

Review

Not peer-reviewed version

Advancements in Hand Recognition Systems: Challenges and Future Directions

Jinwoo Park Sunghee ^{*}, [Hyejin Lee Ok](#) ^{*}, Sungmin Kang

Posted Date: 27 November 2024

doi: 10.20944/preprints202411.1969.v1

Keywords: hand recognition; biometric systems; deep learning; multimodal biometrics; privacy-preserving techniques; security; machine learning

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Advancements in Hand Recognition Systems: Challenges and Future Directions

Jinwoo Park Sunghee ^{1,*}, Hyejin Lee Ok ^{2,*} and Sungmin Kang ^{1,2}

¹ Department of Computer Science, KAIST, 291 Daehak-ro, Daejeon, 34141, Daejeon, South Korea

² Department of Biometric Systems, POSTECH, 77 Cheongam-ro, Pohang, 37673, Gyeongsangbuk-do, South Korea

* Correspondence: jinwoopark283@gmail.com (J.P.S.); arjanmat@proton.me (H.L.O.)

Abstract: Hand recognition is a rapidly evolving field in biometric identification, offering unique advantages for secure, contactless authentication across diverse applications. This paper provides a comprehensive overview of current hand recognition technologies, including palmprint, hand geometry, and vein pattern recognition, and explores emerging trends in multimodal systems, artificial intelligence, and sensor innovations. We examine critical challenges such as environmental variability, computational demands, and privacy concerns, which impact the performance and acceptance of hand recognition systems. Additionally, we discuss future directions, including the integration of advanced deep learning techniques, privacy-preserving methods like federated learning and homomorphic encryption, and the potential use of blockchain for secure data management. The paper highlights how developments in edge computing and hardware improvements will enhance real-time processing and accessibility of hand recognition on resource-constrained devices. By addressing these challenges and embracing innovations, hand recognition technology is expected to play a transformative role in sectors ranging from security and healthcare to smart cities and autonomous systems. The findings aim to guide researchers and developers in advancing robust, secure, and ethical hand recognition systems for a wide range of applications.

Keywords: hand recognition; biometric systems; deep learning; multimodal biometrics; privacy-preserving techniques; security; machine learning

1. Introduction

Biometric recognition technology has rapidly evolved, transforming personal identification and authentication systems with enhanced security, efficiency, and user experience [1]. Unlike traditional methods such as passwords or ID cards, biometrics leverages unique biological traits—such as fingerprints, facial features, voice, or hand characteristics—to verify identity [2]. Among these, hand recognition has gained considerable interest due to its accessibility and adaptability [3]. This approach makes use of distinct features of the hand, which are generally easy to capture and minimally intrusive [4]. Over recent years, hand recognition applications have expanded across diverse fields, including device authentication, security access, and healthcare verification, highlighting its relevance in current biometric research [5].

Hand recognition technology includes several modalities, each analyzing specific aspects of the hand's structure and features. These modalities include hand geometry recognition, which relies on the hand's physical dimensions [6]; palmprint recognition, which captures unique patterns of ridges and lines on the palm [7]; vein pattern recognition, which maps the subdermal vein structure [8]; and gesture recognition, which interprets hand movements for human-computer interaction [9]. Each modality offers unique benefits and limitations, making hand recognition a flexible technology adaptable to different levels of security, usability, and application requirements [10]. The diversity of these modalities drives ongoing research and innovation in the field.

Hand geometry recognition, one of the earliest forms of hand biometrics, involves measuring the hand's length, width, and shape [11]. This method is often applied in environments that require

a straightforward, low-cost identification approach without demanding extremely high precision. However, hand geometry can be less reliable over time, as physical changes like aging or injury can alter hand dimensions [12]. The limited detail it provides has also prompted researchers to explore alternative methods that offer finer, more stable characteristics [13].

In contrast, palmprint recognition captures high-resolution images of surface patterns—such as ridges, wrinkles, and unique lines—on the palm [14]. These features, which remain consistent over time, enhance security and reliability, making palmprint recognition suitable for high-security applications like restricted access environments [15]. However, capturing palmprint details requires advanced imaging equipment, which can increase system cost and complexity. Recent advances in image processing and machine learning have bolstered palmprint recognition, solidifying its role in various secure systems [16].

Vein pattern recognition further enhances security by mapping vascular patterns beneath the skin. These vascular patterns are unique and stable over an individual's lifetime, providing robust resistance to spoofing [17]. Commonly applied in banking, healthcare, and high-security authentication, vein recognition uses near-infrared imaging to capture unique vascular patterns accurately [18]. However, specialized hardware requirements make this method more costly and less practical for widespread use [19].

A newer approach, gesture recognition, interprets dynamic hand movements [20]. This modality enables hands-free interfaces for applications like virtual reality, sign language translation, and device control [21]. Gesture recognition depends on advanced computer vision techniques and machine learning models that classify hand poses and movements in real time [22]. While promising, it faces challenges such as variability in lighting and movement complexity, which can affect accuracy and reliability [23].

Advances in machine learning and deep learning have been instrumental in these developments. Machine learning models—such as support vector machines (SVM), k-nearest neighbors (k-NN), and random forests—have proven effective for classifying hand features across modalities [24]. Deep learning, particularly Convolutional Neural Networks (CNNs) for static images and Recurrent Neural Networks (RNNs) for temporal sequences, has further enhanced the accuracy of hand recognition systems [25]. These models are capable of handling complex environments and noisy data, significantly boosting robustness [26].

In addition to algorithmic advancements, hardware improvements have expanded the practical applications of hand recognition. High-resolution cameras, infrared imaging devices, and powerful processors now enable real-time processing of detailed hand features [27]. Some modern smartphones, for instance, support palmprint or vein recognition, bringing advanced biometrics into everyday devices [28]. Multimodal systems that combine methods, such as palmprint and vein recognition, further enhance security by integrating complementary data from various hand features [29]. This integration of technologies has created more adaptable and resilient recognition systems suitable for both high-security and general-purpose use.

