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Interpretable Asset Selection in Robust Portfolio
Optimization: A Correlation Market Graph
Sparsification Framework

Leonidas Tsigkounakis

Department of EEE, Imperial College London, London, SW7 2BT, UK; leonidas.tsigkounakis20@imperial.ac.uk

Abstract: Investment return realizations often provide only partial distributional information, yet
traditional portfolio optimization frameworks assume preserved statistical properties which can lead
to modeling risk. To address this, we employ a robust optimization framework called Wasserstein
distributionally robust optimization (WDRO) on the mean absolute deviation (MAD) of portfolio
returns. This approach provides cross-distributional robustness via worst-case risk minimization over
all distributions within a Wasserstein ball of radius ϵ centered on some empirical distribution estimate.
However, as the number of assets increases, the optimization problem becomes high-dimensional and
sensitive to signal noise. To alleviate this burden, we discard redundant assets from the investment
universe by virtue of correlation market graph sparsification. To the best of our knowledge, the
combination of market graph sparsification with the WDRO framework is a novel contribution
introduced in this study. We demonstrate that this methodology delivers superior results in both
computational efficiency and test-set return statistics when applied to real-world S&P500 stock price
data from 2018 to 2024.

Keywords: Financial signal processing; Market graphs; Sparsification; Portfolio optimization;
Distributionally robust optimization;

1. Introduction

An investment portfolio is a collection of N distinct assets, represented analytically as a vector
w ∈ RN×1 whose entries correspond to the percentage of total wealth allocated to each asset. To
avoid the risks associated with leverage and short-selling, we constrain them in [0, 1] and further
demand that they sum up to one (i.e. 1Tw = 1), satisfying the budget constraint. For every asset
i ∈ {0, 1, . . . , N− 1}, there exists a discrete-time stochastic process p̃i[n] that generates closing price
data at the end of day n. Hence, we can define the daily return process of the i th asset as

r̃i[n] =
p̃i[n]− p̃i[n− 1]

p̃i[n]
(1)

Returns data has been widely adopted in the field and is generally preferred over raw price data as it
typically exhibits stronger Gaussianity and serves as a metric for asset and portfolio performance [1].

A general portfolio optimization problem can be formulated as

min
w

{
f (w; r̃)

}
s.t. w ∈W

(2)

where the function f : RN → R maps a portfolio w to a real number representing the investment risk,

and is parameterized by the N-variate returns process r̃[n] =
[
r̃0[n], . . . , r̃N−1[n]

]T
over all portfolio

assets. Note that we have also compressed the weight constraints using set notation implying that, if
w ∈W, then the allocation is agnostic to short selling and loans, and the budget constraint is met.
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1.1. Minimum Variance Portfolio

When it comes to risk, there is no universally accepted method for quantifying it, with
the choice of model often driven by complexity, robustness, or even interpretability. In 1952,
H. Markowitz [2] pioneered in measuring investment risk using the mean µ = Er̃{r̃} =[
Er̃{r0},Er̃{r1}, . . . ,Er̃{rN−1}

]T
∈ RN×1 and covariance Σ = cov{r̃} ∈ RN×N of asset returns, which

became the de-facto standard in diversification practices.
By further imposing a constraint on eq. 2 such that the portfolio expected return rp = wTµ meets

or exceeds a desirable target ρ we obtain the minimum variance (MV) optimization problem as shown
below

min
w

{ 1
2

wTΣw
}

s.t. w ∈W,

Er̃{wT r̃} ≥ ρ

(3)

where the cost function f (w; r̃) is quadratic with respect to the decision variable w. Under this
framework, the investor is responsible for choosing appropriate estimators for both the expected
returns µ and returns covariance Σ.

The Markowitz portfolio model performs best when return distributions are not significantly
skewed. However, its practical reliability is compromised due to its sensitivity to estimates of the
first and second-order moments [3]. Recognizing this limitation, Markowitz himself suggested
incorporating factor models to estimate the covariance matrix, particularly for large portfolios where
historical data may be insufficient or unreliable [4]. These shortcomings naturally led investors to seek
alternative risk metrics.

1.2. Mean Absolute Deviation Portfolio

In 1991, H. Konno and H. Yamazaki [5] proposed the use of the mean absolute deviation of
portfolio returns as an alternative. They tested their work on historical data from stocks within the
Japanese NIKKEI225 and TOPIX indices demonstrating that under their framework the optimization
problem is more robust. This was mainly attributed to the absence of the squaring effect due to the
quadratic cost in the MV problem. The MAD optimization problem was formulated as

min
w

{
Er̃

{∣∣∣wT r̃−wT Er̃

{
r̃
}∣∣∣} }

s.t. w ∈W,

Er̃

{
wT r̃

}
≥ ρ

(4)

where the authors arbitrarily imposed that the expected asset returns Er̃{r̃} be estimated via the
historical sample average, suggesting that

Er̃

{
r̃
}
≈ 1

T

T−1

∑
n=0

r[n] (5)

