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Abstract: Drug repurposing, identifying FDA-approved drugs for new indications, reduces the time and 

money required for a drug to reach the clinic and capitalizes on the increasing number of publicly available 

online data. Attrition rates for repurposing studies are lower than compared to drug discovery. Still, 

repurposing candidates often fail downstream despite their biological relevance, attributing to a lack of safety 

and/or efficacy. Current approaches may be limited in separating biological signals from technical noise and 

incorporating relevant clinical information to evaluate promising candidates in preclinical analyses. Many drug 

repurposing approaches have been developed; however, a gold standard has yet to be determined. In addition, 

repurposing analyses often yield many potential candidates that require further prioritization to ensure clinical 

viability. Thus, prioritization of the optimal candidates by incorporating more information from available 

resources is critical. Here, we reviewed prioritization criteria and developed a workflow implementing 1) drug-

specific, 2) target-specific, and 3) disease-specific considerations to address challenges in current drug 

repurposing efforts. Our workflow streamlines drug candidate prioritization using a stepwise evaluation 

process and vetted resources for each consideration to guide researchers in better predicting the most robust 

candidates and facilitating the most promising ones for clinical adoption.  

Keywords: drug; therapeutic; repurposing; drug target; prioritization; considerations; workflow 

 

Introduction 

Drug repurposing has multiple advantages over drug discovery, including saving time (~10+ 

years), cutting costs ($1 billion+) (Chong and Sullivan 2007; Scannell et al. 2012; Nosengo 2016), and 

increasing patient safety by including drugs that have already completed the extensive FDA-

approval safety requirements. Additionally, this approach addresses the unmet need to treat 

conditions without currently approved and targeted therapeutics by leveraging existing therapies for 

new applications, particularly useful for rare diseases without financial support for novel drug 

discovery (Roessler et al. 2021). Here, we refer to drug repurposing as determining potential novel 

therapeutic uses for previously FDA-approved compounds and medications. While there are 

impediments to overcome with respect to drug repurposing for patented drugs (e.g., market 

exclusivity), pharmaceutical companies may need additional incentives to repurpose existing drugs 

(Breckenridge and Jacob 2019; Begley et al. 2021). While some previous studies may also describe this 

process as repositioning and/or prioritizing drugs, for clarity, we will consistently use the term 

“repurposing” to refer to identifying already approved drugs for new indications and the term 

“prioritization” to describe a major step in this repurposing process where investigators select the 

most promising drugs for follow-up experiments. Specifically, here, prioritization refers to the step 

after candidate drugs or targets are identified by any one of various drug repurposing techniques, 

where the list of potential candidates is further refined to identify those with the greatest potential 

for clinical translation.  
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Several helpful reviews have already underscored the utility of drug repurposing (Oprea et al. 

2011; Pushpakom et al. 2019; Parvathaneni et al. 2019), exemplifying how to apply drug repurposing 

methods (Jin and Wong 2014) and describing current techniques for repurposing using 

computational and transcriptomic data (Park 2019; Kwon et al. 2019). However, high attrition rates 

during clinical trials are a known issue in drug development for multiple reasons, including negative 

drug safety profiles, lack of efficacy, and poor pharmacokinetic profiles (e.g., lipophilicity) (Waring 

et al. 2015). However, due to the growth and popularity of drug repurposing – the number of 

publications in PubMed for "drug repurposing" increased from 0 in 2003 to 237 in 2023 (Pubmed, 

accessed October 2024) and 30-35% of new FDA approvals are because a compound was repurposed 

(Krishnamurthy et al. 2022) – there is a need for a review to optimize target prioritization using 

considerations that address current drug attrition rates and common pitfalls (Pushpakom et al. 2019; 

Palve et al. 2021), so that is our goal here.  

There are multiple advantages to enhancing drug target prioritization in the context of drug 

repurposing. Here, “targets” refer to the proteins or molecules (e.g., genes/nucleic acids, proteins, 

metabolites) a drug acts on for the intended therapeutic effect(s). Depending on how the drug was 

discovered or designed, it could interact with a specific molecular target (i.e., the intended drug 

target) or have unintended effects (i.e., off-targets) throughout the body that can serve as valuable 

mechanisms to treat different conditions or to understand adverse events. For example, statins are 

known to target and inhibit one specific protein, HMG-CoA reductase (Sirtori 2014). In turn, statins 

reduce the production of cholesterol, leading to downstream changes in the expression of dozens to 

hundreds of genes and proteins to treat high blood pressure and other cardiovascular conditions 

(Sirtori 2014). Notably, this class of drugs has also been repurposed to treat cancer through many 

potential downstream mechanisms of action (Jiang et al. 2021). Another example is metformin, the 

first-line drug for treating diabetes mellitus (Foretz et al. 2019, 2023), which has multiple known 

targets that it either activates and/or inhibits (Zhou et al. 2022), affecting many downstream genes, 

proteins, and pathways. As nothing in biology acts in isolation, some of these downstream effects 

could potentially alleviate the molecular consequences of other disease conditions (e.g., metformin is 

in clinical trials to treat Fanconi anemia in children (Pollard et al. 2022)), making metformin a 

promising drug candidate for many repurposing applications. Therefore, it is pivotal to differentiate 

between these known, unintended, and downstream targets (i.e., target modalities). Some drug 

discovery philosophies aim to avoid drugs with multiple targets or off-target effects 

(polypharmacology) because they may increase the potential for unintended adverse events (Palve et 

al. 2021). However, drugs with more off-target effects may be leveraged for these same properties, as 

they modify different pathways, making them helpful for repurposing in conditions like cancer 

where it may be critical to target many pathways (Palve et al. 2021). For example, midostaurin was 

designed as a PKC inhibitor and FDA-approved for acute myeloid leukemia and systemic 

mastocytosis, but it has also been shown to be effective in non-small cell lung cancer cells due to its 

off-target effects on TBK1, PDPK1, and AURKA (Ctortecka et al. 2018). Some pathogen-targeting 

drugs also affect human intracellular gene products and can treat non-pathogenic conditions (Correia 

et al. 2021; Behroozi and Dehghanian 2024), like the antimalarial drug hydroxychloroquine, which is 

commonly used for treating rheumatoid arthritis and systemic lupus erythematosus (Al-Bari 2015). 

While many investigators advance repurposing efforts for infectious diseases, this review will focus 

exclusively on non-pathogenic conditions. 

Serendipitous findings (i.e., findings by chance) are responsible for many instances of drug 

repurposing, such as sildenafil (Viagra), a drug designed to treat cardiovascular disease, being 

repurposed to treat erectile dysfunction after its observed erectile side effects (Boolell et al. 1996). 

Additionally, the diabetes drug metformin has also been repurposed for cancer (Evans et al. 2005) 

and is now still being repurposed for new conditions through its inclusion in FDA-approved 

compound libraries. More recent approaches have leveraged high-throughput cell line drug screens 

with thousands of FDA-approved compounds to measure a specific impact (e.g., cell viability). 

Though these screening methods have historically still produced candidates with high failure rates 

in late-stage clinical trials (Astashkina et al. 2012), they also allowed programs such as PRISM to 
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discover anticancer properties of non-oncology drugs (Corsello et al. 2020). The advent of omics (e.g., 

microarray, RNA-Seq, ATAC-Seq, mass spectrometry) has further propelled generating rich data 

facilitating more agnostic explorations of drug repurposing candidates because potential 

mechanisms do not need to be identified a priori (Park 2019; Kwon et al. 2019). 

Further, using publicly available data to perform comprehensive analyses allows for the broader 

application of drug repurposing for diseases without an available therapy or needing improved 

therapies. In particular, because omics data captures the complexity of biological processes beyond 

traditional drug screening (e.g., cell death assays alone) and can capture drug perturbations in several 

metabolic and signaling pathways beyond hypothesis-driven targeted experimental designs. 

However, some notable resources exist for using omics data for drug repurposing, such as the Library 

of Integrated Network-Based Cellular Signatures (LINCS), a large-scale resource designed to 

understand how compounds can change gene expression across cell lines (Wang et al. 2016). Other 

newer gene-expression-based drug repurposing approaches frequently use hundreds to thousands 

of genes to develop drug and disease "signatures," which is beneficial because it presents a more 

holistic picture of a cellular phenotype (Lamb et al. 2006; Zhang and Gant 2009; Setoain et al. 2015; 

Jia et al. 2016; Chan et al. 2019; Duan et al. 2020; He et al. 2023; Wilk et al. 2023; Fisher et al. 2024b). 

These signatures, consisting of many representative genes for a condition, can help inform putative 

mechanisms of why a repurposed drug candidate may be effective. However, interpreting drug 

repurposing results from these signatures can be difficult. Methods that group similar genes, such as 

pathway analysis, may be helpful, but examining which genes are most weighted (i.e., which 

differentially expressed genes are most significant) in these signatures can also be beneficial. Still, 

systematically assessing the function and impact of these individual genes as inferred therapeutic 

targets is challenging for multiple reasons, including 1) these genes could be indirect targets (i.e., 

secondary, tertiary), 2) manual curation and interpretation of dozens to thousands of genes 

contributing to these signatures may be impractical due to time and other resource constraints, 3) a 

therapeutic effect could be the result of genes acting together in concert (e.g., a drug alters multiple 

targets/pathways or polypharmacology), and 4) signature gene lists vary in size depending on the 

dataset, condition, and computational parameters which may make manual assessment more 

challenging (Chan et al. 2019).  

