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Abstract: The pervasive presence of per- and polyfluoroalkyl substances (PFAS) in the environment and their
persistent nature raise significant concerns regarding their impact on human health. This review delves into
the obesogenic potential of PFAS, shedding light on their mechanisms of action, epidemiological correlations
with obesity and metabolic disorders, and the challenges faced in regulatory frameworks. PFAS, characterized
by their carbon-fluorine chains, are ubiquitous in various consumer products, leading to widespread exposure
through ingestion of contaminated food and water. Emerging evidence suggests that PFAS may act as
endocrine-disrupting chemicals, interfering with lipid metabolism and hormone functions related to obesity.
We examine in vitro, in vivo, human, and in silico studies that explore the interaction of PFAS with peroxisome
proliferator-activated receptors (PPARs) and other molecular targets, influencing adipogenesis and lipid
homeostasis. Furthermore, the review highlights epidemiological studies investigating the association between
maternal PFAS exposure and the risk of obesity in offspring, presenting mixed and inconclusive findings that
underscore the complexity of PFAS effects on human health. Presently, there are major challenges in studying
PFAS toxicity, including their chemical diversity and the limitations of current regulatory guidelines, potential
remediation, and detoxification. This review emphasizes the need for a multidisciplinary approach, combining
advanced analytical methods, in silico models, and comprehensive epidemiological studies, to unravel the
obesogenic effects of PFAS and inform effective public health strategies.

Keywords: Perfluoroalkyl substances; Obesogen; Peroxisome proliferator-activated receptors

1. Introduction

PFAS, per/poly-fluoroalkyl substances, are synthetic compounds used in various commercial
and industrial products. All PFAS contain a carbon-fluorine chain of varying lengths and different
functional groups at the molecule's terminal end, giving rise to their distinct properties. According
to the US Environmental Protection Agency (EPA), there are over 7800 identified PFAS, with many
more being formulated and circulated to replace long-chain older-generation compounds [1]. Since
these compounds are persistent pollutants both in the environment and the body, older-generation
(legacy) PFAS, although replaced, are still detected in the general population. The primary mode of
human exposure is ingestion of contaminated food and water, as PFAS is a widely used surfactant
on cookware and food packaging and a persistent pollutant of crop-yielding and groundwater [2].
To determine the extent of PFAS exposure through food, total diet studies were conducted by the
Food and Drug Administration (FDA), and detectable levels of PFAS were found in seafood in the
general food supply. It is important to note that there was no distinction between wild-caught and
farmed seafood. Thus, there is no evidence to determine if PFAS contamination was due to
agricultural practices or if the pollutant has become a part of the aquatic food chain. A complicating
factor in studying PFAS exposure and its effects on human health is that PFAS-based surfactants are
technical mixtures comprising extensive chemical and PFAS combinations; these proprietary blends
make up nonstick and water-repellant coatings, adhesives, and labels found in food packaging
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materials. The complete chemical profiles of technical mixtures are nearly impossible to determine.
To further complicate our understanding, PFAS in food packaging is degraded into secondary
toxicants like perfluoroalkyl carboxylic acids, which are also linked to adverse effects on human
health [3]. PFAS are a class of synthetic chemicals that have been widely used in industry and
consumer products since the mid-twentieth century, and are known to disrupt the thyroid hormone
system [4]. Recently, PFAS has been deemed a suspected endocrine-disrupting compound and a
potential obesogene [5]. As potential obesogenic compounds, exposure to these compounds has the
potential to directly or indirectly promote obesity by dysregulating lipid metabolism or disrupting
hormones that mediate hunger signaling, among other things[5].

The aim of this paper is to critically evaluate the burgeoning body of evidence elucidating the
obesogenic properties of PFAS compounds. This comprehensive review navigates through the
advancements in understanding the obesogenic pathways of PFAS, utilizing modern methodologies
and modeling techniques to explain their potential effects on public health and environmental risk
management. Central to this discourse is the exploration of the mechanisms by which PFAS may
promote obesity and metabolic dysregulation, with an emphasis on their interactions with lipid
metabolism and endocrine functions. The review further scrutinizes epidemiological studies that
establish a correlation between PFAS exposure and obesity incidence, especially among susceptible
demographics such as children and expectant mothers. It endeavors to evaluate the consistency and
strength of these epidemiological links, thereby contributing to a nuanced understanding of PFAS-
related health risks. Moreover, this paper confronts the complexities inherent in the toxicological
evaluation of PFAS, highlighting the vast chemical heterogeneity of these compounds, the constraints
posed by current regulatory frameworks, and the challenges associated with remediation and
detoxification efforts. By integrating findings from in vitro, in vivo, and in silico research, the review
aspires to furnish a holistic perspective on the role of PFAS as putative obesogens. The ultimate aim
is to create a basis for the formulation of effective risk management practices and regulatory policies
that can curtail the obesogenic impact of PFAS, thereby safeguarding human health.

2. PFAS as Emerging Obesogens

2.1. Integrative Approaches to Understanding PFAS Toxicity and Obesogenicity

The toxicological effects of PFAS on humans present a complex research challenge, as ethical
considerations preclude direct experimental exposure [6]. Consequently, our understanding of
human toxicity is derived from a combination of methodologies: epidemiological studies,
computational (in silico) modeling, in vitro assays, and in vivo studies. Computational modeling, in
particular, serves as a pivotal tool in elucidating the potential risks and toxicological profiles of these
contaminants, thereby reducing the reliance on invasive human sampling techniques [6].

Although the toxicity and bioaccumulation of PFAS have been widely studied, the toxicity of
PFAS mixtures as they appear in the environment remains poorly understood [6]. The most widely
studied PFAS compounds are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid
(PFOS) because they are the most used forms and are stable end products of other PFAS precursors
[6]. New studies on the toxicity of PFOA and PFOS (“legacy PFAS”), along with replacement PFAS
(“alternative PFAS”), employ animal and cell studies, epidemiological studies in humans, and
computational models, continue to display the endocrine disruption and toxicity of PFAS [6,7].
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Figure 1. 3D graphical representation of various legacy and alternative PFAS compounds and their
chemical structures. Legacy PFAS: Includes perfluoroalkyl carboxylic acids (PFCAs) and
perfluoroalkyl sulfonic acids (PFSAs), which are traditionally monitored PFAS due to their
widespread use and persistence in the environment. Alternative PFAS: Depictings a selection of
newer, alternative PFAS compounds developed to replace legacy PFAS. These include:
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Hexafluoropropylene oxide trimer acid (HFPO-TA), 2-(Heptafluoropropyl)-3-phenylquinoxaline
(HEP), C604 (perfluoro[(5-methoxy-1,3-dioxolan-4-yl)oxy] acetic acid), 9-(nonafluorobutyl)-2,3,6,7-
tetrahydro-1H,5H,11H-pyranol[2,3-f[pyrido[3,2,1-ij]Jquinolin-11-one (NON), Sodium p-perfluorous
nonenoxybenzene sulfonate (OBS), Heptafluoropropylene oxide dimer acid (HFPO-DA), 2,3,3,3-
Tetrafluoro-2-(1,2,3,3,3-hexafluoro-2-(perfluoropropoxy)propoxy)propanoic acid,
Bis(perfluorohexyl)phosphinic  acid, 2,2,3,3,4,4,5,5,5-Nonafluoro-N-(4-nitrophenyl)pentanamide
(NNN), 6:2 Fluorotelomer sulfonate (6:1 FTS), Note: Numerous other equally important legacy and
alternative PFAS compounds are not shown in the figure.

The molecular resemblance of PFAS to fatty acids has sparked concerns regarding their potential
to disrupt lipid metabolism, primarily through interactions with fatty acid binding proteins (FABPs)
within cells [8,9]. FABPs, prevalent in liver, kidney, and brain tissues, and facilitate the transport of
PFAS to the nucleus, impacting peroxisome proliferator-activated receptors (PPARs) [10]. PPARs,
crucial for regulating lipid metabolism, cell growth, differentiation, and inflammatory responses, are
disrupted upon PFAS binding, leading to lipid homeostasis imbalance. This dysregulation manifests
as conditions like dyslipidemia, steatosis, and nonalcoholic fatty liver disease, which are all obesity-
related comorbidities [8]. Furthermore, PFAS exposure has been linked to altered PPAR expression
in various species, indicating a broad impact across both legacy and emerging PFAS compounds [11].
Additionally, the gut microbiome, known to influence PPARs through short-chain fatty acids
(SCFAs) like butyrate, acetate, and propionate, is also affected [12]. Disruption of the gut microbiome
can further influence lipid metabolism and contribute to obesity by disrupting SCFA production and
PPAR regulation [13]. Thus, PFAS exposure intricately affects lipid metabolism through a cascade of
molecular interactions involving FABPs, PPARs, and the gut microbiome [11].

2.2. PFAS Associated Maternal and Childhood Obesity

Obesity is a complex, multi-faceted chronic disease characterized by an excessive accumulation
of adipose tissue. Chronic obesity increases one's risk of developing metabolic disorders like
dyslipidemia, high blood pressure, heart disease, and certain cancers [14]. Compounding factors like
diet/eating patterns, sedentary lifestyle, genetics, socioeconomic status, and mental health influence
its progression [15]. Obesity has become a major health concern in the US, with much of the reported
healthcare costs being spent on the treatment of ailments related to prolonged obesity [16]. According
to the Centers for Disease Control and Prevention (CDC), adult obesity is becoming more prevalent,
with nearly forty-two percent of adults in the US considered overweight or obese on the Body Mass
Index (BMI) scale. Concerningly, childhood obesity is also on the rise, with overweight and obese
children at a much higher risk of poor health outcomes in adulthood when compared to normal-
weight children [14]. As of 2020, nearly twenty percent of children in the US were overweight or
obese for their age, with a positive correlation between BMI and age [14]. Currently, researchers are
studying molecular obesogenic PFAS pathways in vivo and in vitro models; however, many of the
studies have been contradictory or inconclusive [17]. Many epidemiological studies focus on the links
of maternal PFAS exposure to childhood obesity. Still, a causal relationship between PFAS exposure
and outcomes of obesity for mothers or children has not been determined [18].

Figure 2 below elaborates on the detrimental impacts of maternal PFAS exposure on gestational
outcomes and subsequent child development. PFAS are primarily absorbed through the ingestion of
contaminated food and water, accumulating in the placenta and umbilical cord, which suggests
potential fetal exposure [19,20]. Exposure to some PFAS during pregnancy is correlated with notable
increases in gestational weight gain, although this is not universally true for all compounds, such as
perfluorooctanesulfonic acid (PFOS), which may exhibit divergent effects [21]. This exposure also
tends to result in significant postpartum weight retention, escalating the likelihood of gestational
obesity-a known risk factor for cesarean deliveries [21]. The consequences of maternal PFAS exposure
extend beyond delivery, potentially leading to preterm births and reduced birth weights [22]. Over
time, the children of affected mothers may experience heightened risks of obesity from as early as
age five, with girls showing particularly pronounced susceptibility [23-25]. These children may also
undergo more rapid increases in BMI during their early childhood years [26].
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Figure 2. Potential Effects of Maternal Exposure to PFAS on Pregnancy, Fetal Development, and Child
Obesity. This figure illustrates the impacts of maternal exposure to PFOA, a type of PFAS, on
gestational outcomes, fetal development, and child obesity. Maternal ingestion of contaminated food
and water leads to PFOA accumulation in the placenta and umbilical cord, impacting fetal
development. Maternal health effects include increased gestational weight gain (except with PFOS),
increased postpartum weight retention, and higher cesarean procedure risks due to gestational
obesity. For the fetus, gestational obesity increases the risk of preterm birth and low birth weight. In
children, maternal PFOA exposure raises the risk of being overweight or obese by age five,
particularly in girls, and leads to a more rapid increase in BMI between ages 2 and 8.

2.3. Maternal PFAS Exposure and Offspring Outcomes

Gestational obesity and excessive weight gain can negatively affect both mother and children
[27]. These adverse outcomes include preterm births and increased rates of cesarean procedures [28].
Although PFAS toxicity has been linked to PPAR interaction, how PPAR accumulation in the placenta
and umbilical cord affects offspring is not yet understood [29]. Studies have shown a positive
correlation between family history and PFAS exposure with an increased risk of developing
gestational diabetes, and in-utero exposure to PFAS is associated with increased rates of childhood
diabetes [30]. At best, PFAS exposure is one of the many confounding factors in the steady increase
in obesity, but studies have not been able to pinpoint a specific compound or exposure dose.
International concern about PFAS has given rise to numerous epidemiological studies, yielding
compelling evidence for some PFAS as obesogenic and others as non-obesogenic for both mother and
child [18].