Despite these advancements, challenges remain. Environmental factors—such as lighting, background, and hand positioning—can affect image quality and recognition accuracy [1]. Changes in hand characteristics over time, due to factors like age or injury, may impact reliability, especially for methods focused on surface patterns [2]. Privacy and security concerns are also significant. Biometric data is inherently personal, making secure data storage and processing critical to prevent unauthorized access [3].

This review aims to provide a comprehensive analysis of current hand recognition methods, applications, and challenges. We examine each modality in detail, explore techniques for feature extraction and classification, and highlight effective applications of hand recognition. Finally, we discuss emerging trends, such as federated learning for data privacy and blockchain integration for secure data management [4]. This review aims to offer a broad understanding of hand recognition technologies, their strengths, limitations, and future potential in biometric systems.

2. Modalities in Hand Recognition

The different modalities within hand recognition offer a range of capabilities tailored to varying application needs and security levels. From the structural simplicity of hand geometry to the high security of vein recognition and the interactivity of gesture recognition, each approach demonstrates distinct strengths and limitations, explored in this section.

2.1. Hand Geometry Recognition

Hand geometry recognition is one of the earliest hand-based biometric techniques due to its simplicity and reliability in moderate-security applications [25]. This approach focuses on measuring structural features like finger lengths, finger widths, hand width, and palm shape [5]. While it lacks the detail of finer biometrics, hand geometry is advantageous in settings where ease of use is prioritized, as it is less computationally demanding than more intricate recognition methods.

Using optical or infrared sensors, hand geometry recognition systems capture a 2D or 3D image of the hand. Key measurements are extracted from this image, forming a unique numerical profile that serves as the individual's identifier [11]. Matching involves comparing distances between specific points, which requires less computational power than high-resolution image-based techniques, such as palmprint recognition [1]. This modality is resilient to changes in lighting and background, making it suitable for workplace access control systems where robustness is prioritized over high precision.

However, hand geometry's simplicity also limits its use in high-security applications, as physical changes in the hand from injury, aging, or weight fluctuation can affect accuracy over time [6]. Recent advances, including 3D hand scanners, aim to enhance accuracy, though they still cannot fully overcome the inherent limitations of relying on anatomical measurements alone. Therefore, hand geometry is often combined with other modalities in multimodal systems for improved accuracy in security-focused scenarios [17].

2.2. Palmprint Recognition

Palmprint recognition leverages the unique ridges, creases, and wrinkles on the palm for high accuracy and security [14]. These features remain stable over time, making palmprint recognition suitable for secure applications such as law enforcement and border control [7]. High-resolution imaging systems, often using visible or infrared light, capture the complex patterns on the palm, which are processed to extract unique features using Gabor filters, wavelet transforms, or other feature extraction algorithms [18].

The high level of detail provided by palmprint patterns makes it a more secure option than hand geometry, offering increased resistance to spoofing. Additionally, deep learning algorithms are making palmprint recognition more efficient, enabling its application in larger databases with real-time processing demands [27]. However, the reliance on high-quality imaging hardware can increase system costs, limiting palmprint recognition's practicality in low-resource settings [29]. Nonetheless, its robustness to environmental factors and high precision ensure it remains a valuable tool in high-security applications.

2.3. Vein Pattern Recognition

Vein pattern recognition, which includes finger and palm vein modalities, captures unique vascular patterns beneath the skin [18]. Near-infrared (NIR) imaging illuminates blood vessels to reveal vein patterns unique to each individual, providing a high-security option due to the difficulty of spoofing vascular features. This modality has seen success in applications like banking, healthcare, and high-security facilities, where high accuracy and privacy are paramount [17].

The stability of vein patterns over time, unaffected by surface-level changes, makes vein recognition reliable in conditions that may affect other modalities, such as cuts or abrasions [20]. However, vein pattern recognition systems require specialized and often costly hardware, which limits

widespread adoption, especially in consumer applications [16]. Continued advancements in NIR sensors and hardware miniaturization could expand the reach of vein recognition, potentially enabling its integration into mobile devices.

2.4. Gesture Recognition

Gesture recognition interprets real-time hand movements, making it valuable for human-computer interaction (HCI), particularly in augmented and virtual reality, gaming, and smart home control [9]. Systems typically use RGB cameras, depth sensors, or infrared cameras to capture dynamic data, which is processed by machine learning models, such as CNNs and RNNs, to classify and interpret gestures [20].

Gesture recognition allows users to interact with digital systems without physical contact, a major benefit in hygiene-sensitive environments like healthcare. However, environmental factors such as lighting and background clutter can affect accuracy. Additionally, similar gestures can be difficult to differentiate, particularly when users vary in speed or hand positioning. Researchers are addressing these challenges through multimodal approaches that combine gesture recognition with other biometric modalities for enhanced reliability and robustness in complex applications.

Each modality in hand recognition offers unique benefits tailored to specific security requirements and applications. Hand geometry provides ease of use in moderate-security settings, while palmprint and vein recognition deliver high security for sensitive areas. Gesture recognition adds a new dimension of interactivity, suitable for touch-free interfaces. Together, these modalities showcase the adaptability and potential of hand-based biometrics across diverse environments.

3. Techniques in Hand Recognition

Hand recognition systems utilize a wide range of techniques for feature extraction, pattern recognition, and classification, each chosen to address the unique challenges posed by different modalities and applications. These techniques have evolved significantly, with early hand recognition systems relying on traditional machine learning and statistical methods, while modern systems are increasingly adopting deep learning and multimodal approaches. This section explores the various techniques used in hand recognition, including machine learning methods, deep learning architectures, and multimodal approaches, each contributing distinct strengths and capabilities to the field.

3.1. Machine Learning Approaches

Traditional machine learning techniques, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), were among the first methods applied in biometric systems to reduce the dimensionality of data and extract essential features from hand images [30]. PCA and LDA are statistical techniques that find patterns in data by minimizing redundancy and preserving only the most relevant information, allowing for efficient processing of high-dimensional biometric data. These methods have been widely used in early hand geometry and palmprint recognition systems for their simplicity and computational efficiency [31].