In this review, we survey and then recommend considering 1) drug-specific, 2) drug 

target/effector-specific, and 3) disease-specific (Figure 1) features for prioritizing drug repurposing 

candidates and propose a workflow incorporating these principles. Currently, there is no standard 

workflow for assessing drugs and their targets after investigators have identified them through 

various drug repurposing identification methods. However, having a comprehensive workflow for 

preclinical and clinical trial prioritization is essential to minimize attrition rates, expedite the clinical 

adoption of novel therapies, and compare findings across contexts. Therefore, we propose a workflow 

the community can build on that incorporates all of these considerations for researchers to improve 

drug repurposing efforts and outcomes (Discussion). Finally, we will discuss why this workflow 

matters and how this prioritization process parallels clinical considerations that medical prescribers 

evaluate. We will also discuss limitations and future directions, including with respect to rapidly 

developing technologies (e.g., machine learning for drug repurposing). 
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Figure 1. Overview of drug-specific, disease-specific, and target-specific drug considerations. 

This figure overviews the three categories of considerations for prioritizing candidate drugs and 

their targets when drug repurposing. The background color indicates whether considerations belong 

to drug-, target-, or disease-specific categories. 

Drug-Specific Considerations  

When selecting drug targets for clinical reuse, it is helpful to remember considerations used in 

modern drug discovery. Many excellent reviews and tools have outlined some of these processes and 

considerations for identifying novel drug targets and candidate molecules (Drews 2000; Hughes et 

al. 2011; Chen et al. 2019; Emmerich et al. 2021). For example, an earlier review compiled pertinent 

considerations into the “Guidelines On Target Assessment for Innovative Therapeutics (GOT-IT)” 

recommendations (Emmerich et al. 2021). The GOT-IT recommendations are grouped into five 

assessment blocks that cover target-disease linkage, safety aspects, microbial/non-human targets, 

strategic issues, and technical feasibility. Considering these considerations when re-evaluating drugs 

for new disorders is critical, as various aspects of treatment (e.g., therapeutic concentration, duration 

of treatment, and target tissue specificity) may vastly differ between diseases/disorders. Here, we 

review the current state of the field and further build upon this framework to include information 

available once a drug has gone to market, such as drug interactions and side effects, and adapt drug 

discovery principles to drug repurposing candidates identified through omics approaches in our 

workflow of considerations (Figure 2). 
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Figure 2. Drug-specific considerations workflow schematic. 

A schematic overflow for prioritizing and de-prioritizing drugs and their targets for each drug-

specific consideration. Please note: We have curated this workflow for simplicity, but investigators 

should refer to prior research and domain-specific knowledge to identify the nuances of their specific 

case. Abbreviations: PK = pharmacokinetics, DI = drug-drug interactions. 

Evaluating Drug Safety 

Drug safety is potentially the most critical consideration when prioritizing candidates, though 

investigations can evaluate it from various perspectives. Information concerning a drug's intended 

clinical use, class, pharmacokinetics (including bioavailability), documented adverse events, and 

mechanism of action factor into a drug’s safety profile. Prior studies have also reported successful 

predictions of adverse effects and complications using gene expression data (Wang et al. 2016) and 

from manual drug label curation and a natural language processing model (OnSIDES (Tanaka et al. 

2024)). An additional consideration concerning safety profiles for drug repurposing candidates is to 

avoid negative drug-drug interactions, discussed below in “Patient variability.” 

A significant benefit of repurposing known drugs and drug targets is that FDA-approved (or 

other regulatory agency-approved) drugs have more information than novel compounds (i.e., they 

have preclinical and clinical trial documentation), and ongoing market presence also enables 

continued safety data collection (Krishnamurthy et al. 2022)). Using FDA-approved drugs allows 
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investigators to access publicly available data regarding a drug’s pharmacology, efficacy, and safety 

by leveraging previous data from successful and failed clinical trials, even if previous works have not 

tested that drug in a particular disease of interest. Despite this data accessibility, prioritizing 

candidates still has several challenges (Pushpakom et al. 2019), including collecting and interpreting 

the collected data across sources. For prioritizing drug-specific safety, much of the FDA-approved 

drug safety profile information comes from a combination of phase II-IV clinical trial data (each trial 

includes dozens to thousands of human subjects; available on ClinicalTrials.gov, and from reports of 

adverse events in the public (available in FDA Adverse Event Reporting System (FAERS)). 

Additionally, some groupings of adverse events of drugs are more frequent with certain classes of 

therapeutic indications, presenting an opportunity for drug repurposing by examining which 

adverse events could be of benefit for other therapeutic indications (Zhang et al. 2013; Palve et al. 

2021) or avoiding side effects (Morris et al. 2024). 

Candidate Drug Accessibility 

Practical access to a drug refers to both if it is readily available (i.e., over-the-counter, 

prescription, if it has controlled access) and its financial cost, with more accessible drugs often being 

favored for treatment (Gronde et al. 2017). Accessibility for drugs ranges from over-the-counter 

(unregulated usage) to prescription-based (approved by FDA, EMA, etc.) to controlled substances 

(schedules I-V) to non-approved. Likewise, if two drugs are comparable (e.g., in their predicted 

efficacy for a particular condition and safety profile), it is more prudent to prioritize the less expensive 

drug for downstream preclinical and clinical trials. Additionally, candidate drugs that have a higher 

likelihood of substance use disorder (e.g., schedule I and II controlled substances) may be de-

prioritized compared to candidates that are less likely to be misused recreationally. However, some 

scheduled drugs have been successfully repurposed, such as ketamine (originally an anesthetic) 

being approved for major depressive disorder (MDD) in 2019 (Shin and Kim 2020). While databases 

must be frequently updated (e.g., when drugs are withdrawn from the market), resources such as 

Epocrates, a paid clinician-focused software started in 1998 that is available through most academic 

research institutions (Bhanot and Sharma 2017), help guide prioritizations concerning access since 

they can provide information about drug cost and availability. Governing bodies can also regulate 

the price of specific medications, increasing accessibility by easing patients' financial burden (Gronde 

et al. 2017). For example, insulin, a drug essential for diabetes mellitus that had steeply rising costs 

(Tseng et al. 2020), had out-of-pocket costs capped at $35 USD for seniors on Medicare in the United 

States in 2023, helping millions of Americans (The White House 2023). 

Determining Drug Targets 

Determining and evaluating drug targets for a given drug is an intricate process, as drug targets 

are not always known, and additional targets can also be found after a drug goes to market. 

Identifying the existence and multitude of targets can be complex, as some drugs have only one 

known target (e.g., statins), and other drugs have multiple targets (e.g., NSAIDs) (Zhou et al. 2022). 

Further, 18% of FDA-approved drugs are without a well-documented mechanism of action (e.g., 

acetaminophen/paracetamol, metformin) for a given indication, and 7% have no known primary 

target (e.g., lithium) (Gregori-Puigjané et al. 2012), though with further research scientists may be 

able to determine more therapeutic mechanisms.  

 Many experimental approaches identify drug targets during the drug development stage, 

including direct biochemical methods (e.g., affinity purification, affinity chromatography, metabolic 

labeling, chemical labeling), genetic interactions, or computational inference (Schenone et al. 2013). 

Investigators can query this collected information (i.e., prior drug development research, clinical trial 

data, prior databases) in various databases and literature searches to determine if a drug has any 

known targets with databases such as DrugBank (Wishart et al. 2018), PHAROS (Sheils et al. 2021), 

SmartGraph (Zahoránszky-Kőhalmi et al. 2020), and The Therapeutic Target Database (Zhou et al. 

2022). For example, PHAROS is an excellent web interface that facilitates browsing the Target Central 

Resource Database (Sheils et al. 2021). It contains multitudes of information about known and 
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predicted targets for FDA-approved drugs and other relevant details, such as ligand activity (e.g., 

IC50, Ki, EC50, and Kd), for each target, if available (Sheils et al. 2021). Other resources, such as the 

Broad Institute’s Drug Repurposing Hub (Corsello et al. 2017), also provide a database of thousands 

of drugs with information, including their statuses in clinical trials, mechanisms of action, and known 

targets. Literature searches on PubMed or Google Scholar can also identify targets for more obscure 

or novel medicines that large databases may not have included or find newly identified targets after 

a drug has had an extended market presence. Finally, some drugs do not have known targets or 

mechanisms of action. If there are no known drug targets for a drug of interest, one can skip direct 

target identification and examine the biological properties (i.e., protein type, pathways involved) of 

genes most perturbed in omics experiments following drug treatment, such as RNA-seq (Kwon et al. 

2019). Studying the known properties of some of these highly differentially expressed effectors can 

give insights into how the drug acts within the body or if any drug targets can be inferred.  