Project Viva, a US study, concluded that although most of the cohort gained excessive weight
during pregnancy, higher plasma N-Ethyl-N-[(heptadecafluorooctyl)sulphonyl] glycine (EtFOSSA)
was associated with accelerated weight gain as the pregnancy progressed [21]. Additionally, overall
higher PFAS plasma concentration was associated with higher instances of postpartum weight
retention, with the strongest correlation seen in women considered overweight or obese pre-
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pregnancy [21]. In contrast, PFOS exposure was associated with decreased gestational weight gain
[21]. Interestingly, researchers could not conclude a link between pre-pregnancy BMI and PFAS
exposure to weight gain during pregnancy [31]. Nevertheless, a study on Ohio mothers showed that
mean weight gain among the cohort was highest amongst women whose pre-pregnancy BMIs were
normal [28], and increasing gestational weight gain and retention was associated with two-fold
increases in serum PFOA, PFOS, and PENA [28]. Furthermore, the study showed that in utero PFOA
exposure was associated with greater adiposity of offspring at eight years old and a more rapid BMI
increase from ages two to eight [28].

In agreeance with the Ohio study, a diverse cohort of mothers in a separate US study showed
that high gestational plasma perfluoroundecanoic acid (PFUnDA) resulted in higher waist
circumference and body fat percentage in children of women who were not obese [32]. However,
PFUNDA was associated with less adiposity among obese women [32]. These findings were
corroborated by international studies. Analysis of a cohort of mothers from Hamamatsu, Japan,
showed that PFOS exposure was associated with lower birth weights [33]. However, high PFOA
correlated to low birth weight but higher BMI with age, particularly in female children [33]. A
Scandinavian group showed that maternal PFAS exposure was positively associated with increased
BMI and skinfold test scores at five years old [30]. These associations, however, do not provide strong
evidence of associations between individual PFAS and PFAS plasma concentration and instances of
gestational weight gain and childhood obesity [32].

2.4. In Vitro and In Vivo Insights: PEAS’s Role in Adipogenesis

The most studied obesogenic pathway of PFAS is the interaction with peroxisome proliferator-
activated receptors, PPARs [8]. Of the three isoforms of PPAR (a, 3, and y) [29], PPAR-a and PPAR-
v have been extensively studied as potential targets of PFAS. PPAR-y, primarily found in adipocytes,
regulates adipogenesis, adipocyte differentiation, and lipid metabolism. PPAR-vy interacts with long-
chain PFAS and PFAS metabolites; nearly a dozen poly-fluoroalkyl carboxylic acids interact with
human PPAR. Studies show that down-regulation is associated with obesity in both rodents and
humans [34]. PPAR-a is also a key regulator of lipid metabolism, and both receptors have been shown
to interact with PFAS [34]. A study of technical mixtures, commercially available chemicals with
unknown PFAS content or concentration, showed measurable effects on estrogenic and PPAR activity
[35].

Adipogenesis, the formation of adipocytes from fibroblasts, is partially regulated by PPARS. An
in vitro study investigating the effects of PFAS on adipogenesis showed that PFOS increased cellular
lipid content and perfluorohexanesulfonic acid (PFHxS) increased adipogenesis [4,35]. In vivo studies
on non-obese diabetic mice showed that PEUnDA exposure affected lipid levels in a dose-dependent
manner, with the most prominent effects seen at 300 ug/mL [36]. PFUnDA exposure was also
associated with inflammation of the islet of Langerhans cells in the pancreas. Conversely, low and
medium exposure to the compound yielded a protective effect on lipid levels [4].

Table 1. In Vitro and In Vivo Studies on PFAS Obesogenic Properties.
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and invasion,
which could be
mediated by
PFAS-PPAR
interactions and
other biological
mechanisms.
DNT new
approach
methods (NAMs)
42 out of 160 b?;:i;z,ellr;ilt?:clizg In vitro
PFAS decreased arrav neuronal (rat Microelectrode
measures of Y . array (MEA)
) network cortical
Evaluation of neural network . network
Evaluates the . formation assay cells, .
Per- and connectivity and . formation assay
developmental _ (NFA) and high- human
Polyfluoroalk . neurite length. . ) (NFA)
neurotoxicity . content imaging neural .
yl Substances PFAS with . High-content
. (DNT) of 160 (HCI) assays to progenitor . )
(PEAS) in .. longer imaging (HCI) [43]
, ... PFASusing in : evaluate cells,
vitro toxicity . . perfluorinated . . assays
. vitro high- . proliferation, human .
testing for throushput carbon chains apontosis and elutamater Statistical and
developmental UEP (=8) and higher POPTOSIS, gitar bioinformatics
. . screening assays. . neurite gic .
neurotoxicity carbon:fluorine ; analysis using R
. outgrowth.  enriched
ratios were more . and ToxCast
. Chemical neurons) L.
likely to be . Pipeline
. . concentration-
bioactive.
response data
analyzed using
the ToxCast
Pipeline (tcpl).
Evaluated
) activity of 136
scr{ZeZ;ZO o PFAS at seven
or angd f key molecular  Nine in vitro
olp fluorinate initiating events assays: enzyme
poiY, . (MIE) using nine inhibition assays Colorimetric
d substances ~ Screening for . . .
(PEAS) for  interference of in vitro assays. (hDIO1, hDIO2, endpoint using
interforence PFAS with Identified 85 hDIO3, xDIO3, Human, Sandell-Kolthoff [44]
. f . PFAS with hIYD, xIYD), Xenopus reaction,
with seven thyroid hormone ..
sufficient fluorescence- fluorescence-

lffryrrrzzl:e system targets activity to based assays
system produce an EC50 (hTPO, hTTR,
Y in at least one hTBG).

assay. Several
PFAS had strong
potency towards

targets across
nine assays

based assays
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transthyretin
binding.
PFAS ex
posute Review of
may lead to e
existing in vitro
several adverse o
and in vivo
outcomes .
. . studies.
including altered . .
el In vitro studies
. L assessing PPARy
differentiation, o
PFAS and . activation, bone
, bone Literature
Potential L ) development
Investigating the development review, ;
Adverse . . . anomalies, and
effects of PFAS issues, increased evaluation of . .
Effects on ) . . . ) adipogenesis,
onboneand  adipogenesis, epidemiological Human, .
Bone and _ . . . . using human
Adivose adipose tissue metabolic  and toxicological Mouse, mesenchvmal [45]
. P through disorders, and studies on PFAS, Rat Y
Tissue . . . stem cells and
interactions with bone weakness. PPARYy .
Through . . . animal models.
. PPARy PFAS can trigger  interaction -
Interactions ltinle echanisms Mechanistic
. multi mechanism _
With PPARy ) pl exploration of
molecular
o PPARy's role in
Initiating events
MSC
through . L
. . . differentiation to
interactions with .
adipocytes
nuclear
. versus
receptors like osteoblasts
PPARy. ]
In vivo Studies
Each doubling in
serum
Per- and concentrations
olyfluoroalk of PFOA, PFOS,
poY, Y and PFNA was Serum PFAS
I substance . . I
) associated with a Mass quantification
mixtures and D . . :
. Investigating the small increase in  spectrometry, using mass
gestational . L
. . influence of GWG. The multivariable spectrometry,
weight gain . L . . ;
amo PFAS mixtures association of linear regression, Human  data analysis
mon
3 on gestational PENA with weighted (pregnant using [46]
mothers in the . . . o
Health weight gain GWG was quantile sum  women) multivariable
(GWG) among stronger among  regression, linear regression,
Outcomes . - . .
mothers women with  restricted cubic and weighted
and Measures . .
of the BMI>25 kg/m?2. splines quantile sum
; There was little regression
Environment .
stud association
Y between PFAS
and GWG z-
scores.
The impact of Environmental Biomonitoring,
. environmental toxicants, such Literature Human epidemiological
Environment . . . .
. toxicants on as toxic trace review, meta- (pregnant studies, gene
al toxicants . ;
placental elements, PFAS, analysis, women expression [47]
and placental . . .
function function and and systematic and analysis,
fetal environmental review fetuses) epigenetic

development  phenols, can analysis
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cross the
placenta and
impact fetal
development
through
endocrine
disruption,
oxidative stress,
and epigenetic
changes. These
toxicants may
lead to adverse
outcomes such
as preterm birth,
low birth
weight, and
pregnancy loss.
Umbilical Prenatal
cord serum exposure to BMI
concentration Inve.stigating the PFO é) and PFOA Grow'th cu1jve measurements,
sof impact of ) modeling, high-
erfluoroocta renatal was assoclated erformance Human log10-
Z ¢ sulfonate ex};osure to with lower BMI  © liquid (children  transformed
’ SDS duri f th PFAS
perfluoroocta PEAS on the BMI uring chromatography rom e . [33]
; . . mfancy but an Hamamats concentrations,
noic acid, and  trajectory of | . (HPLC), tandem . .
. increase in BMI u Birth statistical
the body mass  children from . mass L
. . SDS in later Cohort)  analysis using
index changes birth to 51/2 . spectrometry
. childhood, STATA and
from birth to years ) (MS/MS)
5 1/2 years of particularly Mplus
Zg . among girls.
Prenatal
exposure to
PFOA, PCB 153
Maternal ’ ’
of The associations hieher odds for Measurement of
perfluoroalkyl between prenatal gS GA birth Case-cohort PFASs and OCs
substances exposure to ., study, linear and Human in maternal
) among Swedish L ) .
and endocrine women. with logistic (mother- serum, statistical [33]
organochlorin  disruptive stron, or regression with  child analysis using
es and indices ~ chemicals associatiins in 95% confidence  pairs) linear and
of fetal ~ (EDCs) and fetal ) intervals (CIs) logistic
) male offspring. .
growth: a growth o regression
Scandinavian No significant
stud associations
4 were found in
the Norwegian
cohort.
Pregnancy ~ Associations Pregnancy Prospective Human Plasma PFAS
Per-and ~ between PFAS  concentrations  cohort study, (pregnant quantification
Polyfluoroalk plasma of certain PFAS multivariable Ix)/vogr;nen using online  [21]
yl Substance concentrations were associated ~ regression and solid-phase
Concentratio during with greater analysis extraction HPLC-
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ns and pregnancy and adiposity, higher postpartu MS/MS,
Postpartum ~ postpartum systolic blood m women) measurement of
Health in ~ anthropometry, pressure, and anthropometric
Project Viva: blood pressure, adverse changes data, blood
A Prospective  and blood in blood pressure, and
Cohort biomarkers  biomarkers at 3 blood
years biomarkers
postpartum.
Serum PFOA
and PFHxS
Assessing the concentrations
Exposure to >Se during Serum PFAS
associations of N 8B
Per- and pregnancy were Longitudinal quantification
repeated pre- . . . .
Polyfluoroalk associated with  cohort study, using online
and postnatal . . .
yl Substances modest increases multiple Human solid-phase
. serum PFAS . . .
and Adiposity S in central informant (mother- extraction HPLC- [18]
at Age 12 . adiposity and models, offspring MS/MS,
with adolescent . . :
Years: . risk of generalized pairs)  anthropometry,
. adiposity and . N
Evaluating risk of overweight/obes  estimating dual-energy X-
Periods of . . ity, withno equations ray
. ... overweight/obesi , '
Susceptibility ; consistent absorptiometry
Y pattern for
postnatal
concentrations.
Significant
associations
between PFAS
Early-life Assessing the exposure at 18 Longitudinal Serur‘n'PFj'XS
exposure to . . months and 5 quantification
relationship . cohort study, . .
perfluoroalkyl and 9 years with . using online
7" between early- . multivariable ~ Human .
substances in . changesin . . solid-phase
. life PEAS . . linear regression (mother- .
relation to leptin, leptin . . extraction HPLC- [48]
exposure and models, Bayesian  child
serum . ) receptor, and . . MS/MS, serum
.. . serum adipokine . kernel machine  pairs) ..
adipokines in . . _resistin levels at . adipokine
., . concentrations in regression
a longitudinal children age 9. No (BKMR) measurements
birth cohort significant using ELISA Kkits
association for
PFAS exposure
at birth.
The .study _HighPFAS PFAS levels . - Ultra-
Prenatal examines the . __and metabolomic performance
_ exposure during . o
exposure to impact of . profiles were ~ Human liquid
pregnancy is ,
perfluoroalkyl prenatal . .., determined from (mother- chromatography-
associated with .
substances exposure to pregnant infant tandem mass
decreased cord
modulates  perfluoroalkyl serum mothersand  cohorts)  spectrometry
neonatal substances .. newborn infants' and Non- (UPLC-MS/MS) [49]
phospholipids. . .
serum (PFAS) on cord serum. obese  Lipidomics and
o PFAS exposure .. . . . .
phospholipids, neonatal serum ... A combination of diabetic bile acid
) ! .. correlates with . .
increasing  phospholipids . cohort studies  (NOD) profiling
. progression to : g
risk of type 1 and the T1D-associated (EDIA and mice Clustering and
diabetes  subsequent risk olet DIABIMMUNE) correlation
and mouse analysis using R

of developing
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type 1 diabetes autoantibodies = models were statistical
(T1D). in offspring.  used to validate programming
Similar lipid findings.
profile changes ~ Techniques
were observed included ultra-
in both human  performance
and non-obese liquid
diabetic (NOD) chromatography-
mice models.  tandem mass
spectrometry
(UPLC-MS/MS)
for PFAS
analysis, and
lipidomic and
bile acid
profiling.
- High PFHxS
levels in females
azsoscjjticlia:\;zh - Longitudinal - Oral Glucose
y lu%:ose cohort study Tolerance Test
Examines the & . with annual (OGTT)
. metabolism . L
associations besinning in late visits. Liquid
between & ube%t OGTT performed chromatography-
Exposure to exposure to per- P Y to estimate ~ Overweig high-resolution
PFHXS exposure
Perfluoroalkyl and . ) glucose ht/obese mass
associated with .