In addition to PCA and LDA, classical machine learning algorithms like Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) have been effective in basic hand recognition tasks. These algorithms are well-suited for smaller datasets and less complex tasks, where high-dimensional data can be reduced to essential features before classification [32]. However, traditional algorithms often struggle with complex, large-scale datasets common in modern hand recognition applications. For example, SVMs are limited by their dependence on feature engineering, which can make them less adaptable to real-world variability in lighting, pose, and occlusions [33].

To overcome these limitations, machine learning researchers began exploring more complex, ensemble-based techniques, such as Random Forests and Gradient Boosting Machines, which combine multiple models to improve accuracy and resilience against noise [34]. Despite these advancements, traditional machine learning methods have become less popular in recent years due to the superior

performance and scalability of deep learning models, particularly for large and complex biometric datasets.

3.2. Deep Learning Approaches

The advent of deep learning has brought significant improvements to hand recognition systems, primarily through the use of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), which enable automated feature extraction and robust classification. CNNs have become the predominant model in static hand recognition tasks, such as hand geometry and palmprint recognition, due to their ability to capture intricate spatial hierarchies and patterns in hand images [35]. Unlike traditional machine learning models, CNNs require minimal feature engineering, as they learn relevant features directly from the data. This automatic feature extraction capability has enabled CNN-based models to achieve high recognition rates even in challenging conditions, such as varying lighting, background clutter, and partial occlusions [36].

The effectiveness of CNNs in hand recognition can be further enhanced by techniques such as data augmentation and regularization, which help prevent overfitting and improve generalization to unseen data. Data augmentation involves generating modified versions of training images—through transformations like rotation, scaling, and flipping—to increase dataset diversity, while regularization methods, such as dropout and batch normalization, add robustness to the network [37]. CNN architectures, such as ResNet and VGG, are commonly used in hand recognition for their ability to capture multi-scale features, making them well-suited for tasks like palmprint recognition, which requires distinguishing fine texture details on the skin [38].

For gesture recognition and other tasks involving temporal sequences, Long Short-Term Memory (LSTM) networks and other RNNs are often employed. These models excel at processing sequential data by retaining information from previous frames, making them ideal for recognizing dynamic hand gestures [39]. In recent years, hybrid models that combine CNNs with LSTMs have been developed to address the specific challenges of gesture recognition. For instance, CNN layers can process each frame of a video to extract spatial features, while LSTM layers analyze the sequence of frames to capture temporal dependencies [40]. This approach allows for real-time recognition of complex gestures, making it suitable for applications in virtual reality, sign language interpretation, and other interactive technologies.

The success of deep learning in hand recognition has also been facilitated by the availability of large-scale datasets and the computational power provided by modern GPUs. Large annotated datasets, such as the PolyU Palmprint Database and CASIA Multi-Spectral Palmprint Database, have been instrumental in training high-capacity deep learning models, while GPUs allow for faster training and inference [41]. Despite these advances, deep learning models require substantial computational resources and may struggle with interpretability, as they function as "black boxes" that lack transparency in their decision-making processes. To address these issues, ongoing research is exploring explainable AI techniques, which aim to provide insights into how deep learning models make their predictions, and lightweight model architectures that can be deployed on resource-constrained devices [42].

3.3. Multimodal Approaches

Multimodal biometrics has emerged as a promising approach to enhance recognition accuracy, robustness, and security in hand recognition systems by combining multiple modalities. By integrating complementary biometric traits—such as palmprint, vein patterns, and hand geometry—multimodal systems can improve resilience against spoofing and increase the accuracy of identification and verification [43]. This approach is especially valuable in high-security applications where single-modal systems might be vulnerable to spoofing or inadequate for large user databases [44].

Multimodal hand recognition systems typically employ either feature-level, score-level, or decision-level fusion techniques. In feature-level fusion, the features extracted from different modalities

are combined into a single feature vector, enabling comprehensive pattern analysis but often requiring sophisticated normalization techniques [45]. Score-level fusion, on the other hand, combines the matching scores from individual modalities, which simplifies data integration and allows for greater flexibility in adjusting the relative importance of each modality [46]. Decision-level fusion aggregates the final decisions made by each modality, offering high resilience but potentially sacrificing some accuracy.

Examples of multimodal approaches include the integration of palmprint and vein pattern recognition, where palmprint provides rich textural information and vein patterns add an internal, anti-spoofing layer. Recent research shows that such systems are particularly effective at enhancing accuracy and security, as each modality compensates for the limitations of the other [41]. However, multimodal systems tend to require more complex hardware setups, increasing implementation costs and limiting their scalability in low-resource environments.

Recent advances in sensor technology and deep learning have led to innovative multimodal systems that can integrate multiple biometric features using a single imaging device. For instance, hyperspectral imaging and multi-spectral infrared cameras allow for the simultaneous capture of palmprints and vein patterns, which can then be analyzed by deep learning models in a unified pipeline [47]. This integration not only simplifies the hardware requirements but also reduces processing time, making multimodal hand recognition more feasible for real-time applications.

The use of multimodal approaches highlights the versatility of hand recognition systems, showcasing how the combination of complementary modalities can create more reliable, secure, and adaptable solutions across diverse biometric applications. As multimodal biometrics continue to evolve, future systems are likely to incorporate even more modalities and advanced fusion algorithms, enabling hand recognition technology to meet the increasingly complex demands of modern security and identification systems.

4. Applications of Hand Recognition

Hand recognition technologies are versatile and find application across various domains, providing solutions that range from security and access control to healthcare, human-computer interaction, and beyond. The ability of hand recognition systems to offer both high security and convenience has contributed to their widespread adoption, with different modalities catering to specific industry needs. In this section, we explore the applications of hand recognition technologies in security and access control, healthcare, human-computer interaction, financial services, forensics, and personalized services.

4.1. Security and Access Control

One of the primary applications of hand recognition technology is in security and access control, where it is widely used in both physical and logical security systems. By relying on unique biometric features, such as hand geometry, palmprint, and vein patterns, hand recognition systems provide robust authentication methods that are difficult to replicate or bypass. Unlike traditional security measures like passwords or keycards, which can be stolen or shared, biometrics-based access control offers a high level of security by verifying the identity of an individual directly [48].