Target-Specific Considerations 

The specific target that a repurposing candidate binds to achieve a therapeutic response can be 

characterized by two main factors: target classification and target modality. Target classification 

refers to the type of biological molecule a drug candidate binds (e.g., nucleic acid, protein, etc.). In 

contrast, target modality defines the mode of action a target elicits for a therapeutic response (e.g., 

direct target, off-target, or downstream effector). Each of these distinctions influences the drug’s 

metabolic, safety, and efficacy profiles (Palve et al. 2021; Behroozi and Dehghanian 2024; Debisschop 

et al. 2024), which can lead to the deprioritization of candidates, especially in instances where 

combination therapy may be required. For example, a candidate that produces its therapeutic effect 

via an off-target mechanism may have reduced potency compared to its direct one, requiring a dosage 

beyond its FDA-approved range (Palve et al. 2021; Xia et al. 2024). In such cases, the candidate might 

require pairing with another drug targeting the same disease mechanism to achieve a synergistic 

effect via combination therapy (Jia et al. 2009; Ayoub 2021; Flanary et al. 2023; Xia et al. 2024; 

Kandasamy et al. 2024), which may lead to deprioritization after considering other candidates and 

available resources. Thus, we recommend investigators analyze these target-specific characteristics, 

as outlined in the following sections, to aid in further categorization, enabling efficient prioritization 

of candidates that align optimally with their study objectives (Figure 3).  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2024 doi:10.20944/preprints202411.1592.v1

https://paperpile.com/c/uLmxAa/swxP
https://paperpile.com/c/uLmxAa/WS4h
https://paperpile.com/c/uLmxAa/ZCR7
https://paperpile.com/c/uLmxAa/ZCR7
https://paperpile.com/c/uLmxAa/7r6y+rAcc+lv16
https://paperpile.com/c/uLmxAa/7r6y+rAcc+lv16
https://paperpile.com/c/uLmxAa/NS8I+lv16
https://paperpile.com/c/uLmxAa/ttm7+ytI9+NS8I+ktvO+mmVz
https://paperpile.com/c/uLmxAa/ttm7+ytI9+NS8I+ktvO+mmVz
https://doi.org/10.20944/preprints202411.1592.v1


 8 

 

 

Figure 3. Target-specific considerations workflow schematic. 

A schematic overflow for prioritizing and de-prioritizing drugs and their targets for each target-

specific consideration. Please note: We have curated this workflow for simplicity, but investigators 

should refer to prior research and domain-specific knowledge to identify the nuances of their specific 

case. 

Target Classification 

This review primarily classifies drug targets into two categories: nucleic acids and proteins. 

While drugs target other classes, such as metabolites or metals, drug repurposing studies mainly 

include medications that target nucleic acids or proteins (Oprea et al. 2011; Pushpakom et al. 2019; 

Pantziarka et al. 2021; Pascual-Gilabert et al. 2023). Further, nucleic acid- and protein-targeting drugs 

report distinct characteristics that affect drug activity (i.e., pharmacokinetics and 

pharmacodynamics) and response (i.e., safety and efficacy) (Buddolla and Kim 2018; Tan et al. 2020; 

Palve et al. 2021; Perez et al. 2021; Wang et al. 2022), which can affect the candidate prioritization 

process as shown in Figure 3.  

Candidates targeting nucleic acids (e.g., antisense oligonucleotides or ASOs) are known to 

directly modulate gene expression, mRNA splicing, and transcriptional and epigenetic regulation to 

produce a therapeutic response (Tan et al. 2020; Kulkarni et al. 2021). The benefits of nucleic acid-

targeting drugs stem primarily from their capacity to precisely bind causal targets of disease 

pathogenesis, even targets that were once considered “undruggable” (Buddolla and Kim 2018; Tan et 

al. 2020). For instance, ASOs use oligonucleotides to directly bind RNA to knock down, upregulate, 
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or modify the expression of pathogenic RNAs. In various cancers, microRNAs (miRNAs), short 

regulatory RNAs, are reported to be dysregulated, and ASOs provide the opportunity to target them 

(e.g., Cobomarsen inhibits miR-155, found to be elevated in leukemias and lymphomas) and other 

targets that were previously identified as “undruggable” (Hammond 2015; Bartolucci et al. 2022). 

This is an exciting avenue in therapeutics, but ASOs’ target precision can make it difficult to identify 

uses outside of its original indication. The potential repurposed indication must have similar 

pathways involved in pathogenesis as its original indication (e.g., repurposing an ASO initially 

indicated for T-cell lymphoma for B cell-lymphoma) (Bartolucci et al. 2022; Lauffer et al. 2024). 

Further, several challenges remain when using nucleic acid-targeting drugs, including poor 

bioavailability, lack of in vivo stability, unpredictable off-targets, and high immunogenicity (Buddolla 

and Kim 2018; Ingle and Fang 2023). These drugs may not exhibit beneficial drug response profiles 

(i.e., high efficacy, low safety concerns) compared to current FDA-approved protein-targeted drugs 

(Meng and Lu 2017; Buddolla and Kim 2018; Tan et al. 2020; Andreana et al. 2021). In addition, given 

their recent development, ongoing studies are still exploring their application and addressing 

concerns regarding the delivery system to prevent early degradation, unintended immune activation, 

and toxic off-target effects (Jackson and Linsley 2010; Buddolla and Kim 2018).  

Nucleic acid-targeting drugs are more commonly investigated in drug discovery projects than 

in repurposing studies. As such, there are limited resources to guide researchers in evaluating this 

class of medications for repurposing studies. However, the precision of nucleic acid-targeting drugs 

still holds promise for future repurposing efforts, particularly for conditions still needing disease-

modifying therapy (i.e., monogenic, cancerous, and autoimmune conditions). Current repurposing 

studies for nucleic acid-targeting drugs are primarily in the exploratory phase, especially for ASOs, 

and the pre-clinical phase for nucleic acid-targeting antimicrobials (Andreana et al. 2021; McDowall 

et al. 2024; Evans et al. 2024). For example, furamidine, a diamine compound indicated for parasitic 

infections (i.e., an antimicrobial), was evaluated as a repurposing candidate for myotonic dystrophy 

type 1 in in vivo (i.e., mouse models and patient-derived myotubes) and in vitro analyses, rescuing 

the mis-splicing events event pivotal for disease pathogenesis (Jenquin et al. 2018, 2019; Andreana et 

al. 2021, 2022). Furamidine’s ability to bind the CTG•CAG repeat expansion, the leading cause of 

myotonic dystrophy type 1, with favorable safety profiles compared to other repurposing candidates, 

such as pentamidine (i.e., the parent drug of furamidine), positions it as a promising candidate for 

treating this rare monogenetic disease (Jenquin et al. 2018, 2019; Andreana et al. 2021, 2022; Hicks et 

al. 2024). Though this example implies a favorable outcome, the nuances associated with this target 

classification (i.e., nucleic acid-targeting drugs) implicate several challenges, as outlined here. Hence, 

we recommend deprioritizing nucleic acid-targeting drugs unless all other candidates are known to 

be less safe and efficacious after evaluating them using our proposed framework (Figures 2–4). 
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Figure 4. Disease-specific considerations workflow schematic. 

Protein-targeting drugs typically bind and modulate the activity of proteins involved in the 

biological pathways associated with their original indications (Bakheet and Doig 2009). However, 

drugs may perturb more pathways outside of that indication. While most drug discoveries are made 

to target a specific protein, the target protein or biological pathway in which it acts may not 

exclusively cause the therapeutic effect (i.e., off-targets and downstream effectors may also 

contribute) (Feng et al. 2017). Each target protein potentially perturbs relevant biological pathways, 

contributing to the drug’s therapeutic response (Yu et al. 2020; Palve et al. 2021). Given their long 

history in therapeutic management, protein-targeted drugs are often preferred in repurposing 

studies over nucleic acid-targeted ones (Oprea et al. 2011; Pushpakom et al. 2019; Pantziarka et al. 
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2021; Pascual-Gilabert et al. 2023). Thus, there are several resources to guide investigators in 

identifying and prioritizing candidates with this target classification (i.e., protein-targeting drugs) 

(Table 1). 

Table 1. Categories of considerations when repurposing FDA-approved drugs. 