Substances  polyfluoroalkyl 25-me/dL hieher metabolism and adolescent spectrometry [50]
and Glucose  substances p O—nr%in lucise b-cell function. s and (LC-HRMS)
Homeostasis ~ (PFAS) and & PFAS measured young  Linear mixed

) and 25% lower o
in Youth glucose . using liquid adults  effects models
. . b-cell function .
metabolism in . chromatography- and linear
) postpuberty in | . . .
overweight/obes high-resolution regression
females.
e youth. ) mass models
No consistent ,
associations spectrometry Sensitivity
observed in (LC-HRMS). analysis
males or with
other PFAS.
- More than
4 PFAS
A Review of '00.0 .
chemicals have The study is a
the Pathways .
been review of
of Human .
manufactured, existing research
Exposure to Serum .
. with hundreds on sources,
Poly- and  concentrations of .
Perfluoroalkul leeacy PEASs in detected in the  trends, and
fl yriegacy environment. health effects of humans [51]
Substances ~ humans are
.. PFAS exposure,
(PFASs) and declining . )
- Serum levels of  including
Present globally. . . .
. legacy PFAS are epidemiologic
Understandin L. A
declining evidence from
g of Health lobally, but multiple studies
Effects 5 Y P ’

exposures to
newer PFAS
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compounds are
not well
characterized.

- Significant
associations
have been found
between PFAS
exposure and
adverse immune
outcomes in
children, as well
as dyslipidemia.

- Evidence for

cancer and
neurodevelopme
ntal impacts is
limited, but
preliminary
evidence
suggests
significant
health effects
from emerging
PFAS chemicals.
- Higher - Data source:
prenatal Environmental
exposure to influences on
PFAS was Child Health
associated witha  Outcomes
slightly higher (ECHO)
risk of consortium
overweight or
) obesity in - Exposure
Pef’rsl;:zii‘iive: children aged 2-  assessment:
PEAS and the Per- and 5 years. Maternal serum
Childhood polyfluoroalkyl or plasma
) substances are a - The association concentrations of
Obesity humans
Phenotype— group of was no.t sex- PFAS
Challenges manmade specific,
and chemicals.  meaning it was - Study design:
Opportunities similar in boys Examination of
and girls. associations
between prenatal
- The prevalence PFAS exposure
of and childhood
overweight/obes obesity
ity in the study

population was - Data pooling:
around 20%, Eight
which is prospective

- Maternal serum
or plasma
concentrations to
assess prenatal
exposure to
PFAS

- Body Mass
Index (BMI) to
define
overweight/obesi

ty

[52]
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worryingly high  cohorts from
and consistent  various U.S.
with previous locations
estimates in US
and European - Outcome
children. measurement:
Body mass index
(BMI) defined as
>85th percentile
for age and sex
- Specific
chemicals
assessed: Seven
long-chain PFAS,
including PFOS
and PFOA
Epidemiological - Review of
studies have existing
found literature on
associations toxicological
between PFAS effects of PFAS
exposure and
various health - Assessment of
effects, including epidemiological
immune, studies revealing
thyroid, liver, associations
Per- and metabolic, between PFAS . . .
. Epidemiological
Polyfluoroalk reproductive,  exposure and studies
yl Substance and health effects
Toxicity and .developmental B
Human issues, as well as - Concordance . .
The absence of . animal studies
Health .. cancer. with humans, [53]
, toxicity data for . :
Review: PFAS s a experimental ~ various Read-across
Current State - These findings ~ animal data ~ animals [17]
concern.
of Knowledge are supported by
. - Molecular
and Strategies concordant data - Proposal of .
X dynamics
for Informing from contemporary
Future experimental and high- .
. . - Protein
Research animal studies.  throughput .
modeling
approaches
- More advanced (read-across,
approaches are molecular
needed to dynamics,
accelerate the protein
development of modeling) to
toxicity accelerate
information for toxicity
the many PFAS  information
lacking data. development
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- An appropriate
degree of
precaution may
be needed to
protect human
health given the
known health
effects of some
PFAS.
- Aim: Explore
the relationship
between PFASs
and
overweight/obesi
ty and
abdominal
obesity among
children.

- Sample: 2473
- Thereisan US children aged
association  12-18 years from
between higher NHANES 1999-

levels of PFOA 2012.
PEAS _exposure fand
exposire and Perfluoroalkyl increased risk of - Measures:
postt substances are overweight/obes PFOA and PFOS
overweight/ob

associated with ity in children. levels, BMI, and

esity among

. , intermediate waist humans
children in a . . .
) cardiovascular - Higher circumference.
nationally . ;
re resentativedlsease outcomes quartiles of
psample among children. PFOA exposure - Definitions:

were associated Overweight/obes

with higher
odds ratios for

overweight/obes

e BMI z-score.

Exposure to Prenatal - There was no
perfluoroalkylexposures to four evidence of a
and different types of positive

polyfluoroalky PFAS werenot  association

ity (BMI z-score
> 85th
percentile),
abdominal
obesity (waist
circumference
>90th percentile).

- Analysis: Dose-
response
relationships and
multivariable
adjustments to
determine
associations.

- Systematic
review to
synthesize
literature and

humans

18

- Statistical
analysis of
associations

- Anthropometric
measurements
(BMI, waist
circumference)

- Use of
standardized
growth charts or

54

reference data [54]

- Multivariable
adjustment
techniques

- Data from the
National Health
and Nutrition
Examination

Survey
(NHANES)

- Systematic

review [55]

- Database search
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I substances  statistically
and pediatric associated with
obesity: a  changes in body
systematic ~ mass index or
review and waist
meta-analysis circumference.

Assessing the  Exposure to

human health PFOS has caused PFOS has been review of in vivo
hepatotoxicity, shown to cause a
variety of toxic

risks of
perfluoroocta neurotoxicity,
ne sulfonate  reproductive
by in vivo and toxicity,

between
prenatal PFAS
exposure and

pediatric

obesity.

- Postnatal
exposure to
certain PFAS
chemicals was
inversely
associated with
changes in BMI
in children.

- The findings
should be
interpreted
cautiously due
to the small
number of
studies.

- Exposure to

effects in
laboratory

explore
heterogeneity

- Searched six
databases for
relevant studies

- Included
studies with
individual-level
PFAS and
anthropometric
data from
children up to 12
years old

- Excluded
studies
evaluating
obesity measures
at birth

- Full-text review
and quality
assessment using
OHAT criteria

- Created forest
plots to
summarize
measures of
association and
assess
heterogeneity

- Used funnel
plots to assess
small-study
effects

- Identified 24
studies, 19 with
cohort design,
and included 13
in the meta-
analysis
- Systematic

and in vitro
studies from
2008 to 2018

19
- Full-text review
- Quality
assessment using
OHAT criteria
- Forest plots
- Funnel plots
- Trim and Fill
method
laboratory
animals, - In vivo studies
human [56]
cell - In vitro studies
systems
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in vitro
studies. thyroid
disruption,
cardiovascular
toxicity,
pulmonary
toxicity, and
renal toxicity in
laboratory
animals and
many in vitro
human systems.

Low-dose
developmental
exposure to
PFOA was
positively

Prenatal
Exposure to
Perfluoroocta
noate and
Risk of
Overweight
at 20 Years of
Age: A

anthropometry
at 20 years in

immunotoxicity,

circumference in
female offspring. female offspring measured in

animals and - Analysis of
epidemiological

studies

human cell
systems,
including
hepatotoxicity,
neurotoxicity,
reproductive
toxicity,
immunotoxicity,
thyroid
disruption,
cardiovascular
toxicity,
pulmonary
toxicity, and
renal toxicity.

- These findings,
along with
related
epidemiological
studies, confirm
the human
health risks of
PFOS, especially
from exposure
through food
and drinking
water.

- The main
mechanisms of
PFOS toxicity
that have been
widely studied
are oxidative
stress and
disruption of
physiological

processes due to
the similarity of

PFOS to fatty
acids.
- In utero
exposure to
PFOA was
positively

- Prospective
cohort study
with 665
pregnant women

associated with recruited in 1988- humans
associated with overweight and

1989.
high waist
- PFOA

- Measurement
of PFOA in
serum samples

- Recording of
BMI and waist

circumference

- Collection and

20

[57]
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Prospective
Cohort Study

at 20 years of
age.

- Maternal PFOA

concentrations

were positively follow-up at 20

maternal serum

at gestational
week 30.

- Offspring

associated with  years for BMI,

biomarkers of waist
adiposity circumference,

(insulin, leptin, and adiposity

leptin- biomarkers.
adiponectin

ratio) in female - Data collection

offspring. included

interviews, blood
- The findings ~ samples, and
support the  health records.
hypothesis that
early-life - Follow-up
exposure to  involved web-
endocrine based
disruptors, even questionnaires
at low and clinical
concentrations, exames.
may contribute
to the obesity - Statistical
epidemic. analyses: linear
regression for
continuous
outcomes, log-
Poisson
regression for
dichotomous
outcomes.

- Adjustments
for maternal age,
education,
smoking status,
pre-pregnancy
BMI, parity,
infant birth
weight, and
offspring age.

- Log-
transformation of
adiposity
biomarkers due
to skewed
distributions.

21

processing of
blood samples
(separation into
serum, plasma,
erythrocytes;
freezing)

- Time-resolved
immunofluorom
etric assay for
adiponectin and
leptin

- Commercial
Insulin ELISA kit
for plasma
insulin

- Linear
regression for
continuous
outcomes

- Log-Poisson

regression for

dichotomous
outcomes

- Division of
maternal PEOA
concentrations
into quartiles for
trend analysis
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Prenatal
perfluoroalkyl
Prenatal substance
Perfluoroalkyl exposure and
Substance adiposity in

Exposure and children born to

Child women who
Adiposity at 8 lived
Years of Age:  downstream
The HOME from a
Study fluoropolymer
manufacturing
plant.
Perfluoroalkyl
and
Polyfluoroalk
yl Substances
and Body Size
and Certain PFAS

Composition were positively

Trajectories associated with

in Midlife greater body size

Women: The
Study of
Women’s

Health Across
the Nation
1999-2018

and body fat.

- Higher
concentrations
of certain PFAS
(PFOS, linear
PFOA,
EtFOSAA,
MeFOSAA,
PFHxS) were
associated with
greater body
size and body fat
at baseline and
faster increases
in body size and
body fat over
time in midlife
women.

- No significant
associations
were found

between PENA

and body size or

composition.

- Examined
associations of
serum PFAS
concentrations
with body size

and composition

trajectories.

- Included 1,381
midlife women
with 15,000
repeated
measures.

- Follow-up
period averaged
14.9 years (range:

0-18.6 years).

- Body size and humans

composition
assessed using
objective
measurements
and dual-energy
X-ray
absorptiometry.

- Near-annual
visits for
assessments.

- Used linear
mixed models
with piecewise

linear splines to
model non-linear
trajectories.

humans

22

(58]

- Measurement
of serum PFAS
concentrations

- Objective
measurement of
weight

- Objective
measurement of
waist
circumference

(WQ) [59]

- Dual-energy X-
ray
absorptiometry
(DXA) for body
composition

- Linear mixed
models with
piecewise linear
splines for data
analysis
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Perfluoroalkyl
and

Higher PFOS
and PFOA

polyfluoroalky concentrations
I substances were associated
and human  with decreased

fetal growth:  average birth
A systematic weight in most
review studies.
Persistent
The Role of ersis gn
. organic
Persistent
. pollutants are
Organic .
‘ potential
Pollutants in
) obesogens that
Obesity: A
; may affect
Review of . .
adipose tissue
Laboratory
and development
... . and functioning,
Epidemiologic thus promotin
al Studies p &

obesity.