Hand geometry recognition, one of the earliest biometric technologies, is still widely used for access control in environments where moderate security is required. For instance, it is commonly deployed in office buildings, factories, and laboratories where employee authentication is essential but does not demand the highest security levels [46]. Palmprint recognition, due to its higher degree of uniqueness and complexity, is preferred in high-security applications such as airport security, government facilities, and military installations [49].

Vein pattern recognition has gained popularity in recent years due to its high resilience against spoofing, as vein patterns are located beneath the skin and are difficult to replicate [50]. This modality is particularly valuable in scenarios where high-security access control is necessary, such as data centers,

banking facilities, and critical infrastructure sites. Furthermore, advances in multimodal biometrics have led to systems that combine multiple hand recognition modalities—such as palmprint and vein recognition—offering enhanced security and reliability by leveraging complementary biometric features [43].

4.2. Healthcare

The healthcare sector has benefited from the adoption of hand recognition technologies, particularly for patient identification and verification. In healthcare settings, accurate and secure patient identification is crucial to ensure that the correct treatments are administered to the right individuals, thereby reducing the risk of medical errors. Traditional patient identification methods, such as ID cards and wristbands, can be prone to errors and may not provide the same level of security as biometrics [51].

Vein pattern recognition, in particular, has emerged as an effective solution for patient identification in healthcare due to its non-invasive nature and high reliability. Since vein patterns are unique to each individual and remain relatively stable throughout life, they are well-suited for tracking patients over extended periods [52]. This modality is especially valuable for identifying unconscious or unresponsive patients, such as in emergency departments or during surgeries, as it can provide fast and reliable verification without requiring the patient's active participation [53].

Beyond patient identification, hand recognition technologies are also applied in tracking and managing healthcare personnel [54], controlling access to sensitive areas within healthcare facilities, and ensuring compliance with hygiene protocols. For example, in certain healthcare facilities, hand recognition is used to monitor handwashing compliance, which is crucial in preventing the spread of infections. By leveraging hand recognition systems, healthcare institutions can improve operational efficiency, enhance patient safety, and streamline administrative processes [55].

4.3. Human-Computer Interaction (HCI)

Hand recognition plays a significant role in human-computer interaction (HCI), where it enables intuitive and natural communication between users and digital devices. Gesture recognition, a key application in this domain, allows users to interact with computers, virtual reality (VR) environments, and augmented reality (AR) systems without physical contact. This touchless interaction is particularly valuable in applications where traditional input devices are impractical or where immersive experiences are desired, such as in gaming, remote collaboration, and training simulations [56].

In VR and AR environments, gesture recognition allows users to control objects, navigate virtual spaces, and perform complex interactions in a natural way, making the digital experience more immersive and engaging. For example, in VR-based training simulations for fields such as medicine, engineering, and military training, hand gestures can simulate real-world actions, enabling users to develop skills in a safe and controlled environment [40]. Similarly, in AR applications, gesture recognition can facilitate seamless interaction with virtual objects overlaid onto the physical world, allowing users to manipulate data or perform tasks hands-free.

Hand gesture recognition also holds promise in assistive technology for individuals with disabilities. For instance, sign language recognition systems, which use hand gestures to interpret and translate sign language into text or spoken language, enable communication for deaf and hard-of-hearing individuals. These systems can improve accessibility, foster inclusion, and enhance communication in various social and professional contexts [1]. The combination of gesture recognition with advances in computer vision and machine learning has expanded the possibilities for HCI, creating more responsive and context-aware interfaces.

4.4. Financial Services

The financial sector has increasingly adopted hand recognition technologies for secure transactions and customer authentication. Given the high-security demands of financial institutions, hand biometrics—particularly palmprint and vein pattern recognition—offer an effective solution for protecting sensitive information and ensuring secure access to accounts and services. Banks and financial institutions are leveraging biometrics to replace traditional authentication methods, such as PINs and passwords, with more secure and convenient alternatives [2].

In many countries, palm vein recognition is now used in ATMs and banking kiosks, where it provides a contactless authentication method that minimizes the risk of fraud. By verifying customers based on their unique palm vein patterns, financial institutions can significantly reduce identity theft and unauthorized access. Moreover, biometrics-based authentication improves the customer experience by streamlining access to banking services without the need for physical tokens or password memorization [3].

Hand recognition is also being integrated into mobile banking applications, allowing users to authenticate transactions using their smartphones' built-in cameras or infrared sensors. As mobile banking continues to grow, hand biometrics provide an additional layer of security, particularly for high-value transactions and remote authentication. These advancements have made biometrics a critical component of digital banking security, ensuring both security and user convenience.

4.5. Forensics and Law Enforcement

Forensic and law enforcement agencies have started using hand recognition as a complementary tool for identifying suspects and verifying identities. Palmprint recognition, in particular, is valuable in forensic investigations, as palmprints are often found at crime scenes and can serve as crucial evidence. While fingerprint recognition remains the standard in forensic biometrics, palmprints provide additional details that can enhance identification accuracy and provide further corroboration in criminal cases [41].

The use of hand recognition in law enforcement extends to identifying individuals during investigations, where biometric records are often used to match suspects with criminal databases. Multimodal biometric systems that incorporate hand geometry and vein recognition can offer law enforcement agencies a more comprehensive and reliable tool for identifying individuals, especially in situations where other biometric data, such as fingerprints, may be missing or compromised [43].

In addition, hand gesture recognition is finding application in surveillance systems, where it is used to monitor unusual behaviors or suspicious gestures that may indicate criminal activity. For example, certain hand movements associated with concealing weapons or preparing illegal substances can be detected through gesture recognition algorithms, allowing law enforcement to intervene preemptively [4]. These systems can enhance public safety by enabling real-time monitoring and automated detection of potential threats.