Specificity Type Name of consideration Resources 

Drug 

 

Accessibility ClinCalc (https://clincalc.com/) 

Epocrates (https://www.epocrates.com/)* 

Medi-Span 

(https://www.wolterskluwer.com/en/solutions/me

di-span)* 

ReDO (Pantziarka et al. 2018) 

Drug 

 

Pharmacokinetics 

 

Medi-Span 

(https://www.wolterskluwer.com/en/solutions/me

di-span)* 

PHAROS (Sheils et al. 2021)  

DrugBank (Wishart et al. 2018) 

ChEMBL (Gaulton et al. 2017) 

PharmGKB (Whirl-Carrillo et al. 2021) 

PK-DB (Grzegorzewski et al. 2021) 

Drug Pharmacodynamics Medi-Span 

(https://www.wolterskluwer.com/en/solutions/me

di-span)* 

PHAROS (Sheils et al. 2021)  

DrugBank (Wishart et al. 2018) 

ChEMBL (Gaulton et al. 2017) 

DrugMechDB (Gonzalez-Cavazos et al. 2023) 

Drug; disease Drug interactions;  

patient variability - 

polypharmacy 

Medi-Span 

(https://www.wolterskluwer.com/en/solutions/me

di-span)* 

Epocrates (https://www.epocrates.com/)* 

UpToDate 

(https://www.uptodate.com/contents/search)* 

DrugBank (Wishart et al. 2018) 

Drug 

 

Adverse effects ClinicalTrials.gov (https://www.clinicaltrials.gov/) 

Medi-Span 

(https://www.wolterskluwer.com/en/solutions/me

di-span)* 

FAERS (https://www.fda.gov/drugs/fdas-adverse-

event-reporting-system-faers/fda-adverse-event-

reporting-system-faers-public-dashboard) 

DrugBank (Wishart et al. 2018) 

Drug Number of targets DrugBank (Wishart et al. 2018) 
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 PHAROS (Sheils et al. 2021) SmartGraph 

(Zahoránszky-Kőhalmi et al. 2020) 

Therapeutic Target Database (Zhou et al. 2022) 

Drug Repurposing Hub (Corsello et al. 2017) 

Drug; target Ligand activity  PHAROS (Sheils et al. 2021) 

Target 

 

Target classification 

 

PHAROS (Sheils et al. 2021) 

Therapeutic Target Database (Zhou et al. 2022) 

Target; disease 

 

Context relevance - protein 

family  

Uniprot (UniProt Consortium 2023) 

Interpro (Paysan-Lafosse et al. 2023) 

The Protein Data Bank (Berman et al. 2000) 

Target; disease 

 

Context relevance - biological 

pathways 

Pathway Commons (Rodchenkov et al. 2020) 

Gene Ontologies (Harris et al. 2004) 

Target; disease 

 

Context relevance - genome-

wide associations 

GTEx (GTEx Consortium 2013)  

GWAS Catalog (Sollis et al. 2023) 

Target; disease Context relevance - other MedlinePlus (https://medlineplus.gov) 

Gene Ontologies (Harris et al. 2004) 

ReDO (Pantziarka et al. 2018) 

Target; disease 

 

Context relevance and 

disease modifiable effect - 

gene expression  

GTEx (GTEx Consortium 2013)  

Human Protein Atlas (Uhlén et al. 2015) 

Allen Brain Map (Yao et al. 2023) 

TCGA (Cancer Genome Atlas Research Network et 

al. 2013) 

CellxGene (CZI Single-Cell Biology Program et al. 

2023) 

Target; disease Context relevance - protein 

expression properties 

Human Protein Atlas (Uhlén et al. 2015) 

Target; disease 

 

Context relevance - 

alternatively spliced 

transcripts/isoforms 

Ensembl (Harrison et al. 2024) 

GENCODE (Frankish et al. 2019) 

Target; disease Disease modifiable effect - 

clinical information 

MedlinePlus (https://medlineplus.gov) 

ClinicalTrials.gov (https://www.clinicaltrials.gov/)  

Retrospective clinical data 

Disease Disease etiology OMIM (McKusick 2007) 

Retrospective clinical data 

MedlinePlus (https://medlineplus.gov) 

Disease 

 

Temporal onset MedlinePlus (https://medlineplus.gov) 

ClinicalTrials.gov (https://www.clinicaltrials.gov/)  

Retrospective clinical data 

Disease 

 

Clinical specificity - 

phenotypic properties 

Retrospective clinical data 

MedlinePlus (https://medlineplus.gov) 

Disease 

 

Clinical specificity - clinical 

variants  

Varsome (Kopanos et al. 2019) 

GnomAD (Karczewski et al. 2020) 
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ClinVar (Landrum et al. 2014) 

PharmVar (Gaedigk et al. 2021) 

PharmGKB (Whirl-Carrillo et al. 2021) 

PharmCAT (Sangkuhl et al. 2020) 

Disease Patient variability - patient 

characteristics 

ClinicalTrials.gov (https://www.clinicaltrials.gov/) 

Electronic health records 

MedlinePlus (https://medlineplus.gov) 

TCGA (Cancer Genome Atlas Research Network et 

al. 2013) 

ReDO (Pantziarka et al. 2018) 

PharmGKB (Whirl-Carrillo et al. 2021) 

Table of considerations one should make when repurposing FDA-approved drugs. We have 

denoted resources requiring login credentials or a subscription with asterisks. 

To assist in repurposing protein-targeted drugs, we recommend using resources like The 

SIGnaling Network Open Resource (Signor), which integrates information from numerous other 

databases (e.g., pathway commons, DrugBank) between pathways, proteins, drug molecules, stimuli, 

and phenotypes to infer putative directionality and causality (Lo Surdo et al. 2023). Thus, Signor and 

similar resources can further enable investigators to identify the molecular mechanisms potentially 

driving a therapeutic effect. With their extensive documentation, increasingly growing body of work, 

and greater generalizability across conditions, we recommend protein-targeted over nucleic-targeted 

drugs for repurposing efforts.  

Target Modality 

For drug candidates with a well-defined mechanism of action, there could also be several targets 

beyond its documented or primary mechanism (Schenone et al. 2013; Jenquin et al. 2018; Kuenzi et 

al. 2019; Palve et al. 2021). In drug repurposing, the ability to use these indirect targets (i.e., off-targets 

and downstream effectors) for therapeutic management is increasingly being studied (Palve et al. 

2021); however, compared to direct targets, off-targets and downstream effectors may exhibit less 

favorable safety-efficacy profiles (Chartier et al. 2017; Palve et al. 2021), which may require additional 

validation analyses or downstream deprioritization if that is the case (Figure 3). Here, we explore 

how defining a repurposing candidate’s target modality as a direct target, off-target, or downstream 

effector can guide investigators in further refining their drug candidate list.  

Drug discovery initiatives typically design their drugs to bind direct targets to produce a 

therapeutic effect; though not explicitly, these drugs can also modulate off-targets and downstream 

effectors through pleiotropy, gene-gene interactions, or cellular perturbations ((Cichonska et al. 2015; 

Palve et al. 2021). Given the indirect mechanisms influencing the effects of off-targets and 

downstream effectors, their use in repurposing candidates requires additional analyses to ensure the 

target candidate is not a product of technical noise (Polamreddy and Gattu 2019; Aittokallio 2022). 

Prior works began identifying off-target effects through drug repurposing analyses to reveal 

promising candidates (Talevi and Bellera 2020; Palve et al. 2021; Begley et al. 2021). Specifically, 

targeting off-targets for drug repurposing has been incredibly beneficial, especially for multifactorial 

and multi-systemic conditions, such as cancer. For example, midostaurin – initially indicated as a 

protein kinase C inhibitor for solid tumors – has been approved to be repurposed for its off-target 

FLT3 in FLT3 mutated acute myeloid leukemia and for its off-target KIT in systemic mastocytosis and 

mantle cell lymphoma (Palve et al. 2021). In addition, imatinib, developed initially to inhibit BCR-

ABL in chronic myeloid leukemia, was also clinically approved to be repurposed for its off-target KIT 

in gastrointestinal stromal tumors (Palve et al. 2021). 

Employing off-targets for repurposing could also be applied to other heterogenous disorders 

(Kuenzi et al. 2019; Palve et al. 2021; Xia et al. 2024). Though, repurposing studies using off-targets 

have also reported reduced efficacy at the FDA-approved dosage range; thus, combination therapies 
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that produce a synergistic effect, especially for cancer studies, have been recommended (Kuenzi et al. 

2019; Palve et al. 2021; Flanary et al. 2023). Without the inclusion of combination therapies, the low 

efficacies associated with indirect therapeutic targets at current FDA-approved dosages may not be 

sufficient for researchers to prioritize a given drug candidate. Accordingly, distinguishing between 

these target modalities (when possible) will help investigators determine whether pursuing 

molecules are appropriate for their disease of interest.  

Target- and Disease-Specific Considerations 

Reported attrition in drug repurposing trials is primarily due to safety and/or efficacy concerns 

(Pushpakom et al. 2019). While we discussed above how investigators can evaluate the safety of their 

target candidates (Figure 2), this section will emphasize how investigators can ensure their target is 

efficacious. Several works have identified repurposing candidates at the pre-clinical level (Palve et al. 

2021; Lago and Bahn 2022; Doshi and Chepuri 2022; Duan et al. 2024; Huang et al. 2024); however, 

efficacy (i.e., how well a drug elicits its therapeutic effect) remains a concern when assessing 

candidates during clinical trials (Pushpakom et al. 2019). While attrition in clinical trials may be due 

to insufficient statistical power from limited sample sizes (Ng et al. 2024), we recommend 

investigators further explore the target-disease interactions (i.e., how the target can modulate disease-

specific pathways) to lower that attrition and better prioritize promising candidates for subsequent 

clinical studies (Greene and Voight 2016; Issa et al. 2021; Mottini et al. 2021; Lago and Bahn 2022). To 

further streamline this process, we describe a candidate’s target-disease interactions by its context 

relevance (i.e., a target’s reported involvement in the investigated disease’s pathogenesis and 

pathophysiology) and its disease-modifying ability (i.e., the extent to which a target’s modulation 

produces its therapeutic effect). Accordingly, researchers should take caution in deprioritizing 

candidate drugs that do not produce favorable target-disease interactions.  

