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Abstract: The abnormal structural state of the pantograph skateboard is a significant and highly concerned issue 
that has a significant impact on the safety of high-speed railway operation. In order to obtain real-time 
information on the abnormal state of the skateboard in advance, a defect intelligent identification model suitable 
for the monitoring device of the pantograph skateboard was designed using computer vision based intelligent 
detection technology for pantograph skateboard defects, combined with improved YOLO v8 model and 
traditional image processing algorithms such as edge extraction. The results show that the anomaly detection 
algorithm for the pantograph sliding plate structure has good robustness, maintaining recognition accuracy of 
90% or above in complex scenes, and the average time is 12.32ms. Railway field experiments have proven that 
the intelligent recognition model meets the actual detection requirements of railway sites and has strong 
practical application value.  
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1. Introduction 
As an important part of railway transportation, high-speed railway not only has the advantages 

of convenience, safety, and affordability, but also has become one of the important ways for mass 
travel due to its fast and comfortable characteristics [1]. The reliable operation of high-speed rail 
pantographs determines the safety of railway transportation to a large extent. In order to ensure that 
trains maintain normal operation and detect pantograph faults in a timely manner, abnormal 
pantograph faults must be detected quickly and accurately [2-6]. The pantograph slide monitoring 
device is installed on the stations, throat areas of stations, high-speed trains and locomotive depots 
of electric locomotives or high-speed railways. It uses high-speed, high-resolution, non-contact image 
analysis and measurement technology and other methods to achieve monitoring automatic detection 
of the status of the pantograph slide and visual observation of foreign objects on the roof and the 
status of key components [7-9]. 

At present, the defect recognition method of pantograph slide based on image processing has 
achieved some results and applications in the pantograph sliding state monitoring device. The 
commonly used pantograph positioning methods include Hough transform, HOG feature, edge 
detection, pattern matching, second-generation curve wavelet transform, spatial region 
reconstruction, and density clustering algorithm. However, these traditional image processing 
methods are susceptible to changes in lighting and noise interference, and their recognition ability in 
complex backgrounds needs to be strengthened [10,11]. For example, Girshick et al.[12] designed an 
R-CNN model using convolutional neural networks, replacing the traditional graphic feature 
extraction part with AlexNet, and combined it with a selective search method for generating region 
proposals. In the object detection task of the PASCAL VOC 2012 dataset, they achieved a mean 
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average precision (mAP) of 62.4%, which is 20% higher than traditional object detection methods. He 
Kaiming et al.[13] designed a pyramid pooling layer after the last convolutional layer of SPPNet to 
unify the size of feature images without considering the size of the input image. The experiment 
showed that SPPNet's testing time was 24-102 times faster than R-CNN. The Faster R-CNN network 
proposed by Ren Shaoqing et al.[14] for the first time adopts the Region Proposal Network (RPN), 
which can complete both candidate region generation and region classification tasks, thereby 
reducing the computational time overhead caused by selective search algorithms and achieving end-
to-end training, solving the problems of R-CNN time and space overhead. 

In recent years, with the rapid development of deep learning technology and big data analysis 
technology, combined with deep learning and traditional image processing methods, this paper 
proposes an improved intelligent recognition method for pantograph positioning and skateboard 
structure anomaly and defect recognition based on YOLO v8 algorithm. This chapter first analyzes 
the two-stage algorithm YOLO v8 network model as the basic structure of the object detection 
algorithm, and then improves the network structure based on the complex background and large 
target characteristics of the pantograph image, ultimately achieving the intelligent recognition 
function of the pantograph. The specific YOLO v8 network model has been described in detail in 
Chapter 2. 

2. Pantograph Slide Positioning Detection Method Based on Convolutional Neural Network 
The pantograph slide status monitoring device is mainly composed of high-definition imaging 

equipment, data acquisition and processing equipment, remote network transmission channels, user 
terminals, etc. It can monitor the technical status of the pantograph slide, promptly discover the 
abnormal status of the pantograph slide, and shorten the inspection scope, guide the maintenance of 
contact network, and the management department is the Bureau Group Company and the power 
supply section. The pantograph skateboard status monitoring device monitors the status of the 
pantograph skateboard through high-definition imaging equipment, transmits video or image 
information to relevant departments, and they can capture and identify the EMU train number. In 
the pantograph slide condition monitoring device, the image acquisition module adopts a dual-
machine redundant structure to improve the reliability of information during the image acquisition 
process. With the development of Chinese 5G communication technology, long-distance 
transmission is achieved through 5G wireless communication technology. 