- Multivariable
adjustments
made for
potential
confounders.
- Systematic
literature
searches in
MEDLINE and
EMBASE

- Inclusion of
- Higher PFOS  original studies
and PFOA
concentrations

on pregnant
women with
were associated measurements of
with decreased PFOA or PFOS in
average birth  maternal blood
weight in most or umbilical cord
studies, but only
some results
were statistically
significant.

- Investigation of
citations and
references from
included articles
to find more
relevant studies

- The impact on
public health is
unclear, but the
global exposure
to PFASs
warrants further

- Extraction of
study
characteristics
and results into
structured tables

investigation.

- Assessment of
completeness of
reporting, risk of
bias, and
confounding
- Laboratory - Review of
data existing
demonstrate that laboratory data
POPs can
contribute to
obesity through
mechanisms like

- Review of in
vivo studies

dysregulation of - Review of
adipogenesis epidemiological
regulators, data
affinity for
nuclear - Discussion of
receptors, mechanisms
epigenetic  linking POPs to
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- Systematic
literature
searches in
MEDLINE and
EMBASE

- Measurement
of PFOA or
PFOS in
maternal blood
or umbilical cord

- Investigation of
citations and [59,60

references from |

included articles

- Extraction of
study
characteristics
and results to
structured tables

- Assessment of
completeness of
reporting, risk of
bias, and
confounding

- In vitro assays
for dysregulation

of adipogenesis

regulators
(PPARY and
C/EBPa)

- Receptor [61]
binding assays

- Epigenetic
profiling
techniques


https://doi.org/10.20944/preprints202411.1697.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2024

effects, and adipose tissue
proinflammator dysfunction and
y activity. obesity

- In vivo studies
show the impact
of POPs on
adipogenesis is
affected by
factors like sex,
age, and
exposure
duration.

Epidemiological
data show a
significant
association
between POP
exposure and
obesity, as well
as obesity-
related
metabolic
disturbances,
though more
research is

needed.
- Higher plasma - Prospective
PFAS cohort study
concentrations with 957

were associated participants from
with increases in  the Diabetes
weight and hip ~ Prevention
girth over time, Program (DPP)
but this and its follow-up

Association of A higher plasma association was study (DPPOS).

Perfluoroalkyl PFAS attenuated in the
and concentration group that - Participants
Polyfluoroalk was associated receiveda  randomized into humans
yl Substances with increases in lifestyle pharmacologic
With weight and hip intervention of  intervention
Adiposity  girth over time. diet and (metformin),
exercise. placebo, or
lifestyle
- The authors intervention
suggest that a groups.
lifestyle
intervention of - Lifestyle

diet and exercise intervention
can mitigate the included training

d0i:10.20944/preprints202411.1697.v1

- Inflammation
assays

- In vivo studies
in living
organisms

Epidemiological
studies

- Online solid-
phase extraction-
high-
performance
liquid
chromatography-
isotope dilution-
tandem mass
spectrometry

- Calibrated
balance scale for [62]
weight
measurement

- Tape measure
for waist
circumference
and hip girth

- Lange skinfold
calipers for
skinfold

24
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obesogenic
effects of

in diet, physical
activity, and
behavior
modification.

environmental
chemicals like

PFASs.

- Plasma
concentrations of

six PFASs

measured at

baseline and two

years after

randomization.

- Weight, waist
circumference,
and hip girth
measured at
baseline and
scheduled visits.

- Blood samples
analyzed using
high-
performance
liquid
chromatography-
isotope dilution-
tandem mass
spectrometry.

- Statistical
analyses
included

adjusted linear
regression
models for cross-
sectional
associations and
longitudinal
mixed-effects
regression
models for
prospective
associations.

Early life Exposures to - PFAS exposure - Review of
exposure to  some PFASin  is associated
per- and utero are with adverse
polyfluoroalky associated with health outcomes,
I substances adverse including
(PFAS) and  outcomes for reduced kidney
latent health both mother and function,

outcomes: A metabolic

existing
literature

- Synthesis of
evidence on
PFAS effects on

offspring. thyroid function,

humans

doi:10.20944/,

25

thickness

- Computed
tomography for
visceral and
subcutaneous fat

- Adjusted linear
regression
models

- Longitudinal
mixed-effects
regression
models

areview

[63]

reprints202411.1697.v1
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review
including the
placenta as a
target tissue
and possible
driver of peri-
and postnatal

effects.

Early-life
perfluoroocta
noic acid
(PFOA) and
perfluoroocta
ne sulfonic
acid (PFOS)
exposure
cause obesity
by disrupting
fatty acids
metabolism
and
enhancing
triglyceride
synthesis in
Caenorhabditi
s elegans.

syndrome,
thyroid
disruption, and
adverse
pregnancy
outcomes.

- Exposure to
PFAS during
pregnancy is
linked to
hypertensive
disorders of
pregnancy
(HDP),
preeclampsia,
and low birth
weight in
offspring.

- The placenta is
an understudied

target of PFAS
exposure, and
placental

dysfunction may
contribute to the

relationship
between PFAS
exposure and

increased risk of
chronic diseases

in adulthood.
- Low

concentrations
of PFOA and

PFOS (0.1 and 1

uM) induced

obesity in C.
Low elegans, which
concentrations of was not due to
PFOA and PFOS  increased
induced obesity  feeding rate.

in

Caenorhabditis

elegans.

- PFOA and

acid
composition,
decreasing

PFOS exposure
altered the fatty

kidney disease,
and metabolic
syndrome

- Emphasis on
the placenta as a
target tissue and

programming

agent of adult
disease

- Used
Caenorhabditis
elegans as an in

vivo model.

- Investigated
lipid
accumulation,
feeding
behaviors, fatty
acids
composition, and
genetic
regulation.

- Exposed C.
elegans to low

saturated fatty concentrations of

acids and

PFOA and PFOS

nematode
(Caenorha
bditis
elegans)

26

- Use of
Caenorhabditis
elegans as an in

vivo model

- Chemical
exposure
experiments with
PFOA and PFOS
[64]
- Analysis of
fatty acid
composition

- Mutant assays
- Gene

expression
analysis (e.g.,
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increasing (0.1 and 1 pM). quantitative
polyunsaturated PCR)
fatty acids. - Conducted
mutant assay
- Genes related ~ and mRNA
to fatty acid  levels analysis to
desaturation study genetic
(mdt-15, nhr-49, regulation.
fat-6) and fatty
acid/triglyceride
synthesis (fasn-
1, dgat-2) were
associated with
the increased
body fat,
triglycerides,
and lipid droplet
content in C.
elegans exposed
to PFOA and
PFOS.
- Measured
plasma PFAS
concentrations in
1,645 pregnant
- Prenatal women at
exposure to median 9.6
perfluoroalkyl weeks gestation.
substances
(PFASs) was - Assessed - Plasma analysis
associated with  overall and for PFAS
small increases central adiposity concentrations
Prenatal . L G e
Prenatal in adiposity in children at
exposure to . . q
Exposure to measurements in median ages 3.2 - Anthropometric
perfluoroalkyl = . .
Perfluoroalkyl mid-childhood,  years (early measurements
substances was .
Substances _ .., butonly among childhood) and
.. associated with ; ) humans [65]
and Adiposity . girls. 7.7 years (mid- - Dual X-ray
. small increases . ) .
in Early and i adiposit childhood) using absorptiometry
Mid- measurelr)nent}; i No associations anthropometric (DXA)
Childhood . . were found and DXA
mid-childhood. .
between measurements. - Multivariable
prenatal PFAS linear regression
exposure and - Fitted models

early-childhood multivariable

adiposity  linear regression
measures, or for models to
boys. estimate
exposure-
outcome

associations and

evaluated effect
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- Low doses of
PFOA (0.01-0.3
mg/kg) during
development
increased body
weight, serum

insulin, and
Phenotypic serum leptin in
dichotomy mid-life in
following female CD-1
deez;(;ls: :ZZZQZLOW-dose effects fice.
perfluoroocta gi;;?v[:ig}?t - The effects of in
ic aci PFOA
( ;;l(gjlc)l?n gain, as well as 1el;zel;)osurecz)n
leptin and P .
female CD-1 X . body weight
. insulin
mice: Low were no longer

concentrations in

doses induce . detected at 18
mid-life are
elevated . months of age.
. important to
serum leptin explore
and insulin, plote. - High doses of
and PFOA decreased
overweight in white adipose
mid-life tissue and
spleen weights,
but increased
brown adipose
tissue weight, in
both intact and
ovariectomized
mice.
- PFAS exposure
is associated
. . with a range of
Dietasan ~ Western diets .
. ... . health effects in
Exposure  enriched in high )
. both animals
Sourceand  fat and high
. and humans,
Mediator of ~ cholesterol . .
. including
Per-and  containing foods
Pol Ik b
olyfluoroa may bean and fatty liver
yl Substance important disease
(PFAS)  human exposure ’
Toxici f PFAS.
oxicity ~ routeo S - There are
inconsistencies

between animal

modification by
child sex.

- Study subjects:
CD-1 mice

- Exposure
scenarios: (1) in
utero exposure,

(2) in utero

exposure
followed by
ovariectomy
(ovx), (3) adult
exposure

- Exposure

duration: 17 days

during
pregnancy or as
young adults

- PFOA doses: 0,

0.01,0.1,0.3,1, 3,

or 5mg PFOA/kg
BW

- Measurements:
body weight
(postnatal day 1,
weaning, mid-
life, late life),
serum insulin
and leptin levels,
weights of white
adipose tissue,
spleen, brown
adipose tissue,
and liver
The
methodology
involves
reviewing
existing
literature to

outline dietary mice, rats,
hyperlipidemia exposure sources monkeys

of PFAS,
describe
associated
metabolic health
effects, and
examine studies

mice

28

- Exposure to
various doses of
PFOA

- Measurement
of body weight
at specific time
points (postnatal
day 1, weaning,
mid-life)

- Measurement
of serum insulin
and leptin levels

- Ovariectomy  [66]
(ovx)

- Measurement
of white adipose
tissue weight

- Measurement
of spleen weight

- Measurement
of brown adipose
tissue weight

- Measurement
of liver weight

- Oral gavage

- Dietary
exposure

- Serum
concentration 8]
measurement
- Plasma lipid

analysis

- Hepatic
histology
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and human on dietary
studies on the interactions with - Gene
effects of PEAS PFAS exposure. expression
on lipid The review analysis
metabolism and  includes data
cardiometabolic from - Use of
profiles. epidemiological genetically
studies, animal engineered
- More research  studies, and animal models
isneeded using  regulatory
human-relevant agencies.
animal models
and on the
toxicity of
emerging PFAS,
as well as the
dietary
modulation of
PFAS toxicity.
- PFAS exposure . Detailed
. literature survey
during . .
reenanc using online
Pres y databases
disrupts . .
(Science Direct,
placental health
Google Scholar,
and Scopus
breastfeeding, pus,
leading to Cochrane,
im airedgchild PubMed)
IrDowth and - SHSY5Y
PFAS exposure & - Focus on effects human-derived
development. e
occurs through of PFAS on cell line (in vitro
the Peroxisome PFAS exposure maternal and model)
Effect of Per ~ Proliferator- . P child health,
. increases . . .
and Poly- Activated . particularly - In vivo studies
adipocyte . .
Fluoroalkyl Receptor, neurological in mice
. number, alters . O humans,
Substances on  leading to . . complications ) [67]
. lipid mice
Pregnancy  increased fat . - Human cell
. . metabolism, and . .
and Child  deposition and - Neurotoxicity lines
leads to ) )
Development. profound health increased testing using SH-
effects in child . SY5Y human- - Liquid
adiposity and . .
growth and . . derived cell line chromatography/
weight gain . |
development. (in vitro model) quadrupole mass
through
. spectrometry
activation of In vivo studies
PPAR-yand ER- . |
in mice and
a human cell lines
to investigate
“PEAS PPAR-y and ER-
concentrations

.. a activation
are positively

correlated in - Analysis of

maternal serum. PEAS
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Halogenated
bisphenol-A
analogs act as
obesogens in

Halogenated
bisphenol-A
analogs induced

. lipid
zebrafish pie
. accumulation in
larvae (Danio .
. zebrafish larvae.
rerio).

concentrations in
maternal sera
using liquid
chromatography/
quadrupole mass
spectrometry
- Zebrafish
larvae were used
as an in vivo

model.
- Embryonic
exposure to
TBBPA and
- Halogenate'd TCBPA was
BPA analogs like analvzed for
TBBPA and o
TCBPA are accurlrf)ulation
rapidly absorbed . .
and metabolized usmsgtaCi)rlllifed ©
by zebrafish, &
primarily - Activation of
through
) human and
sulfation.

zebrafish PPARy
was assessed in

- TBBPA and .
TCBPA act as zebrafish and
. reporter cell
agonists for both lines
human and ) zebrafish
Zel;ralﬁnf: EI;(AR— - Metabolic fate (l)z:imo
B 2" of TBBPAand °)
CEUIATOT O TCBPA was
adipogenesis. .
analyzed using
- Exposure to erfh llf%r:z;nce
TBBPA, TCBPA, P& 2™
and TBT during .
..~ chromatography
early zebrafish
(HPLC).
development
leads to - Zebrafish

increased body
mass index
(BMI) in juvenile
zebrafish at 1
month of age.

larvae were
housed under
controlled
conditions and
exposed to
chemicals
dissolved in
DMSO.