Context Relevance 

Context relevance refers to the biological factors and interactions pertinent for ameliorating 

pathogenesis and pathophysiology, resulting in the observed phenotype (e.g., variants producing an 

underexpression or overexpression of proteins, enzymes involved in disease-specific pathways, 

interactions between pathways yielding a syndromic presentation, etc.). Determining the context 

relevance of a target through prior works, publicly available resources, and evidence-based 

hypotheses can minimize the gap between experimental findings and clinical outcomes (Oprea and 

Mestres 2012). Essential resources include UniProt (UniProt Consortium 2023) and the Human 

Protein Atlas’ Druggable Proteome, which assess a protein’s expression and druggability, 

respectively (Uhlén et al. 2015). Further, there are resources to identify which pathways a specific 

gene and/or its products are involved in (e.g., Pathway Commons compiles and integrates 

information from various sources (Rodchenkov et al. 2020)). In addition to these, there are numerous 

resources to assist investigators in ensuring their repurposing candidates’ targets have context 

relevance, which we have curated into a list in Table 1. Here, we continue to highlight the importance 

of assessing context relevance for repurposing efforts and provide solutions to potential challenges 

that one may encounter when doing so (i.e., working with rare diseases and/or isoform targets). 

Prior repurposing studies have typically ensured a target’s context relevance by evaluating 

whether their candidate is perturbing disease-relevant pathways (Correia et al. 2021; Palve et al. 2021). 

GWAS and resources alike (Table 1) have been repeatedly used throughout in silico repurposing 

studies to identify novel targets, which provides excellent opportunities, especially for conditions 

without treatment. For example, a recent repurposing study that identified potential repurposing 

candidates for amyotrophic lateral sclerosis (ALS), a rare neurodegenerative disease, used GWAS 

data to identify “druggable” genes that contained variants associated with developing ALS, including 

TBK1, TNFSF12, and GPX3. Though they identified multiple genes beyond these three, this study 

only reported that fostamatinib, amlexanox, BIIB-023, RG-7212, and glutathione were associated with 

those specific three genes (Duan et al. 2024). This study exemplifies how context relevance can enable 

the identification of potential candidates; however, pre-clinical analyses warrant further validation 
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via in vivo and in vitro studies to validate its candidacy for subsequent phases. Further, resources such 

as varsome (Kopanos et al. 2019), gnomAD (Karczewski et al. 2020), ClinVar (Landrum et al. 2014), 

and GWAS Catalog (Sollis et al. 2023) contain information about a putative drug target’s known 

variants, and disease associations to ensure its disease relevance (Table 1). Drugs chosen for 

repurposing clinical trials have gone through robust pre-clinical experimentation and exhibit 

meaningful evidence to confirm their promising candidacy (Pantziarka et al. 2021). Hence, we 

recommend that researchers first evaluate target-disease interactions and then add disease-specific 

clinical information (described below in Disease-specific considerations) to facilitate clinical 

adoption (i.e., FDA approval for the new indication). 

Rare diseases, however, may have limited scientific findings regarding prominent targets 

involved in pathogenesis and pathophysiology (Polamreddy and Gattu 2019; Huang et al. 2024; Ng 

et al. 2024). When resources specific to the investigated disease are available, it would be best for 

repurposing efforts to use them in their analyses to ensure a candidate’s context relevance (Table 1). 

As demonstrated by Huang et al., including relevant pathophysiological information from conditions 

similar to ones with limited data in a drug repurposing model enhances repurposing efforts for rare 

and ultra-rare conditions. Thus, to overcome challenges due to lack of data/information (e.g., ultra-

rare diseases and diseases without identified causative genes), we recommend researchers investigate 

conditions with similar phenotypic presentations, those involved in similar pathways, and/or those 

with similar physiologic behavior (Huang et al. 2024). 

Furthermore, a repurposing candidate’s ability to target various isoforms of the same gene or 

protein also applies to a target’s context relevance. Information about the number of annotated 

isoforms for a given gene can be accessed with resources such as Ensembl (Harrison et al. 2024) and 

GENCODE (Frankish et al. 2019). However, the specific isoform a target binds to may vary depending 

on drug dosage or target tissue specificity. For example, the effectiveness of the cancer drug 

bevacizumab, an anti-vascular endothelial growth factor (VEGF-A) antibody, in colorectal carcinoma, 

can be inhibited by the VEGF-A isoform VEGF165b through competitive binding (Varey et al. 2008). 

Both VEGF165 and VEGF165b isoforms can be found in colorectal cancer (i.e., VEGF165 is found in 

rapidly growing colonic cells and VEGF165b slow-growing colonic cells); however, tumors with 

upregulated VEGF165b expression and down-regulated VEGF165 exhibit reduced efficacy profiles 

when treated with bevacizumab, indicating that differences in isoform expression can affect drug 

response) (Varey et al. 2008). Therefore, we recommend researchers determine whether they can 

obtain and integrate any isoform-specific information (e.g., identifying whether a candidate’s binding 

affinity changes with different isoforms) through literature searches or in vitro experimentation to 

improve their repurposing analyses. For example, a prior study leveraged isoform coexpression 

networks and gene perturbation signatures from LINCS to identify promising drug targets for breast 

cancer (Ma et al. 2019). In addition, to further assist with this effort, we have provided isoform-

relevant resources in Table 1.  

Disease-Modifying Effect 

For repurposing studies seeking to identify drug candidates with therapeutic potential, analyses 

should confirm that the candidate modulates the target-disease interaction to produce a disease-

modifying effect (Pushpakom et al. 2019). Determining the mechanism behind the drug target’s 

disease-modifying effect demonstrates its capability to counteract disease pathogenesis, thus 

predicting a repurposing candidate's therapeutic and preventative potential (i.e., efficacy). We 

recommend that investigators evaluate a repurposing candidate’s target-disease interaction to 

confirm that it produces the desired therapeutic effect by analyzing the disease-relevant pathway and 

signature modulation data through publicly available resources (Table 1). Pathway Commons 

(Rodchenkov et al. 2020) and Gene Ontologies (Harris et al. 2004), when combined with rigorous 

validation analyses, are examples of resources one can use to ensure a candidate drug modifies the 

desired disease mechanisms. We advise investigators to deprioritize a candidate whose target does 

not have sufficient evidence of disease-specific modifying effects. Further, to predict a candidate’s 

ability to elicit a disease-modifying effect, investigators should explicitly identify cell types and 
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tissues involved in disease progression (Floris et al. 2018; Begley et al. 2021). Prior studies have used 

cell-type and tissue-specific specificity to identify novel biomarkers (Zhou et al. 2018; van Dam et al. 

2018; Zhao et al. 2020; Yuhan et al. 2022; Qiu et al. 2023; Shao et al. 2023), essential for identifying 

disease mechanisms responsible for pathogenesis. In addition, investigations should provide 

evidence that their candidates have the appropriate chemical composition to reach the relevant cell 

types and tissues (e.g., the ability to cross the blood-brain barrier for neurological conditions). 

Identifying relevant cell types may require referring to data from prior available studies if it is 

not apparent from the phenotypic presentation alone. For example, cardiac diseases (e.g., heart 

failure) cause several phenotypic and physiologic changes across organ systems involved in fluid 

balance (e.g., kidneys), and, therefore, many therapies are designed to manage symptoms and fluid 

balance (e.g., angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers 

(ARBs), beta-blockers, etc.) (Castiglione et al. 2022). However, recent studies highlighting approaches 

for identifying novel biomarkers in cardiac disease report major cell types involved in key disease 

mechanisms include cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, pericytes, 

immune cells, neuronal and glial cells, and adipocytes (Miranda et al. 2023). By recognizing cell types 

involved in disease pathogenesis, one can identify the most specific “druggable” biomarkers 

(Miranda et al. 2023). In this case, repurposing efforts for cardiac disease should ensure their 

candidate causes a favorable disease-modifying effect in the particular cell types involved in 

pathogenesis and pathophysiology (e.g., cardiomyocytes and fibroblasts), ultimately preventing the 

presence and/or progression of clinically presented fluid imbalance.  