Note that we deliberately dropped the tilde symbol to indicate realisations of returns within a specified
timeframe of T samples. They also defined a term

a[n] =
(

r[n]− 1
T

T−1

∑
n=0

r[n]
)

(6)
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to compactly re-phrase eq. 4 as

min
w

{
1
T

T−1

∑
n=0

∣∣∣wTa[n]
∣∣∣}

s.t. w ∈W,

wT
( 1

T

T−1

∑
n=0

r[n]
)
≥ ρ

(7)

The authors proceed to tractably formulate the optimisation problem in eq. 4 by splitting the absolute
value and introducing T auxiliary variables γ[i] ∈ R for every sample in the timeframe. The tractable
formulation for the MAD optimisation problem thus becomes

min
w

{γ[0], . . . , γ[T− 1]}

{
1
T

(
γ[0] + γ[1] + · · ·+ γ[T− 1]

)}

s.t. w ∈W,

wT
( 1

T

T−1

∑
n=0

r[n]
)
≥ ρ,

γ[n] + wTα[n] ≥ 0 ∀n,

γ[n]−wTα[n] ≥ 0 ∀n

(8)

Konno and Yamazaki [5] also emphasize that, in contrast to the Markowitz portfolio, this involves
solving a Linear Program (LP) with 2 + T + T = 2T + 2 constraints regardless of investment universe
size.

Comparative analyses have shown that the MAD model is more efficient and robust than the
MV model. G. Kasenbacher et al. [6] demonstrated that the MAD model solves portfolio optimization
problems involving over 1,000 stocks much faster than the MV model by avoiding the Quadratic
Programming (QP) and covariance matrix inversions required. Additionally, Y. Simaan [7] argues that
the MAD model offers a more conservative measure of risk by prioritizing the spread of portfolio
returns from their expected value rather than focusing solely on return variance.

While there is extensive literature on alternative risk measures, such as Keating and Shadwick’s
Omega function [8] which considers higher-order moments of the returns distribution. Our primary
focus, however, will be on evaluating the performance of the MAD risk metric, particularly its
distributionally robust counterpart called DRMAD as proposed by D. Chen et al. [9].

2. Distributional Robustness

In real-world optimization problems, particularly in portfolio optimization, a significant challenge
arises from the uncertainty in estimating parameters, as data often fails to capture the joint density
governing its stochasticity, even at the first and second-order moment level [10]. This uncertainty
necessitates a robust optimization framework that avoids strict assumptions about the underlying
parameter distribution. Distributionally robust optimization (DRO) offers such a solution by adopting
a min-max approach, where the optimization problem is framed as a game between two players [11].

In this game, one player (the minimiser) seeks to optimize the portfolio under the worst-case
scenario, while the other player (the maximizer) finds this scenario by searching for the probability
distribution—within an ambiguity set B—that maximizes the expected cost. Unlike traditional
robust optimization (RO), which focuses on worst-case parameter realizations within a predetermined
uncertainty set U [12], DRO achieves robustness by considering the worst-case distribution itself, based
on partial distributional information such as moments, support, or even distributional proximity [13].
DRO improves model conservatism and robustness against parameter uncertainty by immunizing
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against the worst possible data-generating distribution, rather than just the worst parameter realization,
making it a valuable tool in uncertain environments.

Distributionally Robust Mean Absolute Deviation Portfolio

In 2023, Chen et al. [9] introduced a novel portfolio optimization method called DRMAD by
combining the MAD model with DRO which was shown to yield superior performance in fluctuating
markets as compared to classical models. In our study, their work sets the foundation with which we
explore the robustness and performance of our graph-theoretic sparsification framework. According
to the work of D. Chen et al. [9] the DRMAD portfolio optimization problem is defined as

min
w

sup
P

{
Er̃∼P

{∣∣∣wT r̃−wT Er̃∼P
{

r̃
}∣∣∣} }

s.t. Er̃∼P
{

wT r̃
}
≥ ρ,

P ∈ Bϵ

(
P̂T

)
,

w ∈W

(9)

In contrast to the regular MAD problem defined in eq. 4, the distributionally robust mean absolute
deviation (DRMAD) model incorporates a level of conservatism by framing the optimization task as a
two-player game in which the ambiguity set, denoted as Bϵ(P̂T), is a ball that contains all distributions
that are in close proximity to a distribution estimate.

To contextualise this ball-like ambiguity set, consider a finite set of realisations {r[0], r[1], . . . , r[T−
1]} of the returns vector r̃ ∼ P over a timeframe of T samples. We can estimate the unknown returns
distribution PT using a non-parametric empirical estimate defined as

P̂T =
1
T

T−1

∑
n=0

δr[n] (10)

where δr[n] is a Dirac measure concentrated at the point r[n]. It is reasonable to assume that the true
distribution P is "close" to its empirical estimate P̂T [9]. To formalise this notion of proximity, we
introduce distance measures in the distribution space such as the Wasserstein distance [14].