- GFP expression
was quantified in
transgenic

30

- Oil Red-O
staining

- High-
performance
liquid
chromatography
(HPLC)

- Use of
transgenic
zebrafish
(Tg(hPPARY-
eGFP))

- Reporter cell
lines stably
transfected with
PPARy-LBD

- Luminescence
measurement
using a plate

reader

[68]

- GFP
quantification
using a plate

reader

- 3D microscopy
live imaging
using Nikon

AZ100M
microscope

- Solid-phase
extraction (SPE)

- Washing and
staining of fixed
larvae with Oil
Red-O solution

- Calculation of
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zebrafish BMI as
embryos to weight/(length)?
assess PPARy
activation.
- Larvae were fed
an egg yolk diet
and treated with
chemicals daily
until 11 days
post-fertilization
(dpf).
- Lipid
accumulation
was assessed by
Oil Red-O
staining, and
larvae were
imaged using
microscopy.
- Weight and
length of juvenile
zebrafish were
recorded at 30
days post-
fertilization (dpf)
to calculate BMI.
Causal links . T,h erelsa .
between per- growing bf)dy. of - Refne.w of
and literature linking existing
polyfluoroalkyl per- and literature
substances and polyfluoroalkyl
Per-and  obesity, diabetes, substances - Search of
polyfluoroalky and non- (PFAS).exposure PubMed fqr
. to obesity, type 2 human studies
I substances  alcoholic fatty . .
and obesity, liver diabetes, an.d 9n obesity,
type 2 disease/non- non-alcoholic  diabetes, and
diabetes and alcoholic fatty fiver non—alcc.>holic
non-alcoholic  steatohepatitis d1sease/nF) n— fatty fiver humans [69]
fatty liver  require further alCOhOth : d1sease/n9 v
Jisease: a large-scale steatohepatitis. alcohohc. .
review of prospective . steatohepatitis
epidemiologic ~cohort studies Appro%lmately
two-thirds of - Summary of

indings combined with
f 3 studies found  historical use,

mechanistic L .
positive chemistry, routes
laboratory L
. associations  of exposure, and
studies to better . _ .
between PFAS  epidemiologic
assess these .
exposure and evidence

associations.
the prevalence of


https://doi.org/10.20944/preprints202411.1697.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2024

d0i:10.20944/preprints202411.1697.v1

32
obesity and/or
type 2 diabetes.
- More research
is needed to
establish causal
links between
PFAS and these
health outcomes.
- Compilation of
data from
various studies
on MP
concentrations in
air, dust,
- Microplastics druflklzg wzter,
are ubiquitous in bz\c:eliaagr::s
the environment '
and human food Use of - FTIR (Fourier-
chain, leading to I transform
widespread p Py infrared
human based methods spectroscopy)
SepERE (FTIR, Raman, X-
Microplastic phot;;};ctron - Raman
exposurein - The increase in spectroscopy
laboratory global obesity spectroscopy,
A Review of animals is linked over the past 5 dispsrns?f/i};-ray - X-ray
Human  to various forms decades H—— photoelectron
Exposure to of inflammation, coincides with soming electr,on spectroscopy
Microplastics immunological the rise in . humans, [70]
and Insights response, plastics :dentification dogs, cats - Energy
Into endocrine  production and and dispersive X-ray
Microplastics  disruption, use. oL spectroscopy
as Obesogens alteration of lipid quantification.
and energy - The authors romaiioing - Scanning
metabolism, and hypothesize that studies to electron
other disorders.  exposure to . . microscopy
microplastics ijOVIde direct
and plastic evidence of ,MP - Biomonitoring
additives eposure i studies (analysis
(obesogens) may humans. of human tissues
be contributing Avrellioet and stool)
to the global
sty hurr}an and pet
it animal stool
specimens for
MP content.
- Measurement
of MP

concentrations in
human tissues
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- Body weight
measurement
- Prospective - Resting
analysis within metabolic rate
the POUNDS (RMR)
Lost randomized assessment using
clinical trial. Deltatrac II
Metabolic
- Participants: Monitor
21 igh
- Higher baseline 621 overweight
and obese - Dual energy X-
plasma PFAS . .
. individuals aged ray
concentrations .
were 30-70 years. absorptiometry
s (DXA) for body
significantly .
. y - Intervention: fat mass and lean
associated with
reater weight Four energy- mass
& recain & reduced diets
s, designed to - Computed
especially in | .
Perfluoroalkyl induce weight tomography (CT)
. . women.
substances Higher baseline loss. scanner for
anz.i changes plasma - Higher baseline visceral and
in body perfluoroalkyl - Measurements: subcutaneous
. plasma PFAS . .
weight and substance . Baseline plasma abdominal fat
. . concentrations, .
resting concentrations articularl concentrations of humans [71]
metabolic rate were associated pPF 0S an dy major PFASs; - Online solid
in response to  with a greater body weight at phase extraction
. . . PFNA, were . .
weight-loss  weight regain, sionificantl baseline, 6, 12, and liquid
diets: A especially in gn Y 18, and 24 chromatography
) associated with a
prospective women. ) months; RMR coupled to a
greater decline .
study . . and other triple
In resting .
. metabolic quadropole mass
metabolic rate
durine weicht parameters at spectrometer for
& & baseline, 6 PFAS
loss and a .
. months, and 24 concentrations
smaller increase
in restin months.
. & - Synchron CX7
metabolic rate .
. . - Statistical and CX5 systems
during weight ..
. analysis: Linear for glucose,
regain. . . .
regression to insulin,
examine cholesterol, and
associations HbAlc
between baseline
PFAS levels and - Ultrasensitive
changes in body immunoassay for
weight and plasma leptin
RMR.

and soluble
leptin receptor

- Competitive

33
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Perfluoroocta
nesulfonic
acid (PFOS)
and Perfluorooctanes
perfluorohexa ulfonic acid and
nesulfonic  perfluorohexane
acid (PFHxS)  sulfonic acid

alter the blood increase the risk
lipidome and of metabolic and
the hepatic ~ inflammatory

proteome in a disease induced
murine model by diet.

of diet-

induced

obesity.

- PFOS and
PFHXS increased

the expression of

genes involved
in lipid

metabolism and

oxidative stress
in the liver of

mice fed a high-

fat, high-
carbohydrate
diet.

- PFOS and
PFHXS altered
the blood
lipidome,
changing the
levels of various
lipid species,
including

phosphatidylcho

lines,
phosphatidyleth
anolamines,
plasmogens,
sphingomyelins,
and
triglycerides.

- PFOS and
PFHXxS led to an
increase in

- Male C57BL/6]
mice were used.

- Mice were fed
either a low-fat
diet or a high fat
high
carbohydrate
(HFHC) diet.

- PFOS or PFHxS
were included in
the feed at
0.0003% w/w for
29 weeks.

- Lipidomic,
proteomic, and
gene expression

profiles were

determined.

- Effects on lipid
metabolism and
oxidative stress
were measured
in the liver and
blood.

mice

34

electrochemilumi
nescence
immunoassay for
thyroid
hormones

- Direct
hybridization
using Illumina
HumanHT-12 v3
Expression
BeadChip for
gene expression

- Baecke physical
activity
questionnaire for
physical activity
assessment

- Lipidomic
profiling

- Proteomic
profiling [72]
- Gene
expression
profiling
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oxidized lipid

species in the
blood lipidome

of mice fed a
high-fat, high-

carbohydrate
diet.
- Studied 545
mother—child
i pairs from
- Higher : .
prenatal PFAS Project Viva
cohort.
exposures,
particularly ) .
PFOS, PFOA, ~ Measured six

and PFNA, were PEAS in

associated with

increased risk of
obesity in late
adolescence.

pregnancy

- Assessed

- There was an

maternal early

plasma samples.

anthropometric
measures and

Associations be::;icggg A body
of Prenatal and PFOS, composition in
Per- and where the late adolescence.
Polyfluoroalk ositive
yl Substance Higher prenatal asiociation - Used
(PFAS) PFAS between PFOS bioelectrical
Exposures  concentrations and obesitv was impedance
with were associated stronger v}\lzhen analysis and
Offspring with higher PE Oi levels dual-energy X-
Adiposity and obesity risk in were lower ray
Body late adolescence. " absorptiometry
Composition _ The PEAS for bo.d‘y
at 16-20 mixture as a composition.
Years of Age: whole was
Project Viva . . - Analyzed
associated with . .
. associations with
increased obesity/adiposit
obesity risk and usingp Y
higher BMI.
reher multivariable
Poi
- Children with _, olsson anc.l
) linear regression
higher prenatal models
PFOS, EtFOSAA, ’
d MeFOSAA
an Me 05 - Evaluated
had higher rates .
. PFAS mixture
of BMI increase .
. effects using
starting from 9- .
Bayesian kernel
11 years of age. .
machine

regression and
quantile g-

- Measurement
of PFAS in
maternal plasma
samples

- Bioelectrical
impedance
analysis

- Dual-energy X-

ray
absorptiometry

- Multivariable
Poisson
regression

humans models

(73]
- Linear
regression
models

- Bayesian kernel
machine
regression
(BKMR)

- Quantile g-
computation

- Fractional-
polynomial
models

doi:10.20944/preprints202411.1697.v1
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computation.
- Assessed BMI
trajectories using
fractional-
polynomial
models.
- Exposure to
PFA
. > e - Liquid
increase the risk .
of - Review of chromatography/
. epidemiological mass-mass
cardiovascular .
disease throush studies on PFAS spectrometry
TOUBT o xposure and (LC-MS/MS)
worsening of .
. cardiovascular
cardiovascular ) .
: disease. - Thrombin
risk factors and a
g receptor
direct . . .
rothrombotic - Selection activator peptide
Legacy and new P criteria for 6 (TRAP-6)
effect on . . .
PFAS can be studies: sample stimulation
. . platelets. i
incorporated in size, study
latelet cell desi - Microfluidi
Exposure to plateiet e - Mechanistic e.51gn' . 1cr9 e
membranes ) (longitudinal biochip pre-
Perfluoroalkyl . ., studies suggest .
. giving a solid preferred), coated with
Chemicals . PFAS can ; .
rationale to the . intensity of collagen
and accumulate in
Cardiovascula observed latelet expostre.
. increase risk of P humans - Measurement [74]
r Disease: . membranes and .
, cardiovascular _ - Analysis of of large
Experimental . alter their . . .
events in the . . mechanistic microvesicles
and ) function, leading ) .
., .. . populations . studies on PFAS expressing C41
Epidemiologic toincreased | .. .
. exposed to PFAS incorporation in and binding
al Evidence . platelet _
by directly S platelet annexin V
. activation and
promoting membranes and
thrombus . -
thrombus . thrombus - Bilayer fluidity-
. formation. ] .
formation. formation. sensitive probe
- These platelet- . Merocyanin 540
. - Summarized
mediated effects .
data in tables on - Platelet
may help . .
. clinical, aggregation
explain the . . "
epidemiological, under flow
observed o
. . and conditions
increase in . . .
. experimental with/without
cardiovascular studies acetylsalicylic
events in PFAS- ’ ysalucy
acid
exposed
populations.
Per/poly  Perfluorononano - Exposure to - Model - Use of
fluoroalkyl ic acid, PFNA, PFOSA, organism: Caenorhabditis
... Caenorhab
substances perfluorooctanes  and PFOS Caenorhabditis .. elegans as a
) ., . S ditis .
induce lipid ulfonamide, and  significantly elegans elegans (C model organism [75]
accumulation perfluorooctane increased lipid eli ans) '
via the sulfonate accumulationin - Exposure & - Bodipy 493/503

serotonergic ~ promote fat  C. elegans, with concentration: 1 staining
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signaling accumulation in PFNA showing  uM PFNA,
pathway in  Caenorhabditis the highest level PFOSA, and

elegans. of lipid PFOS
accumulation.
- Lipid
- PENA, PFOSA, accumulation
and PFOS measurement:

downregulated bodipy 493/503
the expression of and nile red
genes involved staining methods
in serotonin
production and - Food intake
beta-oxidation, measurement:
and upregulated  pharyngeal
the expression of pumping rate
a gene involved
in triacylglycerol - Gene
synthesis. expression
evaluation: tph-
- The study 1, mod-1, nhr-76,
demonstrates atgl-1, and dgat-

that PFNA, 2
PFOSA, and
PFOS promote
fat accumulation
through the
serotonin-
involved
pathway and
lipogenesis,
leading to an
obesogenic
effect.
- Both obesity - Summarized
and PFASs  epidemiological
exposure can studies on PFASs
independently  and obesity-
cause related GLMD
Do . . ]
Perfluoroalkyl  disruptions in
perfluoroalkyl .
substances are  glucose and - Reviewed
substances . ..
aggravating the lipid relevant
aggravate the . .
occurrence of ~ metabolism. experimental
occurrence of . .
) obesity- evidence
obesity- . o
) associated - Obesity is a
associated . )
iy glucolipid crucial factor - Proposed three
glucolipid ) .
. metabolic that increases research
metabolic . .
disease? disease. the incidence of  programs to
’ GLMD induced  explore the
by PFASs. synergistic
mechanism of
- PFASs are PFASs and

exacerbating the obesity

humans
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- Nile red
staining

- Measurement

of pharyngeal
pumping rate

- Gene
expression
analysis

Epidemiological
surveys

Experimental
studies on [76]

animal models
Statistical
analysis of

literature data
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development of
obesity- - Recommended
associated  three suggestions
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Exposure, exposure during 0.37 kg more at1 and 3 years and  chromatography-