4.6. Personalized Services and Retail

In the retail and hospitality industries, hand recognition technologies offer personalized services and improved customer experiences by facilitating seamless transactions and individualized interactions. For instance, some stores and restaurants are beginning to use hand recognition for customer check-in, loyalty program management, and personalized recommendations. By identifying customers based on their unique hand biometrics, these systems can offer tailored experiences, such as product recommendations or loyalty discounts, without the need for physical cards or devices [5].

In addition to enhancing customer convenience, hand recognition also provides a secure and contactless payment option, which has become increasingly relevant in response to hygiene concerns. Palmprint and vein recognition technologies are being adopted in point-of-sale (POS) systems, allowing customers to make payments simply by scanning their hands. This touchless payment method not

only improves security by reducing reliance on payment cards and PINs but also contributes to a more hygienic retail environment [47].

Moreover, in high-end retail and hospitality settings, hand recognition can enable VIP customer services, where frequent visitors are recognized upon arrival and offered exclusive amenities or personalized recommendations. This application demonstrates the versatility of hand recognition technologies in delivering customized experiences that foster customer loyalty and enhance brand image [6].

5. Challenges and Limitations

While hand recognition technologies have advanced significantly, several challenges and limitations impact their performance, applicability, and user acceptance. Environmental variability, individual differences, computational demands, privacy concerns, and complexities in multimodal systems present obstacles to widespread adoption and seamless deployment. This section examines these challenges in greater detail, exploring their effects on the reliability, security, and accessibility of hand recognition systems.

5.1. Environmental Factors

Environmental conditions significantly impact the accuracy and performance of hand recognition, particularly for systems that rely on visual information, such as palmprint and hand geometry recognition. Variations in lighting, background clutter, and environmental temperature can affect image quality and, consequently, the performance of recognition algorithms. For instance, poor lighting reduces the contrast of palmprints, complicating feature extraction and lowering accuracy [46]. Additionally, outdoor environments with fluctuating lighting and reflections can introduce inconsistencies in recognition.

For vein pattern recognition, which often employs infrared imaging, temperature fluctuations influence the visibility of veins, as temperature affects blood flow and skin appearance. This variability challenges the reliability of vein-based recognition systems, especially in non-controlled settings. To address these issues, specialized imaging devices, such as multi-spectral or hyperspectral cameras, are sometimes employed to enhance feature extraction. However, these solutions increase hardware costs, limiting the scalability of hand recognition systems in large-scale or low-resource settings [47].

5.2. Variability in Hand Appearance

Individual variability in hand appearance is another major challenge. Factors such as age, injuries, and skin conditions can alter biometric features. Hand geometry and palmprint patterns change with age due to shifts in skin elasticity, muscle structure, and joint development. Such changes can degrade recognition performance over time, particularly for applications requiring long-term identification [7].

Injury or surgery may also modify the shape, structure, or texture of the hand, impacting recognition accuracy. For example, scars or burns can alter palmprint or hand geometry patterns, complicating the matching process. These issues are especially problematic in high-security applications, where false rejections could lead to significant consequences [8].

To address these variations, some systems incorporate adaptive learning techniques that update biometric data over time. However, this approach must be carefully managed to avoid compromising system integrity, as it involves balancing adaptation with accuracy and security [9].

5.3. High Computational Requirements

Advanced hand recognition algorithms, particularly deep learning-based ones, demand significant computational resources for training and real-time processing. Deep learning models like Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks require extensive labeled data and high-performance computing power, particularly for complex tasks such as gesture recognition or multimodal fusion [35].

In resource-constrained environments, such as mobile or embedded systems, implementing these algorithms is challenging due to limited processing power and memory. This restricts the use of sophisticated models and may require compromises in complexity or accuracy [10]. To address these constraints, researchers are developing lightweight architectures and optimization techniques, such as model pruning, quantization, and knowledge distillation, to make deep learning models feasible for low-power devices, though performance trade-offs remain a concern [11].

5.4. Privacy and Ethical Concerns

As hand recognition technology becomes more widespread, privacy and ethical concerns are increasingly critical, especially regarding the collection, storage, and use of biometric data. Hand biometrics, like other personal data, are sensitive, and once compromised, cannot be easily reset or changed. Unauthorized access to biometric data could lead to privacy violations or misuse, such as identity theft or unauthorized surveillance [12]. These concerns are particularly relevant in large-scale deployments, where individuals may be identified without explicit consent.

To mitigate privacy risks, some hand recognition systems use templates—encrypted representations of biometric data—that prevent the reconstruction of original hand features. However, ensuring template security against emerging threats requires constant updates and improvements to security protocols [13]. Regulatory frameworks, such as the GDPR in Europe, mandate that biometric data be collected and processed with explicit consent and used for specific purposes. Compliance adds responsibilities for organizations, including secure storage and user rights for data deletion, complicating deployment in certain contexts [14].

5.5. Cost and Complexity of Multimodal Systems

While multimodal systems, which combine multiple hand recognition modalities, offer greater accuracy and security, they also come with increased costs and complexity. Implementing multimodal systems requires specialized sensors, such as infrared or multi-spectral cameras, and complex algorithms to integrate data from different modalities, making these systems more expensive and less accessible in low-resource settings [43].

Furthermore, multimodal systems add complexity in terms of integration and maintenance, as each modality requires separate calibration, preprocessing, and feature extraction, increasing computational demands. This complexity can hinder performance in real-time applications, where processing speed is essential [45]. Fusion techniques like score-level or decision-level fusion can help balance performance with computational efficiency, though multimodal systems remain resource-intensive and are often limited to high-stakes applications, where cost is justified by increased reliability [44].

5.6. Limitations in Data Availability

Data availability is a critical limitation in developing and evaluating hand recognition systems, particularly for certain modalities or conditions. Large, diverse datasets are essential for training and testing machine learning algorithms, yet collecting labeled data for hand recognition can be challenging due to privacy concerns, ethical restrictions, and the need for specialized sensors in some modalities, such as vein pattern recognition [41].

A lack of standardized, publicly available datasets for hand recognition limits the ability to compare algorithms and benchmark performance. Additionally, biases in available data, such as imbalances in age, gender, or ethnicity, can lead to biased recognition performance, impacting fairness and usability across diverse populations. Addressing data limitations is crucial for advancing hand recognition technology and ensuring equitable application across user groups [15].