2.1. YOLO v8 Network Structure 
The first prerequisite for realizing pantograph slide defect identification is to target the 

pantograph in the images collected by the pantograph slide condition monitoring device [15]. Deep 
learning methods are based on massive data and efficient computing resources, and realize automatic 
feature extraction and learning through neural network models. Compared with artificially selected 
image features and artificially formulated classification standards in traditional image processing 
methods, the features obtained by deep learning methods have better generalization and robustness 
and are suitable for changing and complex scenes [16]. Pantograph intelligent recognition uses image 
target detection based on deep learning as the basis. The traditional image target detection algorithm 
has been discussed in Chapter 2. First, the two-stage algorithm YOLO v8 network model is analyzed 
as the basic structure of the target detection algorithm, and then based on the actual background of 
the pantograph image is complex and the target is large, so the network structure is fine-tuned to 
finally realize the intelligent recognition function of the pantograph.  

The YOLO v8 intelligent recognition algorithm proposed in this article aims to solve the 
shortcomings of previous research. It is based on the success of previous YOLO versions and makes 
new improvements to further improve accuracy, real-time detection, etc. The Backbone and Neck 
parts of YOLO v8 use the C2F module with richer gradient flow, and adjust the number of channels 
for different scale models to form a neural network model with stronger feature representation 
capabilities; the Spatial Pyramid Pooling Fast (SPPF) feature is used pyramid network greatly reduces 
the amount of calculation. The head part adopts the now popular decoupling head structure, which 
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can clearly separate the classification head and detection head. The network structure of YOLO v8 is 
shown in Figure 1. 

 
Figure 1. Network structure diagram of YOLO v8. 

Since the catenary scene does not need to support multiple categories of classification 
information, the model does not need to use complex deep networks for feature extraction, and can 
be implemented using simpler and lighter networks [17]. C2FDarkNet-53 is an efficient and fast 
feature extraction network. It optimizes the network structure according to the design guidelines of 
efficient networks. Compared with ShuffleNetv2, its operating efficiency is greatly improved. The 
comparison of the two network models is shown in Table 1. 

Table 1. Comparison between two network models. 

Network Type Network parameter size /MB Running time / ms 
C2FDarkNet-53 2.7 13 

ShuffleNetv2 253.4 14 
As can be seen from the table, the network parameter size of C2FDarkNet-53 is reduced by 

nearly 100 times compared to ShuffleNetv2, and the running time is also reduced from 14ms to 3ms. 
It can be seen that C2FDarkNet-53 has faster calculation speed and is more suitable for feature 
extraction tasks on large-scale data sets. 

Since the activation function needs to be embedded and calculated after each basic operation, 
the time cost and computational overhead of using the Mish function are relatively large, and the 
accuracy rate is not significantly improved. The pantograph intelligent recognition model needs to 
have both accuracy and running speed, so this article replaces the activation function and uses the 
LeakyRelu activation function, which is simple to calculate and has basically no decrease in effect, to 
replace the Mish function. The calculation formula of the LeakyRelu activation function is shown in 
Equation (1). In the formula, x  is the characteristic value calculated by network convolution; the 
value range of a  is (0, 1). 

, 0
LeakyRelu

, 0
x x

ax x
≥

=  <
 (1) 

Since the recognition task of the pantograph skateboard condition monitoring device has a lot 
of background interference and is difficult to detect, a more powerful feature extraction network is 
needed in the feature fusion part [18]. NAS-FPN uses NAS (Neural Architecture Search) technology 
to optimize the architecture of FPN (Feature Pyramid Networks). This method uses a search method 
instead of manually planning the feature fusion method between various scales, so it is better in terms 
of feature fusion effect, and the calculation speed is not seriously affected. 

2.2. Image Sample Expansion 
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Image quality varies. Due to interference from lighting, vehicle speed, and signals, some images 
have poor quality problems such as blur, noise, overexposure, and underexposure, and such images 
are less distributed in the entire data set. Directly using the original data set for training will lead to 
uneven distribution of the trained model, which may not be effective in actual applications. The 
distribution of positive and negative samples is uneven. Compared with normal images, images with 
pantograph slide defects have insufficient negative samples, which can easily lead to overfitting and 
affect the recognition results of the model [19-22]. 