Gestational pregnancy and  weight gain postpartum.  postpartu tandem mass
Weight Gain,  subsequent during PFAS levels m spectrometry
and gestational pregnancy. measured in  mothers) (HPLC-MS/MS)
Postpartum weight gainand  Doubling of plasma using Multivariable
Weight postpartum  PFOA associated high- linear regression
Changes in  weight changes.  with 0.55 kg performance Bayesian Kernel
Project Viva more weight liquid Machine
retention at 1- chromatography- Regression
year postpartum tandem mass (BKMR)

and 0.91 kg spectrometry
more weight (HPLC-MS/MS).
gain at 3 years Analysis
postpartum. included
Higher PFOS  multivariable
associated with linear regression
more weight  and Bayesian
gain at 3 years Kernel Machine

postpartum. Regression
Stronger (BKMR) for
postpartum  mixture analysis.
weight change

associations in
women with
higher pre-
pregnancy BMIL.

2.5. Epidemiological Evidence linking PFAS exposure to obesity and metabolic dysfunction

Epidemiological investigations have consistently demonstrated associations between PFAS
exposure and the incidence of obesity and metabolic dysregulation Canova Li [74,90-92]. Within the
realm of obesogenic research, a substantial body of evidence underscores the link between PFAS
exposure and increased risk of adverse health outcomes. These synthetic compounds have the
potential to interfere with endocrine functions [93], and potentially disrupt lipid and glucose
homeostasis, which can lead to hyperlipidemia, diabetes, and obesity, each a recognized precursor to
cardiovascular morbidity. Notably, PFAS exposure is associated with alterations in lipid profiles,
including elevations in total cholesterol, LDL cholesterol, and triglycerides, as well as diminished
glucose tolerance and insulin sensitivity [90-92,94,95]. Exposure can contribute to obesity-related
comorbidities, as these compounds may adversely affect the resting metabolic rate, thereby
complicating weight management efforts [62,71].

Epidemiological investigations have established correlations between PFAS exposure and
various health complications, with the depth of understanding evolving in tandem with the
emergence of new data [17]. The National Toxicology Program (NTP), among other research
institutions, is at the forefront of exploring the health ramifications of PFAS, underscoring the
dynamic nature of this research domain [96].

Further complicating the cardiovascular risk profile, PEAS exposure has been implicated in the
elevation of blood pressure and a heightened risk of hypertension, directly contributing to
cardiovascular pathology [97]. The interaction of PFAS with platelet membranes, altering their fluid
dynamics and permeability, can lead to increased platelet activation and aggregation, as well as
microvesicle release, potentially exacerbating thrombotic events [98,99]. More direct evidence derives
from a study conducted by De Toni et al., which showed that PFAS can alter the functionality of
platelets using liquid chromatography/mass-mass spectrometry (LC-MS/MS) to analyze the
incorporation of PFAS into cell membranes. Researchers demonstrated that platelets are the major
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target of PFOA accumulation (about 10% of total blood PFOA) and C604 [98,99]. Furthermore,
computational docking analysis and bilayer fluidity measurements further suggested a possible
interaction of PFAS with phospholipids, altering the membrane structure and properties [100]. Such
alterations may facilitate the formation of thrombi and arterial blockages, potentially leading to
severe cardiovascular events like myocardial infarction and stroke.

The metabolic implications of PFAS exposure extend to diabetes, hyperglycemia, and insulin
resistance, with multiple epidemiological studies reporting positive correlations between PFAS
exposure and these metabolic derangements, as well as dyslipidemia, hypertension, and obesity,
particularly in adolescent populations [101,102]. Mechanistic insights provided by Tumova (2016)
and Roth (2020) elucidate the role of PFAS in exacerbating metabolic dysfunction, highlighting the
contribution of contaminated diets and the dysregulation of free fatty acid metabolism in skeletal
muscle [8,103].

Prenatal and early-life exposures to PFAS, even at low doses, have been linked to obesity-related
markers in offspring, as evidenced by a Danish cohort study on 665 pregnant women between 1988
and 1989, which found that PFOA exposure during pregnancy correlated with increased BMI and
waist circumference in female offspring two decades later [57]. Conversely, recent studies present a
more nuanced perspective, with some research indicating negative associations between prenatal
PFAS exposure and BMI in young children, suggesting complex interactions between PFAS exposure
and growth [41,55].

In adults, particularly females, PFOA exposure has been speculated to enhance steroid hormone
synthesis in the ovaries, potentially predisposing them to greater adiposity [104]. However, a
retrospective analysis within the C8 Health cohort project, which encompassed data from 8,764
individuals aged between 20 and 40 years, collected from 2008 to 2011, did not find a significant
correlation between early-life PFOA exposure and increased risk of overweight or obesity in
adulthood [105]. These contradictory conclusions highlight the need for further research to elucidate
the intricate relationship between PFAS exposure and obesity outcomes, as well as underscore the
complexity of PFAS's impact on human health and the imperative for continued investigation to
inform regulatory policies and public health strategies effectively.

Despite studies suggesting PFAS is a contributing factor in the increased risk of childhood
obesity, the data is mixed and insignificant at best. The associations between PFAS and the risk of
obesity become more complex to make as children age. Jin and colleagues (2020) collected data from
seventy-four children diagnosed with nonalcoholic fatty liver disease in the Atlanta area. Researchers
showed an increased risk of progression to nonalcoholic steatohepatitis with higher plasma
concentrations of PFOS and PFHxS; more specifically, PFHxS was associated with an increased risk
of liver fibrosis [106]. However, in this study, most participants were boys despite many studies
showing that PFAS exposure disproportionately affects girls. The progression of liver disease in
adolescents may be due to confounding factors other than plasma PFAS concentration. In a
continuation of the Health Outcomes and Measures of the Environment (HOME) study, researchers
investigated prenatal and post-natal PFAS exposure to adolescent adiposity [18].. Importantly, in
the original study, mothers had PFAS plasma concentrations nearly double that of the national
average from ingesting contaminated drinking water caused by a nearby industrial plant [18,107].
The effects of PFAS from this study may be overstated due to the extraordinary exposure rates of the
mothers and children. In this longitudinal study, 212 preteen children presented only a modest
positive correlation between increased PFOA and PFHXS exposure with greater body fat and obesity
risk in adolescent children. They corroborated the association between PFOA concentration and
increased adiposity in female children. However, prenatal and post-natal PFAS concentrations were
weakly correlated; therefore, instances of adolescent adiposity may rely more heavily on other factors
like maternal gestational BMI, and environmental and socioeconomic factors [18].

3. Toxicokinetic of PFAS in the Human Body

PFASs are well absorbed by the human body; however, they are excreted slowly. PFOA and
PFQS, particularly, are known for their persistence in the human body due to their chemical stability
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and resistance to metabolic breakdown. PFOA accumulates primarily within the liver and plasma
[108,109]. Upon exposure, PFAS exhibits a strong affinity for binding to plasma proteins, particularly
albumin, rendering the bloodstream a significant site for PFAS accumulation [110-113]. This results
in relatively long half-lives in humans, with average serum half-lives estimated to be about 3 years
for PFOA, indicating significant accumulation rather than rapid excretion [114]. Furthermore, other
extensively bioaccumulated PFAS compounds and metabolites are predominantly excreted through
urine; however, this process can be significantly impaired in individuals with kidney disease, leading
to reduced excretion of all wastes, including PFAS from the body [115].The toxicokinetic profiles of
PFAS in humans, as well as their modes of action, have been extensively discussed [116]; however,
their modes of action in humans are very complex and not fully understood, with differences in
accumulation and distribution observed across various tissues [108]. The use of in vitro methods,
particularly human cell-based models, has been proposed as a way to better understand the
toxicokinetics and potential health effects of PFAS, including the newer short-chain alternatives [117].
Nonetheless, these substances can accumulate in various human tissues, with different compounds
showing varying prevalence and concentrations [108]. These compounds are then widely
disseminated throughout the organism via the circulatory and enterohepatic systems, predominantly
accumulating in the blood, liver, and kidneys. Unlike traditional organic pollutants such as
polychlorinated biphenyls, certain pesticides, and dioxins, which tend to accumulate in adipose
tissue, PFAS are transported into cellular structures through both passive diffusion and active
transport mechanisms. This transport is mediated by specific proteins, including organic anion
transporters and the apical sodium-dependent bile acid transporter, facilitating their cellular uptake
[11,118-120].The uptake, accumulation, and metabolism of PFASs in plants have also been studied,
with the potential risk of human exposure through plant-origin food being highlighted [121]. These
findings underscore the need for further research on the distribution and metabolism of PFASs in the
human body.

In silico toxicokinetic models gave insight into the mechanism of the uptake of PFOS and its
alternatives into phospholipid bilayers using the MDS approach. Cellular membrane lipid models
shed light on the adsorption, transport, and residence time of PFOS, along with two emerging PFAS
alternatives within DPPC bilayers [122]. Studies reveal that PFOS, 6:2 CI-PFESA, and OBS readily
adhere to the DPPC bilayer surface through interactions with DPPC headgroups, showcasing a
thermodynamically favorable and stable adsorption process [122]. Where the sulfonic groups of
PFOS, 6:2 CI-PFESA, and OBS interact mainly with the -N* (CHs)s groups of DPPC molecules,
forming a stable complex [122]. These compounds navigate a minimal free energy barrier (2-3
kcal/mol ') to integrate into the bilayers, propelled predominantly by their thermal movement on the
bilayer surface, with PFOS presenting the lowest and OBS the highest energy barrier among them
[123]. The calculated energy barriers for the three compounds into the bilayer were low, suggesting
that these compounds can seamlessly enter the bilayer of the cell membrane. Upon entering the
bilayer, the interactions between the sulfonate head groups of PFAS and the cationic N-atoms within
the bilayer lead to a constrained movement of the bilayer's head groups and an alteration in the
bilayer's orientation. Moreover, the incorporation of PFAS into the bilayer results in a decreased area
per lipid, akin to the effects of cholesterol, causing the bilayer to contract laterally and subsequently
widen, which further modifies the bilayer's structural dynamics [122].. Following this initial
interaction, PFAS compounds predominantly settle in the upper leaflet of the DPPC bilayers,
demonstrating a limited inclination to either return to the surface or delve further into the bilayer's
core. This sustained presence within the upper leaflet is shaped by the intricate molecular interactions
between PFAS and DPPC, as well as the displacement of water molecules by the PFAS compounds,
which further influences the bilayer's structural dynamics and orientation [124].
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Figure 3. Graphical representation of the in-silico modeling of per- and polyfluoroalkyl substances
(PFAS) uptake into a dipalmitoylphosphatidylcholine (DPPC) membrane bilayer. The simulation
demonstrates the uptake process and the energy required for PFOS (perfluoro sulfonic acids): 2.07
kcal/mol -1, 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFESA): 2.47 kcal/mol -1, and
sodium p-perfluorous nonenoxybenzene sulfate (OBS): 2.98 kcal/mol ! to cross into the membrane.

