

Concept Paper

Not peer-reviewed version

---

# Toward the Systemic Replacement of Mitochondrial DNA with Somatic Mutations

---

[Michael Renteln](#) \*

Posted Date: 21 November 2024

doi: [10.20944/preprints202411.1708.v1](https://doi.org/10.20944/preprints202411.1708.v1)

Keywords: mitochondrial DNA mutations; nuclear DNA damage; nuclear DNA mutations; tissue-resident macrophage replacement; secretory autophagy; arrestin domain containing protein 1 [ARRDC1]-mediated microvesicles (ARMMs); Cryptococcus neoformans



Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Concept Paper

# Toward the Systemic Replacement Of Mitochondrial Dna With Somatic Mutations

Michael Renteln

11/1/24; mrenteln@gmail.com

**Abstract:** The accumulation of lipofuscin, i.e., indigestible intracellular debris, might be the main cause of age-related diseases that we see today. However, without being able to replace mutated mitochondrial DNA (mtDNA) and damaged and mutated nuclear DNA (nDNA), we will still eventually succumb to aging. Thus, we must save copies of mitochondrial and nuclear DNA at as young an age as possible, or at least from cell types with the lowest rates of mutation. MtDNA has a 10-100x higher rate of mutation than nDNA, as mitochondria are sites of free radical production. We may need to replace mtDNA before damaged and mutated nDNA. If so, we will need a strategy to deliver pristine mtDNA to cells around the the body and destroy the old mtDNA. A strategy for doing so is described herein.

**Keywords:** mitochondrial DNA mutations; nuclear DNA damage; nuclear DNA mutations; tissue-resident macrophage replacement; secretory autophagy; arrestin domain containing protein 1 [ARRDC1]-mediated microvesicles (ARMMs); Cryptococcus neoformans

---

## Introduction

I recently described an approach for systemically removing lipofuscin [1]. It relies on tissue-resident macrophage (TRM) replacement from edited HSCs that have been transplanted using non-genotoxic conditioning [2]. A similar strategy may enable us to replace mutated mitochondrial DNA (mtDNA) throughout the body. This would be important if mtDNA replacement is necessary prior to the replacement of cells with damaged [3] and mutated [4] nuclear DNA (nDNA) using whole-body induced cell turnover (WICT) [5]. It will likely take a longer period of time to figure out how to enact WICT safely in the human body. As mtDNA mutations accumulate at a 10-100x faster rate than nDNA mutations due to free radical production in the mitochondria, they may have to be addressed prior to the development of WICT.

The only cells that will definitely require mtDNA replacement, if it is necessary before WICT, are stem cells and long-lived, post-mitotic cells. However, a number of non-stem cells in renewing tissues may also have become reversibly senescent as a result of mtDNA mutations. Thus, a non-specific treatment may be of use.

Systemic lipofuscin removal should help to keep mtDNA mutation and nDNA damage and mutation rates to a minimum. Additionally, overexpression of mtDNA repair genes and inhibition of the DREAM complex [6] may help stave off these issues.

However, if mtDNA mutations accumulate too quickly for WICT, we need a way to fundamentally correct them. We must sequence our mitochondrial and nuclear genomes at as early an age as possible. For those who are currently elderly, harvesting DNA from tissues with low mutation rates, e.g., germline stem cells, might be necessary. Mitochondrial DNA heteroplasmy may need to be taken into account, as well.

## Strategies for Replacing Somatically Mutated mtDNA:

One way to replace mtDNA throughout the body would be to secrete mitochondria from edited TRMs after systemic TRM replacement using arrestin domain containing protein 1 [ARRDC1]-mediated microvesicles (ARMMs) [7,8]. Self- or trans-replicating RNA [9,10] can also be exported,

which would encode TFAM to increase mtDNA copy number in target cells [11], as well as nucleases that target old mtDNA. The new mtDNA that is being exported would have mutations in non-coding regions or synonymous or even non-synonymous mutations in coding regions. It was shown that certain SNPs in the mitochondrial DNA are actually beneficial, so this should be possible [12,13].

Importantly, the entire mitochondrial genome based on a digital sequence can be “printed” and utilized therapeutically, as the genome is only 16,569 base pairs and mitochondrial epigenetics would likely not be a concern.