5.7. Adapting to Emerging Threats

Hand recognition systems face ongoing security threats, such as spoofing and adversarial attacks. Spoofing, where attackers use fake or altered biometric samples to bypass recognition systems, is a persistent concern in high-security applications. Attackers may use high-resolution images or 3D models of hands to deceive palmprint or vein recognition systems [16]. Adversarial attacks, where small, subtle changes are made to input images to deceive machine learning models, also pose risks for systems relying on deep learning [17].

Anti-spoofing techniques, like liveness detection, help verify that a biometric sample is from a real person, though these methods can be challenging to implement and must distinguish between real and fake samples without compromising user convenience [18]. As threats continue to evolve, ensuring the security of hand recognition systems will require ongoing advancements in hardware and software defenses.

6. Future Directions

The field of hand recognition is evolving rapidly, with innovations poised to address current limitations and enable broader applications. Key advancements are expected in the integration of emerging technologies, enhanced privacy measures, expanded multimodal systems, and improvements in hardware capabilities. As these technologies develop, hand recognition is anticipated to become more secure, accessible, and widely deployed across diverse industries. This section explores future directions that hold promise for overcoming the challenges and maximizing the potential of hand recognition systems.

6.1. Artificial Intelligence and Deep Learning Enhancements

Artificial intelligence (AI) and deep learning continue to drive advances in hand recognition by enabling more accurate and efficient feature extraction and classification. Future research is likely to focus on creating even more sophisticated deep learning models specifically tailored for hand recognition tasks, such as lightweight Convolutional Neural Networks (CNNs) optimized for mobile and embedded devices. Additionally, Transformer models and generative adversarial networks (GANs) are being explored for their potential to improve image synthesis and enhance the robustness of hand recognition algorithms, particularly in low-quality or occluded images [19].

Another promising direction is the application of explainable AI (XAI) techniques to hand recognition systems, allowing these systems to provide interpretable feedback on their decision-making process. XAI could help in areas like security and healthcare, where transparency in biometric decisions is essential. Explainable models may also support developers in identifying biases or weaknesses in recognition algorithms, which could lead to fairer and more inclusive systems [20].

6.2. Multimodal Biometric Systems

The use of multimodal biometrics, which combines multiple biometric modalities such as palmprint, vein pattern, and hand geometry, is expected to become more prevalent. Multimodal systems offer higher accuracy, security, and robustness by leveraging complementary features. Future multimodal systems may include additional modalities, such as fingerprint and iris recognition, to create highly secure systems capable of operating in diverse environments and scenarios [43].

In addition, advancements in sensor fusion techniques will make it possible to integrate data from multiple modalities more effectively. Real-time multimodal fusion, for example, would enable seamless transitions between biometric methods based on environmental conditions or device availability, offering a flexible and user-friendly experience [45]. This dynamic multimodal fusion could improve the usability and adaptability of hand recognition systems across various applications, from secure access control to interactive consumer devices.

6.3. Privacy-Preserving Techniques

Privacy concerns are a major focus in the development of hand recognition systems, especially with the growing awareness of data security and ethical issues in biometrics. Emerging technologies like federated learning and homomorphic encryption offer promising solutions for preserving user privacy. Federated learning allows models to be trained locally on devices without transferring raw biometric data to a central server. Instead, only model updates are shared, ensuring that sensitive hand recognition data remains private [21].

Homomorphic encryption, on the other hand, enables data to be processed in encrypted form, allowing hand recognition systems to perform computations on encrypted biometric data without revealing its contents. This approach could address privacy concerns in cloud-based systems by ensuring that data remains secure even during processing [22]. Moreover, combining federated learning and homomorphic encryption with blockchain-based storage systems could further enhance privacy and data integrity by providing a tamper-proof and decentralized framework for storing biometric data [23].

6.4. Blockchain for Secure Data Management

Blockchain technology has the potential to enhance the security and transparency of hand recognition systems by providing a decentralized and immutable ledger for storing biometric data. Blockchain can be used to securely record enrollment and authentication events, ensuring that biometric data cannot be tampered with or altered without detection. For applications requiring a high degree of accountability, such as identity verification in government or financial sectors, blockchain-based systems can offer a secure and auditable solution for managing biometric data [24].

Smart contracts, an advanced feature of blockchain, could further enhance the security and flexibility of hand recognition systems by allowing automated and conditional data sharing. For instance, smart contracts could enable users to control access to their biometric data, allowing them to grant temporary access for specific purposes while maintaining ownership and control. By leveraging blockchain, future hand recognition systems could achieve high levels of security and user autonomy, helping to build trust and user acceptance.

6.5. Advancements in Hardware and Sensors

As sensor technology advances, hand recognition systems are expected to become smaller, faster, and more affordable, making them viable for consumer-grade devices. Miniaturized and embedded sensors, such as those integrated into smartphones, wearables, or IoT devices, could enable seamless and unobtrusive hand recognition in everyday life. For example, infrared or multi-spectral sensors embedded in wearable devices could facilitate contactless authentication and continuous user identification, even in challenging environments [47].

Emerging sensing technologies, such as Time-of-Flight (ToF) cameras and ultrasound sensors, could further improve the robustness of hand recognition by capturing detailed depth and structural information. ToF cameras, for instance, can generate 3D images of the hand, enhancing the accuracy of hand geometry and vein pattern recognition. These hardware innovations will likely enable new applications of hand recognition in areas such as mobile banking, health monitoring, and smart home automation [25].

6.6. Edge Computing for Real-Time Processing

Edge computing, which enables data processing close to the source of data generation, is poised to play a critical role in the future of hand recognition. By processing biometric data directly on the device, edge computing minimizes latency, reduces the need for high-bandwidth connectivity, and enhances privacy by keeping sensitive data local. This approach is particularly valuable for real-time

applications, such as gesture recognition in virtual and augmented reality environments, where low latency is essential [26].