To solve the above problems, data enhancement operations on original images are essential. The 
principle of data enhancement processing is to generate new samples based on the original samples 
and add them to the data set through image operations, cropping, rotation, etc., thereby changing the 
sample distribution of the data set. Sample amplification is divided into single sample amplification 
and multiple sample amplification. The YOLO v8 network model integrates the Mosaic method of 
multi-sample amplification. On this basis, a single-sample amplification method is added [23,24], 
including image flipping, contrast change, grayscale adjustment, adding noise, image blurring, etc. 
To simulate the situation of poor image quality and ensure the robustness and stability of the trained 
model.  

2.3. The Impact of Backbone Model on Experimental Results 
In the same experimental environment, we further studied the impact of different Backbone 

models on the detector accuracy. We conducted a series of experiments on the Backbone of the YOLO 
v8 algorithm and the Backbone of the old YOLO version algorithm. Their performance comparison 
is shown in the Table 2. We use traditional GPUs for training and verify a large number of features 
that improve the accuracy of classifiers and detectors. The end result is that YOLO v8 has higher 
accuracy and better results. 

Table 2. Different Backbone on training. 

Method Backbone Size FPS mAP 
YOLO v2 Darknet-19 512*512 13 25.1% 
YOLO v3 Darknet-53 512*512 23 30.6% 
YOLO v4 CSPDarkNet-53 512*512 32 44.9% 
YOLO v5 CSPDarkNet-53 512*512 38 48.2% 
YOLO v6 EfficientRep 512*512 56 49.9% 
YOLO v7 E-ELAN and MPConv 512*512 63 53.4% 
YOLO v8 C2FDarkNet-53 512*512 79 65.9% 
Figure 2. shows the comparison results of various versions of the YOLO algorithm. All 

parameters in the figure show that YOLO v8 provides excellent performance 

 
Figure 2. YOLO algorithm performance comparison. 
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2.4. Model Training and Verification 
The hardware used is graphics card GTX1080Ti, 16GB memory, 250GB solid state drive, based 

on the TensorFlow deep learning framework. The original images are collected. Due to the uneven 
distribution of samples in the data set, the image sample expansion method is used to amplify the 
images with too dark and uneven brightness, so that the total number of images with too dark and 
uneven brightness is roughly equivalent to normal images [25,26], the total number of images after 
amplification is 5000. Due to the supervised approach, 5,000 pantograph images need to be manually 
annotated before training the pantograph parts detection network, 80% of which are used as training 
sets for pantograph recognition, and the remaining 20% are used as tests for this model gather. Use 
the Label mg script tool for annotation, use a box to mark the position of the skateboard in each 
pantograph image, and the script will automatically convert it into the input data format of the YOLO 
network. 

The pantograph data comes from the imaging module of the pantograph skateboard condition 
monitoring device, which contains pantograph image data of different road conditions, different 
angles, different environments and different models, totaling 3,500 images. The statistics of the 
proportion of training set and test set are shown in Table 3. 

Table 3. Ratio of image types between training set and test set. 

Image type Normal image% Low brightness % Uneven brightness % 
training set 

images 76.45 12.43 11.12 

Testing set 
images 

65.93 15.65 18.42 

Use the expanded data set to train the pantograph recognition YOLO v8 model. During the 
training process, the model loss value changes. It can be seen from the curve that after 4000 iterations, 
the loss value of the final model on the training set fluctuates stably around 0.05, and the change is 
small, indicating that the model training has basically converged. In order to verify the accuracy of 
the pantograph recognition model based on the improved YOLO v8, 1000 pantograph images in the 
test set were used to test the pantograph recognition effect of typical images. The verification results 
are shown in Figure 3. 

 
Figure 3. Verification result chart. 

Table 4 shows that the average image recognition rate of the model described in this article is 
about 97.02% under normal brightness, the average image recognition rate under uneven brightness 
is about 90.06%, and the average image recognition rate under too low brightness is About 77.60%. 
The average image recognition time is 13.75ms. The statistical results of model processing are shown 
in Figure 4. 

Table 4. Image recognition rate statistics (%). 
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Group Normal brightness Low brightness Uneven brightness 
1 96.54 78.23 90.86 
2 97.21 76.36 90.88 
3 97.13 78.25 90.15 
4 96.84 78.31 88.46 
5 97.03 75.54 89.47 
6 97.14 76.21 90.87 
7 96.65 77.54 91.12 
8 96.87 77.32 90.10 
9 96.76 77.51 90.41 

10 97.31 76.85 88.97 
11 97.14 77.38 89.56 
12 96.85 78.15 89.74 
13 96.79 78.16 90.68 
14 97.31 79.13 91.13 
15 97.26 76.52 90.57 
16 97.16 78.54 91.14 
17 96.97 79.12 90.16 
18 97.23 77.25 88.94 
19 96.89 77.36 88.76 
20 97.24 78.29 89.13 

 
Figure 4. Model processing statistical chart. 