Tissue-specific effects for the investigated disease should also be accounted for when prioritizing 

candidates. When included in repurposing analyses, tissue-specific effects, in addition to cell type 

effects, provide evidence a candidate can manipulate disease-relevant pathways that can be used to 

predict efficacy (Floris et al. 2018); thus, those candidates should be prioritized. Investigators can 

evaluate tissue-specific relevancy of targets via expression in non-diseased tissues from the 

Genotype-Tissue Expression (GTEx) Project (GTEx Consortium 2013), the Human Protein Atlas 

(Uhlén et al. 2015), and the Chan Zuckerberg CellxGene Discover platform, which allows users to 

access numerous gene expression datasets across organs and cell types with an easy-to-use data 

portal (CZI Single-Cell Biology Program et al. 2023). Organ system-specific resources include the 

Allen Brain Cell Atlas (Yao et al. 2023), which consists of human and mouse brain data in a user-

friendly portal that can be explored, queried, and analyzed. Further, to evaluate a repurposing 

candidate’s ability to modify the disease, researchers have also integrated information from 20 

datasets, biorepositories, and ontologies into the Precision Medicine Knowledge Graph (PrimeKG), 

which includes diseases, drugs, genes, proteins, exposures, phenotypes, drug side effects, molecular 

functions, cellular components, biological processes, anatomical regions, and pathways (Chandak et 

al. 2023). PrimeKG has also been leveraged by researchers to power drug repurposing models such 

as TxGNN, which improves prediction accuracy for indication by almost 50% compared to eight 

other methods (Huang et al. 2024).  

Disease-Specific Considerations  

Repurposing candidates identified using biological signatures has proven efficacious in in silico 

and in vivo preclinical testing (Alavi and Ebrahimi Shahmabadi 2021; Baek et al. 2022; Gaber et al. 

2024; Ng et al. 2024); however, several repurposing candidates have failed in clinical trials due to 

decreased therapeutic efficacy and severe adverse effects (Polamreddy and Gattu 2019; Begley et al. 

2021; Aittokallio 2022; Pinzi et al. 2024). While we have previously discussed how attrition could be 

due to insufficient sample sizes, there are also clinical drivers (e.g., disease heterogeneity, population 

variability, etc.) that can play a role in downstream clinical attrition of promising pre-clinical 

candidates (Masnoon et al. 2017; Wu et al. 2022; Fisher et al. 2024a; Huang et al. 2024; Ng et al. 2024).  

While biological signatures and predictive models are representative of a condition, they cannot 

fully recapitulate the disease phenotype and context (Huang et al. 2024), contributing to increased 

attrition rates in clinical trials. For instance, a clinical condition’s disease phenotype may be localized 

to the brain. Still, many drug repurposing approaches do not discern if a repurposed drug compound 
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can cross the blood-brain barrier. Therefore, if the condition’s tissue of interest differs from a drug 

candidate’s initially indicated disease tissue of interest, extra care must be taken to ensure that the 

drug can properly travel to the new tissue and, if not, be deprioritized. Further, FDA-approved drugs 

possess appropriate safety-efficacy profiles for their indication. Yet, several drug repurposing 

candidates currently indicated for a specific type of disease (e.g., neurological conditions) are 

reported to be promising in pre-clinical studies (i.e., in vivo, in vitro, and/or in silico studies) in another 

type of disease (e.g., gastrointestinal disorder) have failed downstream (e.g., validation analyses, 

clinical data evaluations, clinical trials) (Krishnamurthy et al. 2022). For example, in an in silico 

repurposing study, topiramate, an anticonvulsant, was identified as a promising repurposing 

candidate via signature reversion (i.e., an in silico approach) for inflammatory bowel disease (IBD) 

(Dudley et al. 2011; Pushpakom et al. 2019)). To support topiramate’s relevance to IBD, the researcher 

identified gene sets through their functional enrichment analysis related to the pathophysiology of 

IBD (e.g., nuclear factor KB (NF-KB) signaling, inflammation, and antigen presentation) (Dudley et al. 

2011). Further, rat models validated its ability to treat IBD-damaged colons (Dudley et al. 2011; 

Pushpakom et al. 2019; Silva et al. 2022)). However, a large retrospective cohort study (n=1731) using 

clinical data (i.e., diagnoses, prescription records, demographics, reported procedures, 

hospitalizations, etc.) to evaluate the effects of topiramate on patients with IBD, revealed that 

topiramate, in combination with established IBD therapy (e.g., methotrexate), did not benefit patients 

(i.e., they did not experience fewer diseases flares, hospitalizations, and surgeries compared to those 

who did not take it)(Crockett et al. 2014). This finding does not negate topiramate’s ability to combat 

inflammatory conditions, as a prior study reported its neuroprotective effects against 

neuroinflammation (Bai et al. 2022). However, it suggests that there may be clinical drivers, in 

addition to biological drivers (described above in the “Context relevance” section), resulting in the 

discrepancy between a drug's original use and the current condition under study. Thus, we 

recommend that investigations consider all the disease-specific considerations, as outlined in this 

section, when prioritizing candidates.  

In addition, as an effort to include clinically representative information relevant to their studied 

disease, repurposing studies are increasingly leveraging publicly available clinical data (Table 1) 

when prioritizing candidates (Issa et al. 2021; Tan et al. 2023). As such, we recommend investigators 

apply our proposed disease-specific considerations when prioritizing candidates, as they are 

representative of the clinical factors affecting the disease pathogenesis and pathophysiology at the 

biomolecular level (Huang et al. 2024); some of these considerations have even reported 

distinguishing between favorable and non-favorable safety-efficacy profiles in drug discovery and/or 

repurposing efforts (Fisher et al. 2022; Lago and Bahn 2022). Specifically, we recommend evaluating 

the disease etiology, temporal onset, clinical heterogeneity (i.e., the variation in processes, responses, 

or outcomes in a condition’s phenotype and common comorbidities), pertinent clinical variables, 

potential polypharmacy interactions, and predicted dosing for their condition under study (Figure 

3). Further, we recommend applying these key clinical considerations using our workflow to 

prioritize candidates identified by pre-clinical repurposing analyses subsequent to evaluating 

candidates in our Target-specific Considerations workflow (Figures 3-4). 

A schematic overflow for prioritizing and de-prioritizing drugs and their targets for each of the 

disease-specific considerations. Please note: We have curated this workflow for simplicity, but 

investigators should refer to prior research and domain-specific knowledge to identify the nuances 

of their specific case. 

Disease Etiology 

Often, conditions are distinguished by their etiology as monogenic (i.e., Mendelian diseases) or 

multifactorial (i.e., polygenic and complex diseases). Monogenic conditions typically have a well-

defined genetic basis (even when the mechanism is unknown) where variants can lead to protein 

dysfunction (altering its regulation and/or activity, leading to pathogenic accumulation, insufficient 

production, or altered activity), manifesting the observed phenotype. Therefore, for monogenetic 

conditions, investigators should consider prioritizing candidates that target the specific pathogenic 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2024 doi:10.20944/preprints202411.1592.v1

https://paperpile.com/c/uLmxAa/hRaz
https://paperpile.com/c/uLmxAa/glzN+z8ja
https://paperpile.com/c/uLmxAa/glzN
https://paperpile.com/c/uLmxAa/glzN
https://paperpile.com/c/uLmxAa/glzN+z8ja+cWfn
https://paperpile.com/c/uLmxAa/glzN+z8ja+cWfn
https://paperpile.com/c/uLmxAa/ljv5
https://paperpile.com/c/uLmxAa/0vag
https://paperpile.com/c/uLmxAa/5EHv+RKwh
https://paperpile.com/c/uLmxAa/ixOe
https://paperpile.com/c/uLmxAa/GuJ4+USNU
https://doi.org/10.20944/preprints202411.1592.v1


 18 

 

pathway. However, when repurposing drugs for monogenetic diseases, investigations may face 

challenges in finding databases with sufficient information to effectively evaluate candidates, 

especially concerning monogenetic conditions that exhibit clinical heterogeneity (discussed below in 

“Clinical heterogeneity”) with multiple comorbidities that can differ amongst patients with the 

disease (e.g., polycystic kidney disease). For example, ultra-rare Mendelian conditions like Schinzel 

Gideon Syndrome have limited knowledge of the full scope of the pathophysiological variant effects, 

posing unique challenges (Crooke 2021; Whitlock et al. 2023; Jones et al. 2024). These conditions may 

necessitate larger patient cohorts for clinical trials as described for multifactorial conditions, though 

acquiring the required cohort size poses a greater challenge and may not be possible.  

Compared to monogenic conditions, multifactorial/polygenic conditions arise from a complex 

interplay between genetic, epigenetic, and/or environmental factors (e.g., anxiety disorders) (Meier 

and Deckert 2019). This complexity can complicate target prioritization as target candidates may fail 

to address all integral mechanisms involved, rendering them less efficacious in clinical trials (Ng et 

al. 2024). Additionally, multifactorial disorders generally have more mixed treatment responses, as 

patients may be responders or non-responders (e.g., selective serotonin reuptake inhibitor (SSRI) 

resistance in major depressive disorder) (Xu et al. 2024; Ng et al. 2024). Accordingly, multifactorial 

conditions often necessitate larger sample sizes and data that include clinical information (described 

below in the “Clinical heterogeneity” and “Patient variability” sections) to further prioritize 

candidates. However, this presents an even bigger challenge for diseases that are both rare and 

multifactorial, especially those with complex pathogenicity and clinical heterogeneity (e.g., IgA 

Nephropathy) (Ng et al. 2024). 