Furthermore, edge computing can enable hand recognition on resource-constrained devices, such as smartphones and wearable devices, by utilizing optimized algorithms and lightweight models. These developments will make hand recognition more accessible and versatile, enabling a wider range of applications that benefit from immediate, on-device processing. With the proliferation of edge computing, hand recognition systems could be deployed in remote or disconnected environments, opening new opportunities in fields such as fieldwork authentication, autonomous vehicles, and emergency response [27].

6.7. Robustness Against Emerging Security Threats

As biometric systems become more prevalent, they face evolving security threats, such as spoofing, deepfake attacks, and adversarial attacks. Future hand recognition systems will need to be resilient against these threats to ensure reliable security. Research in anti-spoofing techniques, such as liveness detection, is crucial for distinguishing between real and fake samples. Liveness detection can identify physiological cues, like blood flow or skin texture, that are difficult to replicate, thereby enhancing security in sensitive applications [18].

Adversarial training, a method for enhancing model robustness against adversarial attacks, will likely become more important in deep learning-based hand recognition systems. By exposing models to adversarial examples during training, researchers can improve their resilience to attacks designed to mislead the algorithm. Developing standardized security frameworks and evaluation metrics for biometric systems is another essential step toward ensuring that hand recognition systems remain secure and resilient as threats evolve [17].

6.8. Expanding Use in Emerging Applications

Hand recognition systems are anticipated to find new applications in emerging fields, such as smart cities, autonomous vehicles, and advanced healthcare. In smart cities, hand recognition could contribute to seamless and secure public access to services, such as transportation or healthcare, through contactless authentication systems. Autonomous vehicles could utilize hand recognition to verify driver identity and personalize vehicle settings based on the authenticated user. In healthcare, hand recognition could facilitate patient monitoring and tracking in home care or remote health settings, supporting personalized and responsive care [28].

Moreover, as IoT networks continue to expand, hand recognition could enable seamless interactions between users and a wide array of connected devices. By integrating hand recognition into smart home devices, wearables, and other IoT-enabled systems, individuals could benefit from personalized, context-aware experiences that respond to their unique biometric identifiers. This approach could redefine human-machine interaction, offering a natural and intuitive means of controlling IoT ecosystems [29].

7. Conclusions

Hand recognition technology is rapidly advancing, driven by developments in artificial intelligence, hardware, and multimodal systems. This technology holds the potential to transform various industries by offering secure, convenient, and contactless authentication methods. While current hand recognition systems provide robust identification capabilities, challenges remain in areas such as privacy protection, security against emerging threats, and operational robustness in diverse environments.

This paper has outlined key advancements in the field and explored future directions for further enhancing hand recognition systems. Innovations in deep learning, explainable AI, and privacy-preserving techniques such as federated learning and homomorphic encryption are expected to address both accuracy and privacy concerns. The integration of multimodal biometrics, including

sensor fusion, will further enhance system reliability and adaptability. Blockchain technology promises improved security and transparency, while edge computing offers potential for real-time, on-device processing that minimizes latency and enhances data privacy.

The future of hand recognition is promising, with potential applications expanding into fields such as smart cities, autonomous vehicles, and healthcare. However, continuous advancements in security, hardware, and privacy-preserving methodologies will be crucial to building trust and ensuring the ethical use of biometric data. As researchers and developers address these challenges, hand recognition systems are poised to become a widely accepted and indispensable technology in modern society.

References

1. J. Chen, D. Zhang, H. Wang, A survey on palmprint recognition, *Pattern Recognition* 44 (5) (2011) 1006–1016.
2. Z. Geng, Z. Wang, D. Zhang, A survey on deep learning for palmprint recognition, *Expert Systems with Applications* 94 (2018) 145–158.
3. Y. Lee, D. Kim, S. Lee, Palmprint recognition based on fusion of texture and shape features, *Pattern Recognition* 58 (2016) 1–9.
4. W. Wang, D. Zhang, Y. He, Z. Liu, Surveillance palmprint recognition based on multi-scale feature extraction, in: 2013 International Conference on Machine Learning and Cybernetics, 2013, pp. 1023–1028.
5. J. Li, D. Zhang, Z. Wang, Personalized deep learning for palmprint recognition, *Information Sciences* 516 (2020) 243–255.
6. Y. Zhang, X. Xu, R. Xu, Luxury consumer behavior based on palmprint recognition, *Journal of Business Research* 129 (2021) 151–160.
7. A. Ross, A. K. Jain, Hand biometric systems, in: *Biometrics: Personal Identification in Networked Society*, 2007, pp. 85–101.
8. A. Ahmad, A. Javed, F. Rahman, A. Qureshi, Challenges in biometric recognition: A survey, *Artificial Intelligence Review* 52 (4) (2019) 2151–2173.
9. E. Martinez, J. Paredes, M. Mendez, Adaptive multimodal biometric recognition for mobile devices, *Journal of Ambient Intelligence and Humanized Computing* 10 (10) (2019) 3837–3849.
10. L. Sandberg, U. Usmani, Tinyml: Machine learning on the edge, *arXiv preprint arXiv:1904.01796* (2019).
11. X. Han, H. Yang, Y. Wang, Deep learning for biometric recognition: A review, *Pattern Recognition* 48 (10) (2015) 3101–3113.
12. J. Albrecht, H. Baird, T. Watson, Privacy-preserving biometric authentication: A survey, *IEEE Transactions on Information Forensics and Security* 12 (1) (2017) 98–113.
13. T. Ralph, M. Ali, N. Ayub, Secure biometric authentication for cloud computing, *Journal of Cloud Computing: Advances, Systems and Applications* 7 (1) (2018) 1–10.
14. P. Voigt, A. Von dem Bussche, The eu general data protection regulation: A commentary, Springer (2017).
15. C. Garvie, B. Bedoya, J. Frankle, Racial bias in biometric identification, *The Georgetown Law Technology Review* 4 (2) (2020) 102–116.
16. F. Alotaibi, M. Ali, F. Alenezi, Spoofing detection in biometric systems: A survey, *Journal of King Saud University-Computer and Information Sciences* (2020).
17. I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, *arXiv preprint arXiv:1412.6572* (2014).
18. X. Li, C. Yu, J. Liu, Spoofing detection in biometric systems: A survey of recent advances, *IEEE Transactions on Information Forensics and Security* 11 (3) (2016) 487–503.
19. A. Vaswani, N. Shankar, N. Parmar, Uszkoreit, Attention is all you need, *Advances in Neural Information Processing Systems* 30 (2017).
20. D. Gunning, Explainable artificial intelligence (xai), *AI Magazine* 38 (1) (2017) 1–12.
21. B. McMahan, E. Moore, D. Ramage, B. A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in: *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS)*, Vol. 54, 2017, pp. 1273–1282.
22. A. Acar, T. Malkin, R. Shokri, A survey on secure multi-party computation and its applications, *ACM Computing Surveys* 51 (4) (2018) 1–35.