Monocytes appear to frequently secrete extracellular vesicles [14], and TRMs likely can do so as well. However, the secretion of larger vesicles such as microvesicles may be more rare due to plasma membrane size constraints - even when stimulated. The rate of microvesicle secretion may not be rapid enough to make a sizable dent in the overall number of mtDNA copies in target cells. It is also unclear how to substantially increase the availability of donor cell mitochondria for secretion purposes. PGC-1 $\alpha$ , TFAM, and Drp1 overexpression could help to maximize mitochondrial biogenesis, mtDNA replication, and fission, but having a fragmented mitochondrial network could be detrimental for TRM functionality or cause inflammation. Endosomal escape may also be an issue with ARMMs, although mitochondria donated by mesenchymal stem cells via ARMMs were able to fuse with recipient cell mitochondria<sup>7</sup>; fusion with recipient cell plasma membranes may occur<sup>8</sup>. Furthermore, mitophagy could destroy at least some of the pristine genomes before the mitochondria that contain them fuse with target cell mitochondria and the genomes can be replicated. It was demonstrated that a mitochondrial targeted meganuclease can produce shifts in heteroplasmy over time [15,16]. However, there probably must be a large enough initial quantity of the genome that is to be selected via replicating RNA, which has a limited lifetime. Thus, although each mitochondrion may contain multiple mitochondrial genomes, if only a small number of mitochondria are delivered to a target cell with hundreds or thousands of mitochondria, this may not be enough - i.e., selection for the unmutated mitochondrial genome may take too long to be feasible via replicating RNA. If transfer of a cytoplasmic DNA plasmid [17] can be enacted, wherein it is taken up into the nucleus of target cells [18], low-level selection could potentially be effected for as long as necessary.

Bacteria can conjugate with mammalian mitochondria, although whether second strand synthesis occurs afterwards is unknown [19]. A strategy called Mr PB [20] could be employed to replace TRMs systemically with new versions that contain intracellular bacteria that replicate up a tolerable copy number, at which point they would be restrained via quorum sensing. Mr PB just involves elimination of patient TRMs and repopulation via repeated infusions of immune cells - instead of HSC transplantation. Even if a few copies of a bacterial vector can be delivered to target cells, there is a range of mitochondria morphology that is possible in terms of fusion and fission. If the bacteria conjugate with a large mitochondrion and inject a multitude of mitochondrial genomes, this would be helpful, but if only a few, distinct mitochondria are targeted, this might not be sufficient. Even with genetic modifications, xenophagy or dysfunction and lysis of the vector would likely occur at some point, so it does not have an indefinite amount of time.

Instead of bacteria, an intracellular yeast like *Cryptococcus neoformans* could be used as the mtDNA delivery vector. This may be possible because the yeast *Saccharomyces cerevisiae* can maintain a mammalian mitochondrial genome in its mitochondria [21]. *C. neoformans* cells have around 35 mitochondria [22]. Additionally, each yeast mitochondrion may generally contain multiple mitochondrial genomes that are compacted in nucleoid structures, as with mammalian mitochondria. To reduce its size and probably increase its invasiveness, an acapsular version can be utilized. Typically, *C. neoformans* is 4-6  $\mu$ m in diameter. Smaller cells may be required to invade certain adult stem and post-mitotic cell types. Fortunately, *C. neoformans* cells as small as 1.1  $\mu$ m in diameter have been found [23]. It may take more research to figure out how to limit the size of *C. neoformans*. Of course, the maximum size of the yeast that can be utilized would be important to transfer the maximum number of mitochondria. Perhaps a diameter of around 2.5  $\mu$ m would be ideal.

If the yeast are maintained at a low copy number, wherein yeast vacuole fusion is prevented, they could keep pace with the host cell TRM division if that occurs [24]. They could also be secreted

continuously at low level via expulsion or vacuole lysis and secretory autophagy. It would be retargeted to a cell surface protein that is ubiquitously expressed by adherent cells. Expression of an invasin and listerolysin O could allow it to invade a wide variety of cell types [25,26]. The yeast could enter target cells, lyse their vacuoles, and then lyse to release their mitochondria and replicating RNA encoding TFAM and nucleases. Xenophagy of the yeast mitochondria in target cells could be avoided via the inclusion of deubiquitylases in the mitochondrial outer membrane. Human mitofusins could be expressed to promote fusion with the target cell mitochondria.

## Conclusions

At some point, mitochondrial DNA mutations will need to be addressed. Discussed in this paper is a method of replacing somatically mutated mtDNA throughout the body. While fusion of yeast mitochondria with human mitochondria may not ensue naturally, synthetic biology should be able to rectify that situation if necessary. Interestingly, mouse mitochondria can fuse with human mitochondria [27]. Also, an artificial vector called MITO-Porter can fuse with human mitochondria [28]. There are immunogenicity concerns that will need to be addressed, but this is likely not an insurmountable issue.