4. Regulatory Challenges and Risk Assessment of PFAS

[125-127]. However, due to the ongoing investigation into the full scope of exposure and
associated risks of the diverse range of PFAS compounds, regulatory frameworks for PFAS
management exhibit significant international variability. The lack of long-term health impact data
and the current limitations of detection and remediation technologies further complicate the issue.
Abunada (2020) emphasizes the global disparity in PFAS regulatory values, driven by scientific,
technical, and societal factors [128]. Langenbach (2021) highlights the absence of federal regulations
and standards in the United States, stressing the need for future epidemiological research [129].

The regulatory landscape for PFAS is currently evolving, with the EPA at the forefront, enacting
measures under the Resource Conservation and Recovery Act. Various countries have adopted
different strategies for regulating PFAS based on their risk assessments and public health priorities.
The European Union, through the European Chemicals Agency (ECHA), has proposed restricting all
PFAS, including firefighting foams, with several PFAS listed under the REACH Regulation [130].
Similarly, the German Ministry of Health has also recommended a threshold of 300 ng/L for these
compounds [128,131]. Across the globe, Countries have developed their own guidelines for PFAS
regulation. Australia, for instance, has in collaboration with USEPA, set a conservative drinking
water guideline of 70 ng/L for the sum of PFOS and PFOA. Japan has established regulatory values
for PFOS and PFOA in drinking water and industrial emissions and has adopted strict standards for
PFAS in consumer products. China, on the other hand, is phasing out specific PFAS and
implementing emission controls. This diversity in approaches underscores the complexity of the
PFAS issue and the need for a unified global strategy [132]. While Health Canada has set drinking
water guidelines of 200 ng/L for PFOS and 600 ng/L for PFOA [133].

New (EPA) initiatives take steps towards the regulation of specific PFAS entities, including
perfluorohexane sulfonic acid (PFHxS) and hexafluoropropylene, in potable water, marking a
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transition towards more stringent regulatory paradigms [134,135]. However, some U.S. states have
deemed these guidelines insufficient, adopting more stringent criteria. Such state-level actions are
crucial, as demonstrated by the Department of Environment, Great Lakes, and Energy, which has
implemented standards that exceed those of the EPA and cover a broader spectrum of PFAS
compounds [136]. In 2022, the EPA introduced more rigorous health advisory limits (HALs) of 0.004
ng/L for PFOA and 0.02 ng/L for PFOS [137] based on a thorough review of the latest scientific
research and considerations of lifetime exposure risks. This strategy reflects an understanding of the
long-term health effects of PFOA and PFOS, underscoring the need to evaluate the impact of these
substances on human health. The EPA established these advisory levels by examining human health
data to identify non-carcinogenic toxicity benchmarks, determining the lowest exposure levels
associated with adverse effects on essential physiological functions such as immune response,
thyroid function, liver health, and fetal development [131]. The advisory levels also incorporated a
detailed calculation of the relative source contribution factor, set at 0.20, allocating 20% of the total
allowable exposure to drinking water and thus recognizing the complex nature of environmental
exposure to these chemicals [138].

The discrepancies in regulatory standards for PFAS arise from the absence of synchronous
analytical methods and the intricate nature of their toxicological characteristics [139]. The
Stockholm Convention on Persistent Organic Pollutants has designated PFOS and its derivatives for
regulatory oversight, catalyzing a range of regulatory measures globally. The FDA is also involved
in overseeing the presence of PFAS in food products, focusing on their uptake by food and the
development of chemical standards for accurate identification [140]. This multifaceted strategy
underscores the urgent and complex challenge of addressing PFAS contamination and subsequent
human exposure across various products. Establishing permissible exposure limits (PELs) and
mitigation strategies for PFAS compounds has been complex and challenging. As such, there is a
pronounced need for additional research to bridge the gaps in our understanding of PFAS toxicology
and to elucidate the relationship between exposure and health outcomes. Undeniably, long-chain
PFASs have outstanding performances that are hard to match without fluorine, however they also
pose serious environmental and health risks. Therefore, the consensus is that a more reasonable, more
selective use of these compounds is indispensable in order to reduce exposure while preserving their
societal benefits, all without penalizing developing countries [141]. As a result, remediation/“clean
up” tasks are necessary to manage PFAS pollution [141].

In terms of corporate responsibility and industry actions, a significant milestone in the evolution
of the PFAS regulatory framework was the decision by 3M Company, a major PFAS manufacturer,
to voluntarily cease the production of PFOA and PFOS in the early 2000s [137]. Following this,
DuPont also ended its production and use of PFOA in 2013, in accordance with an agreement with
the EPA. This move was part of a broader trend of discontinuation among other global companies
[137]. More recently, 3M has announced plans to completely halt PFAS production by the end of 2025.
Despite these proactive measures by leading manufacturers towards phasing out long-chain PFAS
and the implementation of regulatory frameworks in regions such as the United States, Japan, and
Western Europe, new production entities, primarily in continental Asia, have continued to
manufacture long-chain PFAS and their precursors [142,143]

Regulatory interventions to curtail PFAS exposure present substantial opportunities to attenuate
their obesogenic effects and reduce obesity prevalence, particularly in pediatric populations [55].
Systematic reviews have emphasized the necessity for stringent regulatory measures to limit
exposure to PFAS. Such measures could yield dual advantages: reducing obesity incidence and
mitigating other health hazards associated with PFAS, including reproductive anomalies and
dyslipidemia [55,135,144]. Such legislative action could incur stricter PFAS emission controls,
enhanced surveillance of PFAS concentrations in consumer goods and food supplies, and spur the
innovation of safer alternatives to PEAS-infused materials. By targeting the fundamental sources of
PFAS exposure, these regulations bolster public health by reducing the prevalence of a potential
obesogen, thus averting a range of additional adverse health outcomes linked to PFAS.


https://doi.org/10.20944/preprints202411.1697.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 November 2024 d0i:10.20944/preprints202411.1697.v1

54

However, federal implementation must navigate political, economic, and scientific challenges.
In regions like the US Northeast, where local governments monitor PFAS contamination in drinking
water aquifers, these regulatory hurdles are particularly pronounced [145]. For instance, California
has introduced progressive regulations that classifty PFAS as a chemical group in consumer products,
a necessary and forward-thinking approach [146]. Despite these challenges, there are opportunities
for collaborative efforts and new technologies to effectively address PFAS contamination [146].
Currently, the most studied PFAS compounds are PFOS and PFOA, even though they were phased
out in the US decades ago [137]. The development of next-generation PFAS is outpacing researchers'
ability to study them. The obesogenic mechanisms of older-generation PFAS remain unclear,
complicating the assessment of newer PFAS's potential [17]. While many in vivo and in vitro models
have examined individual PFAS molecules, few have studied aggregates found in technical mixtures
and their associated health effects [35]. This complexity arises from the thousands of identified PFAS
combinations. In silico modeling could link specific PEFAS molecules and mixtures to physiological
pathways, but without in vivo and in vitro investigations, these associations remain hypothetical
[147]. Epidemiological studies often overlook associations between PFAS exposure, gestational
weight gain, and childhood obesity. Key factors like diet, activity level, socioeconomic status,
geographical location, and water and food sources are not considered but would help uncover PFAS
exposure patterns and mechanisms. Therefore, risk assessment should focus on the most susceptible
population sectors, exposure routes, and prevalent PFAS molecules and mixtures.

5. Strategies and Challenges in PFAS Remediation and Detoxification

PFAS presents formidable challenges in environmental remediation due to their chemical
stability and persistence, attributed to the robust carbon-fluorine bonds (460 kJ/mol) [148]. Innovative
approaches, such as photocatalytic degradation leveraging advanced oxidation processes, have been
explored to counteract these resilient compounds [149]. Additionally, policy-driven strategies,
including regulatory frameworks and the promotion of safer alternatives, are being considered to
mitigate PFAS pollution [150]. The integration of technologies like constructed wetland-microbial
fuel cell systems offers a novel pathway for PFAS removal from aqueous environments, highlighting
the interdisciplinary efforts required to address PFAS contamination [151].

The intrinsic resistance of PFAS to conventional degradation methods underscores the
complexity of effectively dismantling these compounds. Detoxification of PFAS within the human
body adds further complex layers, with current strategies being limited and largely ineffective in
expediting the elimination process [152]. The variability in elimination kinetics, influenced by factors
such as molecular structure and biological variables, necessitates a deeper understanding and
development of targeted detoxification methods [109,153].

As of now, there are limited studies and no clinical trials specifically aimed at evaluating
treatments to reduce the PFAS burden, even in cases of very high exposure [154]. Unfortunately, there
is a significant gap in available treatment options for PFAS exposure in humans. Moving forward,
ongoing research efforts are crucial to developing effective strategies for PFAS detoxification and
removal from the human body.

Environmental strategies for PFAS degradation encompass a spectrum of techniques, from
thermal and chemical treatments to advanced oxidation methods [155]. Despite their potential, these
strategies face limitations such as specificity to certain PFAS structures and concerns over incomplete
degradation leading to the formation of shorter-chain PFAS [148,155]. The optimal PFAS remediation
strategy necessitates consideration of factors such as PFAS characteristics, water properties, and the
cost-effectiveness of available technologies [156]. Commonly employed methods include activated
carbon adsorption, which is particularly effective against long-chain PFAS but requires regular
carbon renewal [157]. Ion exchange resins, capable of extracting both long- and short-chain PFAS,
may face competition from other waterborne ions and also require periodic resin regeneration or
replacement. Advanced treatment technologies, such as electrochemical oxidation and activated
persulfate oxidation, have shown promise in degrading PFASs in water [158]. Using a UV/S:0s?-
system, Lutze and Coworker showed that PFCAs are degraded by sulphate radicals [159].
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Furthermore, High-pressure membrane systems, encompassing nano-filtration and reverse osmosis,
offer broad-spectrum PFAS removal but generate concentrated waste and demand significant energy
and maintenance investments.

Emerging or less conventional approaches, such as photocatalytic degradation [160] and plasma
treatment, hold promise for complete PFAS decomposition but may yield undesirable by-products
and incur substantial energy and equipment costs [161,162]. Biological treatments, leveraging
microorganisms or plants, offer a more natural remediation route but are constrained by PFAS's
inherent resistance to biodegradation and warrant stringent biological process management. The
exploration of enzymatic degradation, particularly through enzymes capable of cleaving the carbon-
fluorine bond like fluoroacetate dehalogenase, presents a promising avenue for targeted PFAS
breakdown [148,163].

Exploring in silico enzyme design emerges as a promising approach for the degradation of PFAS.
A major limitation of enzymatic bioremediation, is the scarcity of naturally occurring enzymes
capable of breaking down PFAS, underscoring the labyrinthian efforts to find viable remediation
methods. However, the potential of computational strategies, including homology modeling and
molecular dynamics, to facilitate the rational design of enzymes, optimizing their interaction with
PFAS for effective degradation, offers a reason for confidence in the future of PFAS remediation.
Chemical redox systems, despite their potential to generate bond-breaking radicals, face challenges
such as pH sensitivity and inefficient defluorination leveraging enzymes like fluoroacetate
dehalogenase, horseradish peroxidase, and laccase, which offers a targeted approach to catalyze
PFAS degradation. Deploying radical-generating enzymes like laccase and horseradish peroxidase
presents a viable strategy for degrading  resilient carbon-fluorine bonds because these enzymes are
capable of generating high-energy radical’s adept at targeting and breaking down the robust C-F
linkages in PFAS. Augmentation through metal ions or mediators can further enhance their efficacy,
facilitating complex formation with PFAS or reducing the energy threshold for radical initiation.
Advances in computational design and directed evolution techniques offer pathways to refine these
enzymes, optimizing their selectivity, efficiency, and robustness. Furthermore, integration with
nanozymes, or metal-organic frameworks to engineer bionanocatalysts, holds promise for the
sequestration and decomposition of PFAS in environmental matrices, offering a multifaceted
approach to mitigating PFAS pollution. Computational strategies, including homology modeling and
molecular dynamics, facilitate the rational design of enzymes, optimizing their interaction with PFAS
for effective degradation. This multidisciplinary approach combines the precision of enzymatic
action with the power of computational design to address the persistent challenge of PFAS pollution.

6. Insights from In Silico Studies of PFAS

In silico studies play a crucial role in understanding the molecular interactions and mechanisms
of PFAS [164] by leveraging computational algorithms and molecular modeling techniques. These
methodologies provide a cost-effective and time-efficient approach to assess the binding potencies
and mechanisms of PFAS with biological targets [165], such as receptors and enzymes involved in
thyroid hormone transport and metabolism. By predicting binding probabilities and elucidating
structural requirements for receptor binding, in-silico studies enable the identification of potential
ligands or antagonists. This approach minimizes the need for invasive human sampling and
complements in vitro and in vivo research, thereby contributing to a comprehensive understanding of
PFAS toxicity and aiding in evidence-based policymaking [166].