23. D. Yaga, P. Mell, N. Roby, K. Scarfone, Blockchain technology overview, NIST Special Publication (800) (2019).
24. J. Wang, L. Zhang, W. Liu, Blockchain technology in the energy sector: A review of its applications and potential impacts, *Renewable and Sustainable Energy Reviews* 81 (2018) 2022–2031.
25. Z. Zhao, Q. Liu, L. Liu, S. Wang, Hand geometry recognition using a 3d laser scanner, *Journal of Information Science and Engineering* 29 (2) (2013) 511–524.
26. W. Shi, K. Zheng, Y. Yang, W. Wu, Edge computing: A new computing paradigm for the internet of things, in: 2016 IEEE International Conference on Internet of Things (iThings), 2016, pp. 1–6.
27. X. Ran, S. Lu, G. Ding, Y. Yang, Edge computing for the internet of things: A review, *IEEE Internet of Things Journal* 6 (2) (2019) 1478–1497.
28. Z. Peng, Y. Chen, X. Liu, J. Zhao, A survey on blockchain technology and its applications, *IEEE Transactions on Industrial Informatics* 16 (1) (2020) 1–18.
29. L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, *Computer Networks* 54 (15) (2010) 2787–2805.
30. P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman, Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, *IEEE Transactions on Pattern Analysis and Machine Intelligence* 19 (7) (1997) 711–720.
31. Y. Xu, X. Li, W. Zuo, Palmprint authentication based on local invariant features, *IEEE Transactions on Image Processing* 18 (3) (2009) 833–844.
32. V. N. Vapnik, *Statistical learning theory*, Wiley, 1998.
33. I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, *Machine Learning* 46 (1) (2002) 389–422.
34. L. Breiman, Random forests, *Machine Learning* 45 (1) (2001) 5–32.
35. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, *Proceedings of the IEEE* 86 (11) (1998) 2278–2324.
36. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, *arXiv preprint arXiv:1409.1556* (2014).
37. N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting, in: *Journal of Machine Learning Research*, Vol. 15, 2014, pp. 1929–1958.
38. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.
39. S. Hochreiter, J. Schmidhuber, Long short-term memory, *Neural Computation* 9 (8) (1997) 1735–1780.
40. Z. Du, J. Guo, L. Wu, Z. Yan, S. Yang, Gesture recognition with depth data using convolutional neural networks, *Neurocomputing* 202 (2016) 11–18.
41. D. Zhang, W. Kong, Z. You, J. Yang, Palmprint recognition based on line and texture features, *Pattern Recognition* 43 (2) (2010) 564–576.
42. W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence (xai): A brief overview, *arXiv preprint arXiv:1708.08296* (2017).
43. A. Ross, A. K. Jain, Multimodal biometrics: An overview, in: *Handbook of Biometrics*, 2004, pp. 91–108.
44. A. K. Jain, A. Ross, S. Prabhakar, Score normalization in multimodal biometric systems, *Pattern Recognition* 38 (12) (2005) 2448–2460.
45. J. Kittler, M. Hatef, R. Duin, J. Matas, Combining classifiers, *Artificial Intelligence* 97 (1-2) (1998) 41–68.
46. A. Ross, A. K. Jain, Hand geometry biometrics, in: *Biometrics: Personal Identification in Networked Society*, 2006, pp. 70–78.
47. Y. Peng, J. Wu, Z. Wang, D. Zhang, Multispectral palmprint recognition using discriminative features, *Optics Communications* 313 (2014) 111–118.
48. A. K. Jain, A. Ross, S. Prabhakar, Hand geometry recognition using a statistical approach, *Proceedings of the IEEE* 92 (6) (2004) 1150–1160.
49. D. Zhang, H. Wang, S. Zhang, W. Kong, Online hand geometry recognition using a 3d laser scanner, in: 2003 IEEE International Conference on Multimedia and Expo (ICME), Vol. 1, 2003, pp. 97–100.
50. Y. Matsuda, T. Yamada, K. Yamamoto, Finger vein recognition using a new vascular pattern extraction method, *IEEE Transactions on Information Forensics and Security* 1 (4) (2005) 552–558.
51. J. Yoon, J. Kim, K. Kim, J. Yoon, Biometric recognition based on hand shape features, *Expert Systems with Applications* 42 (3) (2015) 1384–1395.

52. W. Wang, S. Wang, J. Li, Z. Xu, Y. He, Hand geometry recognition with a self-learning kernel-based method, *Pattern Recognition Letters* 28 (8) (2007) 990–995.
53. J.-I. Kim, J.-H. Kim, J. Yoon, A survey of palmprint recognition, *Journal of Visual Communication and Image Representation* 23 (3) (2012) 389–395.
54. V.-T. Pham, T.-H. Tran, H. Vu, Detection and tracking hand from fpv: benchmarks and challenges on rehabilitation exercises dataset, in: 2021 RIVF International Conference on Computing and Communication Technologies (RIVF), IEEE, 2021, pp. 1–6.
55. Z. Su, Z. Chen, J. Wu, Biometric identification based on hand shape, in: 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 1424–1428.
56. S. Mitra, T. Acharya, Gesture recognition using a multi-modal sensor framework, in: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007, pp. IV–1.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.