Temporal Onset 

Temporal onset differences can influence therapeutic effectiveness and toxicity, making onset a 

principal consideration when selecting targets for personalized interventions. We describe temporal 

onset as the temporal dynamics of pathogenesis (e.g., acute, chronic) as opposed to age of onset, 

which falls under clinical specificity. Although onset variability is a clinical feature, it can reveal 

significant biological consequences related to pathogenesis, pathophysiology, and complications. In 

addition, both types of onset may manifest within the studied conditions, and clinical trials have 

shown that patient responses vary based on presentation onset (Lago and Bahn 2022). For instance, 

drugs like verapamil, nilvadipine, and nifedipine were tested on patients with acute and chronic 

schizophrenia (a multifactorial disorder), revealing that chronic patients often displayed inconsistent 

therapeutic responses (Lago and Bahn 2022). Presentation onset can also guide investigators in 

predicting complications that occur with short or long-term use, deprioritizing those drugs 

unfavorable for their studied disease’s presentation.  

Acute illness presentation studies should also determine whether candidates require tapering 

dosage before stopping treatment by referring to prior identified safety characteristics (Table 1). 

Abrupt discontinuation can pose a risk for downstream complications if the patient does not adhere 

to the therapeutic plan diligently (e.g., corticosteroids causing adrenal insufficiency). Cases where 

patient compliance is unsuccessful, potentially causing adverse reactions, can be alleviated by 

monitoring and ensuring patient compliance. Likewise, patients have also demonstrated sudden 

cessation due to financial barriers or physical barriers hindering them from receiving their medication 

such as lack of transportation – a challenge for both acute and chronic onsets. Chronic presentations 

requiring extended use of drugs face particular challenges with side effects because they may become 

more likely with extended usage. For example, in drug repurposing initiatives for autosomal 

dominant polycystic kidney disease (ADPKD), researchers may deprioritize candidates with risks of 

hepatotoxicity (e.g., valproic acid, methotrexate, azathioprine, etc.), as liver dysfunction is a known 

complication of ADPKD (Cnossen and Drenth 2014; Wilk et al. 2023). However, extended-use 

hepatotoxic candidates for conditions requiring acute management, such as cancers, might still be 

considered, as the therapeutic benefit may outweigh the risk.  

Clinical Heterogeneity 
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Here, we define clinical heterogeneity as the variation in processes, responses, or outcomes in a 

specific condition’s phenotype and common comorbidities, which is known to complicate therapeutic 

intervention. This variation (i.e., associated comorbidities, phenotype, temporal onset, etc.) has been 

reported to cause difficulty for drug discovery and repurposing initiatives due to potential candidates 

failing to exhibit desired safety-efficacy profiles. In addition, clinical heterogeneity differs from 

population variability regarding the differences seen amongst the patient population with the studied 

disease. In contrast, we define population variability as the general population's characteristics (i.e., 

not for a specific condition) that can lead to differences in drug response, which we discuss in the 

subsequent section.  

Clinical heterogeneity is a concern for most conditions; however, rare conditions with well-

documented clinical heterogeneity (e.g., autosomal recessive polycystic kidney disease, IgA 

Nephropathy, etc.) exacerbate issues in obtaining sufficient data to evaluate repurposing candidates. 

However, these rare, clinically heterogeneous conditions also represent those with the greatest need 

for personalized therapies, as current management is generally geared toward symptomatic relief. 

For example, IgA Nephropathy, an autoimmune glomerulonephritis disease with familial and/or 

sporadic origin, is known to exhibit clinical heterogeneity (e.g., variable presence of recurrent 

macroscopic hematuria, hypertension, older age, etc.), complicating the identification of potential 

repurposing candidates (Yu and Chiang 2014; Cheung and Barratt 2016; Ng et al. 2024). When 

mycophenolate mofetil (MMF), an immunosuppressant indicated for multiple autoimmune 

conditions (e.g., rheumatoid arthritis, inflammatory bowel disease, systemic sclerosis, etc.), was 

evaluated in clinical trials to be repurposed for IgA Nephropathy (Ng et al. 2024), there were 

conflicting results. Specifically, a clinical trial repurposing MMF in IgA Nephropathy with 170 

participants (85 that received MMF and 85 that did not) revealed that the patients that were 

administered MMF (1.5 g/d for 12 months and subsequent 0.75-1.0 g/d for at least 6 months) exhibited 

reduced disease progression (i.e., decreased annual loss in eGFR) in comparison to the participants 

that did not receive it (Hou et al. 2023; Ng et al. 2024). However, other clinical trials with smaller 

participant sizes (i.e., 34 and 44 participants) reported MMF did not benefit renal function/outcome 

(i.e. eGFR) and proteinuria (Maes et al. 2004; Hogg et al. 2015; Ng et al. 2024). Though participant 

cohort size is a concern for the latter trials mentioned, the associated clinical heterogeneity with IgA 

Nephropathy complicates the identification of potential treatments (Ng et al. 2024). Thus, if available, 

we advise investigations to obtain sufficient data (i.e., larger sample sizes, inclusion of relevant 

clinical information, etc.) to identify promising candidates, prioritizing those predicted to be most 

inclusive in effectively treating patients with that disease.  

Clinical heterogeneity is not unique to rare Mendelian diseases. Notably, cancer is incredibly 

heterogeneous at the clinical level; however, many successful repurposing candidates exist (Sleire et 

al. 2017; Palve et al. 2021; Pantziarka et al. 2021). This success can primarily be due to several initiatives 

geared toward explicitly identifying the shared foundational mechanisms (e.g., uncontrolled cell 

growth) that lead to its phenotypic presentation (Hanahan and Weinberg 2000, 2011; Hanahan 2022). 

Keeping this in mind, we recommend that investigations confirm that a candidate’s target exhibits 

context relevance, as described previously, and that the necessary data and information via the 

literature be obtained to account for clinical heterogeneity.  

Patient Variability 

Repurposing studies should consider relevant patient variables, specifically clinical 

characteristics and potential polypharmacy usage, and then prioritize candidates with decreased 

biases or drug interactions. Clinical factors such as sex, patient age, comorbidities, and drug-relevant 

metabolic enzymes affect drug efficacy and toxicity. For example, sex biases in efficacy and adverse 

events emphasize the need for prioritized candidates to be effective in both sexes (Yu et al. 2016; 

Watson et al. 2019; Fisher et al. 2022; Unger et al. 2022). To determine if a targeted gene is sex-biased 

in expression, one can use the publicly available GTEx resource (GTEx Consortium 2013) or the list 

of sex-biased genes from Oliva et al.’s GTEx-based work (Oliva et al. 2020), as well as assess disease-

specific datasets. Our group, for example, has also identified sex-biased gene expression and 
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regulation of sex-biased adverse event-associated drug targets by leveraging the FAERS and GTEx 

databases (Fisher et al. 2024a), potentially revealing molecular mechanisms driving sex-biased 

adverse drug events.  

Likewise, age implicates pharmacokinetic alterations in behavior due to physiologic changes 

such as decreased body water, muscle mass, and serum albumin, typically in older individuals (Volpi 

et al. 2004; Jéquier and Constant 2010; Cabrerizo et al. 2015; Manirajan and Sivanandy 2024). Across 

development and aging, resources exist to determine when a gene is expressed, such as the BrainSpan 

Atlas of Developing Human Brain (Miller et al. 2014) and Open Genes, which is a searchable list of 

aging and longevity-associated genes (Rafikova et al. 2024). Comorbidities often contraindicate 

several potential drugs, making it necessary to assess drug candidates' safety in patient populations. 

For instance, conditions with comorbidities, such as liver and kidney disease, are contraindications 

for several drugs, including acetaminophen and ACE Inhibitors/ARBs, respectively (Kuan et al. 2023). 

Furthermore, polymorphisms in relevant drug-metabolizing enzymes (e.g., CYP450 family) are 

common (Preissner et al. 2013) and complicate target prioritization. These polymorphisms can reduce 

efficacy or increase toxicity, requiring specific dosage requirements. Thus, candidates known to be 

metabolized by common polymorphic enzymes should be deprioritized. Advantageously, 

researchers have developed resources such as PharmVar, PharmGKB, and PharmCAT to annotate the 

associations with variants in drug-metabolizing genes and drug responses (Sangkuhl et al. 2020; 

Gaedigk et al. 2021; Whirl-Carrillo et al. 2021). These variables can alter the response to target 

candidates, and investigators should deprioritize drugs that do not include the general patient 

population. 

Polypharmacy 

Polypharmacy, while not a patient characteristic, contributes to patient variability, as it may 

result in adverse drug interactions and influence safety (Masnoon et al. 2017). Specifically, 

polypharmacy describes a patient's concurrent use of multiple (5 or more) medications (Novak et al. 