3. Principle Of Slider Structure Anomaly Detection 
The pantograph imaging camera continuously collects pantograph images and uses the above 

model to locate the pantograph area. The traditional image processing method was used to extract 
the contour features of the two carbon slides, and a threshold was set to determine whether there 
were structural abnormalities in the two pantograph slides. The pantograph slide structure anomaly 
detection process is shown in Figure 5. 
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Figure 5. Pantograph structural anomaly detection flow chart. 

The Gaussian filtering algorithm used for noise reduction can filter out isolated noise anomalies, 
improve image quality, and reduce interference edges in the subsequent edge extraction process. 
During the Gaussi an filtering process, each pixel is obtained by a weighted average. 

 
Figure 6. Schematic diagram of the pantograph image extraction process. 

The Canny operator is used to extract edges from gradient images. The change in grayscale in 
an image is positively correlated with the magnitude of the gradient values. Before edge extraction, 
a binarization method is first applied to the gradient image to extract strong edges, with a binarization 
threshold set to 150. To avoid interfering with edge extraction, edge detection needs to be performed 
on the basis of strong edges. The lines extracted from the edges display different directions. To reduce 
the processing time of subsequent algorithms, first filter the lines by angle and remove lines with 
small differences in angle from the x-axis. Firstly, perform line fitting on all coordinate points on the 
line, calculate the angle between the fitted line and the x-axis, and then retain the line with a 
significant angle difference from the x-axis based on the angle. The thermal map extracted from the 
pantograph image is shown in Figure 6. 

Calculate the angle between every 2 straight lines in the reserved straight lines. The threshold is 
set to 15°. If the angle between the straight lines is greater than the threshold, it is determined that 
there is an abnormality in the structure of the pantograph carbon plate. We selected 400 datasets to 
test the results. The heatmap for anomaly detection is shown in Figure 7. 
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Figure 7. Heat map for anomaly detection. 

Otherwise, it is considered normal. The determination of pantograph slide defect abnormality is 
shown in Figure 8. 

 
Figure 8. Pantograph structure abnormality judgment. 

3.1. Evaluation Criteria 
We usually use precision (P), recall (R), average precision (mAP), and frames per second (FPS) 

as metrics to evaluate algorithm performance. The calculation formulas for several performance 
indicators are as follows: 

TPP
TP FP

=
+

 (2) 

TPR
TP FN

=
+

 (3) 
1

0
( )AP P R dR= ∫  (4) 

Accuracy denotes the proportion of samples correctly classified as positive among all instances 
the model predicts as positive. In the aforementioned formula, True Positives (TP) represent the 
number of samples accurately classified as positive by the model, while False Positives (FP) indicate 
the number of samples erroneously classified as positive. A higher P-value corresponds to a lower 
false positive rate. The recall rate signifies the proportion of samples correctly classified as positive 
among all instances that are actually positive. Additionally, False Negatives (FN) denote the number 
of samples incorrectly classified as negative by the model. A higher R value corresponds to a lower 
false negative rate [22,23]. 

3.2. Comparison Experiment with Other Algorithms 
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To validate the superiority of the algorithm introduced in this study for detecting surface defects 
on pantographs, we compared several leading object detection algorithms, namely Improved-
YOLOv4, YOLOv5, SSD, and Faster R-CNN, under identical conditions. The experimental results are 
presented in Table 5. 

Table 5. Comparison experiment with other algorithms. 

Model P/% R/% mAP@0.5/% FPS 

Improved-YOLOv4 82.89 86.63 80.2 26.3 

YOLOv5 84.43 88.39 82.7 23.8 

SSD 85.96 88.72 83.5 37.5 

Faster R-CNN 87.46 84.71 85.3 32.6 

This study 95.73 91.36 87.5 41.7 

From Table 5, it can be seen that our proposed improved YOLOv8 network model has 
significantly improved detection accuracy and speed compared to the two-stage algorithm Faster R-
CNN. P and R have increased by 8.27% and 6.65%, respectively, and FPS has increased by 127.91%; 
Compared with the single-stage algorithms Improved YOLOv4, YOLOv5, and SSD, P and R showed 
improvements of 12.84%, 11.3%, 9.77%, and 4.73%, 2.97%, and 2.64%, respectively, while FPS showed 
improvements of 158.55%, 175.21%, and 111.2%, respectively. Therefore, the model proposed in this 
article improves the accuracy of precision measurement while ensuring detection speed, making the 
positioning detection of pantograph skateboard faster and more accurate. 

