present in the sample obtained by 120 minutes long sonication (Figure 5b). 
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(a) (b) 

Figure 5. HR-TEM images of the products of syntheses with duration: a) 60 minutes, b) 120 minutes. 

Further observations with HR-TEM technique and analyses based on their Fourier transforms 

confirm that nanocrystallites have structure typical for SnS2 (Berndtite structure – see Figure 6). 

 

 

 
(a) (b) 

Figure 6. HR-TEM images, together with Fourier transforms, of dried products of syntheses with 

duration: a) 60 minutes; b) 120 minutes. (Red circles indicate spots corresponding to the structure of 

the analyzed nanocrystal, other spots come from neighboring ones). 

The results of the X-ray photoelectron spectroscopy investigations are presented in Tables 2 and 

3. Like the results of the EDX elemental analysis, they indicate that the Sn : S ratio evolves toward 

ideal ratio of value 1 : 2 with longer synthesis times. However, it turns out that on the surface of both 

samples the main component is not SnS2, but SnS. Additionally, the fraction of SnS2 on the surface of 

product decreases with increasing sonication time. Quite high values of FWHM and slightly changed 

binding energy of the fitting curves indicated a large disorder in the chemical structure of the formed 
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nanoparticles, therefore, we cannot exclude the possibility of the formation of other compounds such 

as e.g. Sn2S3 or Sn3S4. 

Table 2. Results of the XPS elemental composition (at %) of tested samples from high and low (survey) 

resolution spectra. 

Sonication 

time [min] 

Spectrum 

resolution 

Sn  S C O S:Sn 

60 High 14.7 12.5 17.5 55.3 0.85 

60 Low 14.3 15.4 20.0 50.3 1.1 

120 High 7.2 9.5 70.2 13.1 1.3 

120 Low 0.74 1.6 77.5 20.2 2.2 

Table 3. The binding energy (eV); percentage of given fraction, and full width at half maximum (eV) 

(FWHM) for chemical components in analyzed samples. FWHM indicates the level of chemical order 

in formed compounds. 

Sonication 

time [min] 

BE of S 

in SnS 

FWHM BE of S 

in SnS2 

FWHM BE of 

Sn(II) in 

SnS 

FWHM BE of 

Sn(IV) in 

SnS2 

FWHM 

60 161.9; 

74.1% 

0.9 162.6: 

25.9% 

1.3 486.6; 

88.2% 

1.1 487.3; 

11.9% 

1.5 

120 161.3; 

94.8% 

1.0 162.6; 

5.2% 

1.1 486.5; 

94.8% 

1.2 487.6; 

5.2% 

0.9 
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(c) (d) 

Figure 7. XPS spectra of S 2p (a and c) and Sn 3d (b and d) of sonochemically synthesized SnS2 

quantum dots: a, b) 60 minutes long synthesis; c, d) 120 minutes long synthesis. 

The analyses performed basing on the Tauc approximation revealed that the product of 

synthesis lasting 60 minutes has value of energy bandgap for direct transition of 2.7 eV (see Figure 

8a for relevant Tauc plot). Such a value is slightly greater than the value corresponding to the bulk 

SnS2 which is c.a. 2.4 eV [42]. The inrease in the energy bandgap is likely caused by the quantum 

confinement effect. On the other hand, the product of synthesis lasting 120 minutes is characterized 

by energy bandgap of value 1.5 eV for direct transition (see Figure 8b) exhibiting a significant 

difference in comparison with the bulk SnS2. Such a result may suggest the presence of other phases 

(SnS, Sn2S3, Sn3S4) in the prepared powder of SnS2. The values of optical energy bandgaps suggest 

possible applications of prepared quantum dots in the field of photocatalysis (product of synthesis 

lasting 60 minutes; relatively high value of 2.7 eV) and photovoltaics (product of synthesis lasting 120 

minutes; value 1.5 eV lying in the so-called Schockley-Queisser limit [43]). 

 

 

 
(a) (b) 

Figure 8. The Tauc plots of sonochemically synthesized SnS2 quantum dots: a) 60 minutes long 

synthesis; b) 120 minutes long synthesis. 

4. Conclusions 

We present a procedure for the sonochemical synthesis of SnS2 quantum dots using, for the first 

time, acetone as a solvent. Different tin and sulphur sources were investigated and it turned out that 

SnS2 nanostructures may be obtained using SnCl2∙2H2O and thioacetamide. Obtained SnS2 

nanostructures were in the form of quantum dots in the case of synthesis lasting 60 minutes (size of 

crystallites in the range of 3.5 – 7 nm) and in the form of elongated nanorods of length c.a. 25-30 nm 

and width of 5-6 nm in the case of synthesis lasting 120 minutes. XPS analyses revealed that on the 

surface the obtained products contained significant amount of tin on the second oxidation state (i. e. 

SnS). The estimated values of energy bandgaps suggest potential applications of synthesized 

quantum dots in the field of photocatalysis (product of 60 minutes long synthesis – 2.7 eV) and 

photovoltaics (product of 120 minutes long synthesis – 1.5 eV). 
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