In silico studies offer several significant advantages over other approaches in PFAS research.
They provide a cost-effective and time-efficient approach to assessing the potential binding potencies
with biological targets and mechanisms of PFAS toxicity, remediation, and degradation [164].
Moreover, in silico studies provide insights into the structural requirements of PFAS for binding to
specific receptors, enabling the identification of potential ligands or antagonists [40,164]. Recent in
silico research includes studies on PFAS toxicity, sequestration, degradation, and endocrine-
disrupting effects. For example, a 2023 study by Dharpure and colleagues focused on the
transthyretin (TTR) binding and thyroid-disrupting effects of PFAS. This analysis aimed to decode
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molecular complexity into how PFAS compounds interact with TTR, potentially leading to thyroid
hormone disruption. Understanding these molecular mechanisms is crucial for assessing the
endocrine-disrupting properties of PFAS and their implications for human health [167], such studies
utilize computational methods to analyze the binding potencies and molecular interactions of PFAS
with important biological targets, including the TTR and NHRs like PPARs and TRs [167,168].
However, current in silico studies have primarily focused on a limited number of receptors and PFAS
compounds (such as PFOA, PFOS, and PFBS), and have not fully explored the diversity and
complexity of the PFAS family and the thyroid hormone system highlighting a need for broader
studies [40,164]. A diverse array of computational strategies, including molecular docking, molecular
dynamics simulations, and Quantitative Structure-Activity Relationship (QSAR) modeling, are
employed in in silico PFAS research [168-170]. For instance, Zhang and coworkers (2021) used a
QSAR-ICE-SSD model to predict the no-effect concentrations (PNECs) of PFASs and assess their
ecological risks near electroplating factories [171]. Molecular docking examines the binding
interactions between PFAS compounds and target proteins, such as transthyretin (TTR) and nuclear
hormone receptors (NHRs) [172]. It predicts the binding orientation and affinity of PFAS compounds
towards specific targets. Subsequently, molecular dynamics simulations evaluate the stability and
behavior of PFAS-target complexes within a solvated environment. These simulations provide
insights into the temporal stability, persistence of interactions, and impact of mutations, structural
modifications, and environmental factors on PFAS interactions [124]. Detailed analyses of parameters
such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), and hydrogen
bond dynamics during these simulations have provided in-depth insights into the interactions within
PFAS-target complexes over time. Additionally, predictive tools like the mCSM server and the
MM/GBSA method explore the potential effects of genetic mutations on the binding efficiency and
stability of these complexes [170,173,174].

QSAR models predict the binding probabilities of a wide array of perfluoroalkyl compounds to
specific receptors, such as TTR and peroxisome proliferator-activated receptor gamma (PPARYy),
based on docking scores and structural features, including carbon chain length, molecular weight,
and polarity [167,168]. These models have been validated by predicting binding energies of
additional perfluoroalkyl compounds, closely aligning with experimental findings, highlighting their
potential as predictive tools for identifying endocrine-disrupting compounds and aiding in the
development of safer chemical alternatives with diminished affinity towards TTR and PPARy
[167,168]

An interesting challenge within in silico PFAS research is identifying PFAS molecules with the
highest binding affinities to receptors and enzymes implicated in thyroid hormone disruption
[175,176]. Elucidating the structure-activity relationships and the structural determinants of PFAS
binding potencies is crucial for assessing the potential health risks posed by specific PEAS molecules
[144,177]. Combining in silico and experimental data is vital for enhancing the precision and reliability
of predictions. This amalgamation offers a more holistic understanding of PFAS behavior and toxicity
[167,178,179]. Rowan-Carroll and colleagues (2021) combined high-throughput transcriptomic data
with the benchmark concentration modeling with the BMDExpress fit model to analyze
concentration-response relationships of PFAS compounds [180] leveraging the strengths of both
high-throughput data collection and sophisticated modeling to provide a more accurate and reliable
assessment of chemical toxicity.

Insight into the molecular interaction and dynamics between PFAS compounds and nuclear
hormone receptors, such as PPARs, TRs, and liver X receptors (LXRs), provides better
understandings into the disruptions caused by PFAS in lipid metabolism and their role in promoting
adipocyte differentiation, thereby contributing to obesity. In silico studies demonstrated that PFAS
carbon chain length and the nature of the functional group play a crucial role in determining their
affinity towards those receptors [164]. Molecules with longer carbon chains and higher degrees of
fluorination and branching exhibit increased receptor binding efficacy, which is a crucial aspect
considered in QSAR models. PFAS show receptor-specific binding affinities, with low affinity
towards PPARa and moderate probabilities towards PPARP and PPARy, delineating their
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toxicological profile [181]. However, transcriptomics studies and in silico analysis, suggested that
PPARa is the principal transcription factor regulated by PFOA, influencing not only lipid
metabolism-related genes but also all differentially expressed genes (DEGs) in the liver [181].

Advances in integrative systems biology have facilitated the construction of molecular networks
that illustrate the intricate interplay between PFAS exposure, signaling pathways, and gene
expression alterations. These computational frameworks have been instrumental in identifying
specific gene sets and regulatory modules implicated in PFAS-induced obesity, such as the HNF4«a
Pathway; in silico docking simulations have indicated that PFOA and PFOS can directly interact with
HNF4a, similar to endogenous fatty acids [182]. This interaction suggests that PFAS can mimic
natural ligands of HNF4a, potentially altering its activity PFOS and PFOA may suppress the HNF4«a
signaling pathway, which is crucial for liver function and lipid homeostasis. Similarly, comparative
in silico transcriptome analyses have shown that both legacy and alternative PFAS can modulate
molecular pathways associated with the sterol regulatory element binding protein (SREBP) signaling
[183]. These changes can affect lipid metabolism and contribute to hepatic dysfunction. Additionally,
high-throughput transcriptomics is used to derive toxicity points of departure (tPODs), cross-species
responses, PFAS body burdens, and internal concentrations at multiple time points. Studies such as
Addicks et al. (2023), Beccacece et al. (2023), Rericha et al. (n.d.), and Rudzanova et al. (2024) serve as
valuable experimental input for model training datasets [184-187]. These datasets are curated in
databases of pathways and reactions in human biology, such as REACTOME, and are used for Gene
Set Enrichment Analysis (GSEA), gene networks analysis, and other in silico applications using
resources like the STRING database and the National Library of Medicine's post-Toxicology Data
Network (TOXNET) resources.

Machine learning algorithms have paved the way for the development of predictive models for
assessing PFAS toxicity and obesogenic potential. Studies by Feinstein (2021) and Lai (2022) have
employed deep transfer learning and molecular screening, respectively, to predict the toxicological
profiles of PFAS compounds. Feinstein's comparative analysis of various machine learning
methodologies highlighted the superior performance of the Deep Neural Network (DNN) model,
which outperformed other algorithms such as Random Forest, Support Vector Machine, and Graph
Convolutional Network in terms of prediction accuracy and generalizability [188]. The integration of
transfer learning techniques into the DNN model significantly enhanced its predictive capabilities by
leveraging a vast array of toxicity data from the broader organic chemical spectrum [188]. An
uncertainty-informed approach employing the SelectiveNet architecture further refined the model's
output by filtering uncertain predictions and providing confidence levels for each prediction.
Concurrently, the Random Forest algorithm demonstrated notable efficacy in estimating the
toxicokinetic half-lives of PFAS compounds across various species, drawing on a combination of
physiological and structural characteristics [188]. Similarly, Lai's study, utilizing molecular
descriptors and machine learning, screened and estimated the toxicity of over 260,000 PFAS
molecules [189]. Similarly, an ML study showecasing the impressive Random Forest algorithm's
ability to predict the toxicokinetic half-lives (t2) of PFAS across multiple species also reported an
accuracy of 86.1% [190]. The model, built on a dataset comprising 119 chemical and physiological
descriptors, effectively categorized the t¥2 of 11 PFAS compounds in humans, monkeys, rats, mice,
and dogs into distinct temporal categories, demonstrating the model's broad applicability and high
predictive accuracy [190]. Using Machine learning models, Singam and colleagues (2020) also
investigated the interactions between over 5,000 PFAS compounds and human androgen receptors
(HAR), identifying 23 PFAS that exhibited strong interactions with HAR [127,191]. The study
pinpointed three PFASalternatives-9-(nonafluorobutyl)-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-
flpyrido[3,2,1-ijjlquinolin-11-one (NON), 2-(heptafluoropropyl)-3-phenylquinoxaline (HEP), and
2,2,3,3,4,4,5,5,5-nonafluoro-N-(4-nitrophenyl)pentanamide (NNN) as having notable impacts on
HAR at environmentally relevant concentrations [127,191]. These PFAS were observed to inhibit
HAR transactivation through competitive binding, leading to the upregulation of HAR and a
consequent decrease in the expression of androgen-regulated genes such as PSA and FKBP5,
indicative of antiandrogenic effects. The outcomes of these PFAS exposure experiments aligned with
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those observed for hydroxyflutamide, a recognized AR inhibitor, underscoring the antiandrogenic
potential of these compounds. Remarkably, the alternative PFAS demonstrated more pronounced
androgenic effects compared to their legacy counterparts, affirming the efficacy of the in silico model
in forecasting the endocrine-disrupting impacts of these chemicals [127]. These collective efforts
underscore the potential of machine learning in facilitating rapid and cost-effective hazard
assessments of PFAS compounds, enabling the identification of structure-activity relationships and
the design of new PFAS molecules with reduced obesogenic potential.

While in silico studies offer valuable insights, they also face challenges. One challenge is the need
for accurate and validated computational models that can reliably predict the binding affinities and
interactions of PFAS with biological targets [192]. The quality of QSAR models and the availability
of experimentally verified data are critical in ensuring the accuracy of predictions [192]..
Additionally, the vast structural diversity of PFAS compounds requires comprehensive libraries and
databases for effective screening and analysis [192]. Interpreting the dynamic behavior of PFAS-
protein complexes from molecular dynamics simulations requires substantial computational
resources and expertise [192]. Addressing these challenges will improve the reliability and
applicability of in silico studies in PFAS research. As such, in silico studies of PFAS are emerging as
valuable tools to understand the molecular interactions, binding potencies, and mechanisms of PFAS
with important biological targets. They play a significant role in assessing the potential health risks
associated with PFAS exposure, including their disruption of the thyroid hormone system. By
combining computational and experimental data, in silico studies contribute to evidence-based
policymaking and aid in identifying potential ligands or antagonists to mitigate adverse effects.
Despite this, in silico studies face major limitations, such as the availability and quality of data, the
validity and accuracy of models, and the extrapolation of human health outcomes. Therefore, in silico
studies should be complemented by in vive and in vitro experiments to better understand the impacts
of PFAS exposure. Currently, ongoing research and advancements in computational methods are
expected to enhance the accuracy and applicability of in silico studies in PFAS research.

7. Conclusions

This review underscores the pervasive nature and multifaceted health implications of per- and
poly-fluoroalkyl substances (PFAS), emphasizing their potential role as obesogens. Due to their
persistent and bio-accumulative properties, PFAS present significant challenges for both
environmental and public health. This comprehensive evaluation highlights the molecular
mechanisms through which PFAS may contribute to obesity, focusing on their interactions with lipid
metabolism, endocrine disruption, and regulatory pathways such as peroxisome proliferator-
activated receptors (PPARs) and fatty acid binding proteins (FABPs).

Epidemiological studies suggest a correlation between PFAS exposure and an increased risk of
obesity, particularly among vulnerable populations such as children and expectant mothers. These
studies also illustrate the complexities in establishing causal relationships, given the heterogeneity of
PFAS compounds and numerous confounding factors in human health research. In vitro and in vivo
studies provide further insights into the biochemical pathways influenced by PFAS, reinforcing their
potential to disrupt metabolic homeostasis and contribute to conditions like dyslipidemia and
nonalcoholic fatty liver disease.

In silico models offer valuable insights into the binding affinities and interaction mechanisms of
PFAS with biological targets, complementing traditional experimental methods. Although these
computational tools enhance our understanding of PFAS toxicity and support the development of
safer chemical alternatives, the limitations of in silico studies, including the need for validated models
and comprehensive data sets, highlight the necessity of integrating these findings with empirical
research.

The evolving regulatory frameworks for PFAS reflect a growing recognition of their health risks.
The global variability in PEAS regulation underscores the need for a unified strategy to manage these
contaminants effectively. Regulatory measures, combined with innovative remediation technologies
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and policy-driven approaches, are crucial for mitigating PFAS pollution and reducing its obesogenic
impact.

Future research should prioritize longitudinal studies to better understand the long-term health
effects of PFAS exposure. Developing advanced methodologies for detecting and remediating PFAS
in the environment is also essential. Addressing the multifaceted challenges posed by PFAS will help
safeguard public health and foster more effective regulatory and remediation strategies to mitigate
their impact.
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