3.3. Ablation Experiment 
To further validate the effectiveness of the enhanced modules in the algorithm proposed in this 

paper, ablation studies were performed on the baseline model. Ablation experiments were 
sequentially conducted on the YOLOv8 model with the integration of C2FDarkNet-53 and the 
enhanced LeakyRelu activation function. The experiments in this study were conducted using 
identical equipment and datasets. The experimental results are presented in Table 6, where a "√" 
indicates the adoption of the method. 

Table 6. Comparison of ablation experimental indicators. 

Model YOLO v8 C2FDarkNet-53 LeakyRelu P/% R/% FPS 
A √   90.89 87.63 34.3 
B √ √  91.66 88.60 36 
C √  √ 92.42 89.71 35.3 
D √   93.43 89.99 34.3 
E √ √ √ 96.64 95.72 38.5 
F √ √  93.62 90.75 42.5 
G √  √ 94.98 93.72 41.1 
H √ √ √ 95.73 94.49 45 
From Table 6, it can be seen that in the improved model based on the original YOLO v8 

algorithm, both P and R have been improved to varying degrees. Among them, the E model P and R 
improved by 5.75% and 8.09% respectively, making it the most successful ablation experimental 
group. However, its computational complexity increased accordingly, and the FPS was lower than 
the final H model, resulting in a slower model recognition speed. By combining C2FDarkNet-53 and 
referencing LeakyRelu activation function, the improved model achieved P and R of 95.73% and 
94.49%, respectively, with a recognition speed of processing 45 frames per second. Compared with 
the original model, P and R increased by 4.84% and 6.86% respectively, and FPS increased by 131.19%, 
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significantly improving the recognition speed and accuracy of the original model, and further 
proving the effectiveness of the improved model. 

4. Actual Line Abnormality Verification 
Based on a certain line data, a vehicle-mounted dynamic test was conducted on the intelligent 

detection algorithm for pantograph slide defects.  

 
Figure 9. Identification time-consuming curve. 

During the test, the pantograph slide condition monitoring device was used to collect 
pantograph dynamic images, and the pantograph positioning and defect identification were 
analyzed based on on-site measured data to verify the timeliness and effectiveness of the algorithm. 

The line inspection obtained 350 pantograph pictures, 63 of which had structural abnormalities 
in the carbon slide. The on-site pantograph slide condition monitoring device scans the camera with 
a sampling frequency of 10kHz and generates 2048 image lines. The above-mentioned pantograph 
slide structural anomaly detection algorithm is used to determine structural anomalies in the picture. 
According to statistics, the average detection time of a single image during the detection process is 
12.32ms. The time-consuming curve of structural abnormality identification of 350 pantograph slides 
is shown in Figure 9. 

The test results show that the method in this paper has a recognition rate of pantograph slide 
abnormality of 96.42% under normal exposure conditions, and the recognition rate of pantograph 
slide structural abnormalities can still reach more than 90% when the image quality is poor. The 
accuracy statistics are shown in Table 7. 

Table 7. Accuracy rate statistics of pantograph slide structure anomaly detection. 

Image type Normal image% Low brightness % Uneven brightness % 
Accuracy 96.42 91.23 90.68 

5. Conclusions 
This chapter starts from the needs of pantograph online detection and improves the YOLO v8 

algorithm. The C2FDarkNet-53 backbone network is used to replace the ShuffleNet v2 network to 
improve the running speed of the network. The LeakyRelu activation function is used to replace the 
Mish function to further save time and computing costs. NAS-FPN is used to replace the original path 
search module PANet to improve the efficiency of feature fusion. The test results show that the 
improved YOLO v8 algorithm can better meet the requirements of real-time positioning of the 
pantograph, and then realize the abnormal detection of the pantograph slide structure. 

In the pantograph recognition task, the average image recognition rate under normal brightness 
was 96.42%, and the average image recognition rate under uneven brightness was 90.68%. In the 
pantograph structural anomaly detection task, image processing methods are used to determine 
pantograph slide plate abnormalities through filtering denoising, contour extraction, and slide plate 
fine extraction. Tests were carried out on actual lines, and the results showed that the pantograph 
slide structure anomaly detection algorithm has good robustness, maintaining a recognition accuracy 
of 90% and above in complex scenes, and the average time is 12.32ms, which can meet the 
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requirements of the pantograph slide structure anomaly detection algorithm. Requirements for 
online detection of pantograph status. 
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