2022). As the risk of developing medical conditions requiring pharmaceutical treatment increases 

with age, elderly patients are more at risk of being victims of polypharmacy-caused interactions 

(Masnoon et al. 2017; Novak et al. 2022). For instance, AD is overwhelmingly more common in older 

patients. Hence, the likelihood of AD patients taking multiple drugs is much higher, and 

polypharmacy-caused drug interactions are more critical to consider. Pharmacodynamic interactions 

can lead to synergistic, additive, or antagonistic effects (Chou 2022), while pharmacokinetic factors 

can alter absorption, distribution, metabolism, or excretion, all of which directly influence drug 

response (Takimoto 2001). For example, the simultaneous administration of NSAIDs with ACE 

Inhibitors causes antagonistic effects, reducing the ability of ACE Inhibitors to lower blood pressure 

effectively (Ishiguro et al. 2008; Fournier et al. 2012; Albishri and MBCh 2013). One strength of 

repurposing FDA-approved drugs is the catalog of known drug interactions and documentation of 

adverse events (Table 1). This principle can benefit the patient, as some drug combinations are 

synergistic and can be computationally predicted (Sun et al. 2016; Cheng et al. 2019; Flanary et al. 

2023). However, predicting synergistic drug-drug interactions can be difficult before clinical 

administration (Aittokallio 2022; Weth et al. 2024). Investigators with a comprehensive understanding 

of patient variability can predict the optimal balance between repurposing candidates' safety, 

efficacy, and applicability for the best clinical outcomes. 

Dosing 

We recommend that pre-clinical analyses take further initiatives to capture the optimum dosage 

or administration (e.g., oral, injection) to achieve the necessary therapeutic effect (Begley et al. 2021; 

Huang et al. 2024). Additional measures to predict and validate the required dosage or administration 

before clinical trials highlight the greater effort to provide clinical trial initiatives with invaluable 

results to select those drugs, making candidates more reputable compared to others for selection. 

This information will also allow refinement of prioritization for candidates whose dosages or 

administrations are intolerable, ineffective, or not clinically available (Emmerich et al. 2021; Begley et 
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al. 2021; Xia et al. 2024). For example, repurposing drugs with highly severe side effects, like cancer 

drugs, for non-terminal conditions (e.g., neurodevelopmental disorders, rheumatoid arthritis) would 

offer little benefit because the side effects would cause more significant impairments than the 

condition itself. In light of the extensive progress prior works have made regarding the availability 

and feasibility of retrospective clinical data (e.g., electronic health records, clinical trial data, and drug 

databases), investigators can extract relevant information, especially off-label indications and safety 

profiles of repurposing candidates, for repurposing studies (Tan et al. 2023; Huang et al. 2024; 

Debisschop et al. 2024; Ng et al. 2024). 

Discussion 

Applying a structured workflow for candidate and target prioritization will streamline drug 

repurposing efforts and further bridge the gap between promising preclinical candidates and 

successful clinical adoption. Here, we have reviewed and categorized these considerations for target 

prioritization as 1) drug-, 2) target-, and 3) disease-specific (Figure 1). Additionally, we developed a 

comprehensive workflow (Figures 2-4) to address challenges and reduce attrition as previously 

documented (Cha et al. 2018; Pushpakom et al. 2019; Polamreddy and Gattu 2019; Pantziarka et al. 

2021; Huang et al. 2024). This workflow has two main starting points: starting with a candidate drug 

identified through drug repurposing or starting with a potential therapeutic target identified through 

other experiments. From there, we suggest the researcher move through each step carefully and refer 

to our Table of Resources (Table 1) to answer each specific question (Figures 2-4) before moving on 

to the next category of considerations. Finally, we encourage all researchers to examine the disease-

specific considerations to ensure the candidate drug and/or its targets are a worthwhile path forward 

for further testing and validation. These considerations and structured workflow will guide 

investigators in making sound decisions to identify promising and robust candidates for their studied 

condition.  

We have also developed this workflow to parallel the clinician decision-making process when 

prescribing therapeutic management. Specifically, a clinician’s decision-making process for 

management carefully adheres to drug safety, efficacy, affordability, relevance to the condition, and 

patient-specific variables. These factors have been historically used for clinical therapeutic 

management (Keijsers et al. 2015). If candidate prioritization aligns with these factors driving clinical 

therapeutic management and selection, discrepancies between pre-clinical results and clinical utility 

can be minimized (Begley et al. 2021; Huang et al. 2024). In addition to candidate prioritization, our 

workflow guides researchers when deprioritization would be appropriate. We define deprioritization 

as the process of assigning lower priority to a candidate that does not meet crucial criteria, without 

excluding them entirely. This process allows investigations to favor candidates that better align with 

the criteria outlined in our proposed considerations (Figures 1-4). Further, this workflow may also 

be useful for drug discovery projects to ensure the selection of robust candidates that can successfully 

progress to clinical trials (Begley et al. 2021). Maybe here for a sentence or two about what 

deprioritization means and doesn’t? 

Drug repurposing includes in vivo, in vitro, in silico, and real-world data-driven approaches. 

Integrating these approaches could further lead to identifying robust targets and promising 

candidates (Aittokallio 2022; Talevi and Bellera 2020; Iwata et al. 2015). Previous studies have found 

that the failure of repurposing efforts is often due to decreased safety and efficacy profiles observed 

during clinical trials (Polamreddy and Gattu 2019). As a result, studies also strongly recommended 

that researchers rigorously validate their findings to ensure a repurposing candidate's clinical 

adoption (Begley et al. 2021), though validation processes are outside our scope. 

Off-label use – prescribing therapies for non-FDA-approved indications (Saiyed et al. 2017) – is 

frequently mentioned in the context of drug repurposing efforts (Pushpakom et al. 2019; Begley et al. 

2021; Huang et al. 2024). Clinicians typically refrain from prescribing medications off-label due to a 

lack of safety-efficacy profiles outside of FDA-approved indications and increased patient out-of-

pocket costs (Saiyed et al. 2017; Pantziarka et al. 2021; Begley et al. 2021). However, patients or parents 

with children who have conditions without curative or preventative treatments may advocate 
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clinicians to prematurely prescribe repurposing candidates before they have undergone rigorous 

testing, especially because the information is readily available on sources such as PubMed (Begley et 

al. 2021). While drug repurposing initiatives offer great potential, we recommend that investigators 

exercise diligence and prudence when performing and interpreting drug repurposing analyses and 

especially when publicly reporting their results. Further, compared to off-label use, drug repurposing 

enables existing drugs to be marked for multiple indications, increasing the likelihood that clinicians 

may prescribe that medication. FDA approval and evidence-based support remain essential in 

solidifying public trust in a given therapy (Pantziarka et al. 2021). Still, applying clinician reasoning, 

as used with off-label use, may benefit current drug repurposing models (Huang et al. 2024). Thus, 

we have devised our workflow to align with physician decision-making for administering treatment.  

Advances in drug repurposing highlight the need to ensure and prioritize optimal drugs and 

targets. The application of machine learning (e.g., non-negative matrix factorization, neural networks, 

large language models, virtual gene knockout simulation) exhibits excellent promise for leveraging 

large datasets to find novel candidates for drug repurposing (Gimeno et al. 2019; Aittokallio 2022; 

Doshi and Chepuri 2022; Del Hoyo et al. 2023; Jonker et al. 2024; Yan et al. 2024; Pinzi et al. 2024; 

Messa et al. 2024; Huang et al. 2024; Qi et al. 2024) and to develop and refine automated prioritization. 

For example, ceSAR is a newly developed drug discovery and repurposing technique that uses 

machine learning to combine LINCS transcriptomic data with molecular docking simulations was 

able to identify novel inhibitors of the antiapoptotic target BCL2A1 (Thorman et al. 2024). However, 

there may be barriers regarding limited storage for massive model-training data, and these models 

may become more challenging to interpret. In addition, researchers are increasingly incorporating 

patient characteristics (e.g., age, sex, comorbidities, etc.) into public databases that can be leveraged 

in drug repurposing studies.  

Drug repurposing exhibits excellent promise for researchers and clinicians to expand the 

therapeutic capabilities of FDA-approved drugs, saving billions of taxpayer dollars and time. Even 

so, the field must navigate adversities in limited accessibility to current drug databases requiring high 

subscription costs, non-reproducible models, and inaccessible tools for navigating retrospective 

clinical data (Pushpakom et al. 2019; Polamreddy and Gattu 2019; Begley et al. 2021; Aittokallio 2022). 

While we list many resources to help address drug-, target-, and disease-specific considerations when 

prioritizing candidates, we are still in the beginning stages of weighing, interpreting, and evaluating 

these massive amounts of data. Further, drug companies must continue to be incentivized (e.g., the 

Orphan Drug Act) to encourage research for repurposing already-successful drugs for rare diseases. 

For instance, business strategy reasons cause 46% of preclinical drugs to become shelved 

(Krishnamurthy et al. 2022), not biological reasons, exhibiting that researchers, clinicians, 

pharmaceutical companies, and regulatory officials must work together to promote rigorous drug 

research to improve drug repurposing efforts overall. Given these constraints, following the drug-, 

target-, and disease-specific considerations outlined here in combination with novel high-throughput 

data-based approaches will help address limitations in drug repurposing and identify efficacious and 

safe drug candidates for clinical reuse. 
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