## References

1. Renteln M. Toward Systemic Lipofuscin Removal. *Rejuvenation Research* 2024;27(5):171–179; doi: 10.1089/rej.2024.0034.
2. Hayal TB, Wu C, Abraham D, et al. The Impact of CD45-Antibody-Drug Conjugate Conditioning on Clonal Dynamics and Immune Tolerance Post HSPC Transplantation in Rhesus Macaques. *Blood* 2023;142:3419; doi: 10.1182/blood-2023-182066.
3. Best BP. Nuclear DNA Damage as a Direct Cause of Aging. *Rejuvenation Research* 2009;12(3):199–208; doi: 10.1089/rej.2009.0847.
4. Vlijg J, Schumacher B, Abakir A, et al. Mitigating age-related somatic mutation burden. *Trends in Molecular Medicine* 2023;29(7):530–540; doi: 10.1016/j.molmed.2023.04.002.
5. Cortese FAB, Santostasi G. Whole-Body Induced Cell Turnover: A Proposed Intervention for Age-Related Damage and Associated Pathology. *Rejuvenation Res* 2016;19(4):322–336; doi: 10.1089/rej.2015.1763.
6. Bujarrabal-Dueso A, Sendtner G, Meyer DH, et al. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. *Nat Struct Mol Biol* 2023;30(4):475–488; doi: 10.1038/s41594-023-00942-8.
7. Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. *Nat Commun* 2015;6:8472; doi: 10.1038/ncomms9472.
8. Wang Q, Yu J, Kadungure T, et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. *Nat Commun* 2018;9(1):960; doi: 10.1038/s41467-018-03390-x.
9. Mc Cafferty S, De Temmerman J, Kitada T, et al. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. *Molecular Therapy* 2021;29(3):1164–1173; doi: 10.1016/j.ymthe.2020.11.010.
10. Perkovic M, Gawletta S, Hempel T, et al. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. *Mol Ther* 2023;31(6):1636–1646; doi: 10.1016/j.ymthe.2023.01.019.
11. Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. *Hum Mol Genet* 2004;13(9):935–944; doi: 10.1093/hmg/ddh109.
12. Murakami H, Ota A, Simojo H, et al. Polymorphisms in Control Region of mtDNA Relates to Individual Differences in Endurance Capacity or Trainability. *The Japanese Journal of Physiology* 2002;52(3):247–256; doi: 10.2170/jjphysiol.52.247.
13. Castañeda V, Haro-Vinueza A, Salinas I, et al. The MitoAging Project: Single nucleotide polymorphisms (SNPs) in mitochondrial genes and their association to longevity. *Mitochondrion* 2022;66:13–26; doi: 10.1016/j.mito.2022.06.008.
14. Auber M, Svenningsen P. An estimate of extracellular vesicle secretion rates of human blood cells. *Journal of Extracellular Biology* 2022;1(6):e46; doi: 10.1002/jex2.46.
15. Zekonyte U, Bacman SR, Smith J, et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. *Nat Commun* 2021;12(1):3210; doi: 10.1038/s41467-021-23561-7.
16. Shoop WK, Lape J, Trum M, et al. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. *Nat Metab* 2023;5(12):2169–2183; doi: 10.1038/s42255-023-00932-6.

17. Javanpour AA, Liu CC. Genetic compatibility and extensibility of orthogonal replication. *ACS Synth Biol* 2019;8(6):1249–1256; doi: 10.1021/acssynbio.9b00122.
18. Zhu J, Batra H, Ananthaswamy N, et al. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. *Nat Commun* 2023;14(1):2928; doi: 10.1038/s41467-023-38364-1.
19. Yoon YG, Koob MD. Transformation of isolated mammalian mitochondria by bacterial conjugation. *Nucleic Acids Research* 2005;33(16):e139; doi: 10.1093/nar/gni140.
20. Xu Z, Rao Y, Peng B. Protocol for microglia replacement by peripheral blood (Mr PB). *STAR Protocols* 2021;2(2):100613; doi: 10.1016/j.xpro.2021.100613.
21. Yoon YG, Koob MD. Intramitochondrial transfer and engineering of mammalian mitochondrial genomes in yeast. *Mitochondrion* 2019;46:15–21; doi: 10.1016/j.mito.2019.03.006.
22. <https://bionumbers.hms.harvard.edu/bionumber.aspx?s=n&v=2&id=108845>
23. Feldmesser M, Kress Y, Casadevall A. Dynamic changes in the morphology of *Cryptococcus neoformans* during murine pulmonary infection. *Microbiology* 2001;147(8):2355–2365; doi: 10.1099/00221287-147-8-2355.
24. Luo Y, Alvarez M, Xia L, et al. The Outcome of Phagocytic Cell Division with Infectious Cargo Depends on Single Phagosome Formation. *PLoS ONE* 2008;3(9):e3219; doi: 10.1371/journal.pone.0003219.
25. Grillot-Courvalin C, Goussard S, Huetz F, et al. Functional gene transfer from intracellular bacteria to mammalian cells. *Nat Biotechnol* 1998;16(9):862–866; doi: 10.1038/nbt0998-862.
26. Zare M, Farhadi A, Zare F, et al. Genetically engineered *E. coli* invade epithelial cells and transfer their genetic cargo into the cells: an approach to a gene delivery system. *Biotechnol Lett* 2023;45(7):861–871; doi: 10.1007/s10529-023-03387-7.
27. Yoon YG, Haug CL, Koob MD. Interspecies mitochondrial fusion between mouse and human mitochondria is rapid and efficient. *Mitochondrion* 2007;7(3):223–229; doi: 10.1016/j.mito.2006.11.022.
28. Yamada Y, Fukuda Y, Harashima H. An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles. *Mitochondrion* 2015;24:50–55; doi: 10.1016/j.mito.2015.07.003.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.