Specificlly, given two probability distributions P and Q on the same space Ξ, with M(Ξ)
representing the set of distributions supported on Ξ, their Wasserstein distance of order 1, denoted as
W1, is defined as

W1

(
P, Q

)
= in f

Ψ

{ ∫
Ξ×Ξ

dist(r̃P, r̃Q)d(Ψ(r̃P, r̃Q))
}

(11)

where the coupling Ψ is a joint distribution on Ξ× Ξ whose marginals are P and Q, and dist(r̃P, r̃Q) is
an arbitrary distance metric on the space of outcomes. Following the approach in [9], we adopt the ℓ2

norm as our distance function, i.e. dist(r̃P, r̃Q) = ||r̃P − r̃Q||2. This allows us to define a Wasserstein
ball Bϵ in the distribution space which engulfs all distributions that are within a distance ϵ away
from the empirical distribution P̂T. As a result the Wasserstein ambiguity set within the DRMAD
formulation can be analytically defined as

Bϵ

(
P̂T

)
=

{
P : W1

(
P, P̂T

)
≤ ϵ

}
. (12)

As suggested by D. Kuhn and P. M. Esfahani [15,16], it is important to choose the radius
hyperparameter ϵ carefully to balance robustness and computational feasibility, ensuring the solution
remains tractable. We also note that the radius of this ball can be determined by other metrics, such as
the Kullback-Leibler divergence [17].

The DRMAD portfolio optimization problem in eq. 9 is mathematically intractable because it
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is formulated as an infinite-dimensional non-convex optimization problem [18]. This arises from
the Wasserstein ambiguity set, where the inner maximization is performed over a distribution in
an infinite-dimensional space. To overcome this challenge, D. Chen et al. [9] propose a tractable
reformulation by fixing the expected portfolio value as a decision variable, which transforms the
problem into a finite-dimensional convex optimization problem [9]. This reformulation results in two
Linear Programs (LPs), with the optimal solution corresponding to the portfolio weights derived from
the program that yields the minimum cost. According to their work, these two LPs are

min
w

t ∈ R
y1[n], y2[n] ∈ R

{
t
}

s.t. t ≥ 1
T

T−1

∑
n=0

y1[n] + ϵ,

t ≥ 1
T

T−1

∑
n=0

y2[n] + ϵ,

y1[n] ≥ wTµ−wTr[n]− ϵ ∀n,

y1[n] ≥ −wTµ + wTr[n] + ϵ ∀n,

y2[n] ≥ wT µ̂−wTr[n]− ϵ ∀n,

y2[n] ≥ −wT µ̂ + wTr[n] + ϵ ∀n,

wT µ̂− ϵ ≥ ρ,

w ∈W

(13)

min
w

t ∈ R
y1[n], y2[n] ∈ R

{
t
}

s.t. t ≥ 1
T

T−1

∑
n=0

y1[n] + ϵ,

t ≥ 1
T

T−1

∑
n=0

y2[n] + ϵ,

y1[n] ≥ wTr[n]− ρ ∀n,

y1[n] ≥ −wTr[n] + ρ ∀n,

y2[n] ≥ wT µ̂−wTr[n]− ϵ ∀n,

y2[n] ≥ −wT µ̂ + wTr[n] + ϵ ∀n,

wT µ̂− ϵ ≤ ρ,

wT µ̂ + ϵ ≥ ρ,

w ∈W

(14)

where w ∈ RN×1 represents the portfolio weights, µ̂ = 1
T ∑T−1

n=0 r[n] is the sample average of the
observed returns vector over a historical time window of T samples, and y1[n], y2[n] ∈ R are auxiliary
variables for each sample. Additionally, ρ ∈ R once again represents the investor’s target returns,
while the ball radius ϵ ∈ [0,+∞) can be interpreted as the risk appetite .

In the context of portfolio optimization, the investment universe dimension N emerges as a critical
parameter. The inclusion of assets that contribute minimally or redundantly to the portfolio would
complicate the optimization process by increasing the dimension of the Wasserstein ball. This would
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burden the search for the worst-case distribution, and would introduce unnecessary noise into the
system. Additionally, a high portfolio dimensionality results in individual portfolio weights that are
often too small to be of practical significance. Therefore, even though the DRMAD framework remains
tractable under a large number of assets [9], it is advantageous to methodically reduce the problem
dimensionality without sacrificing robustness.

3. Market Graphs

To address the inherent challenges associated with excessive portfolio dimensionality, we propose
a graph-theoretic framework that sparsifies the structure of correlation market graphs, in which
nodes represent assets and the edges connecting them capture historical return data correlations.
This approach systematically eliminates redundant assets by reducing graph density, enabling
the optimization of DRMAD portfolios within a reduced investment universe. Furthermore, this
framework provides interpretability in the asset selection process prior to optimization via market
graph visuals. Despite the demonstrated potential of distributionally robust optimization [9,19] and
graph theory [20–22] in financial applications, their combined application remains unexplored in the
literature. This study endeavors to fill this gap by introducing the integration of market graphs and
sparsification into the DRMAD framework.

Traditionally, graphs are denoted as bold capitalised calligraphic characters, such as V and E .
A set of sets G = (V ,E) is also a set and follows the same notation. Working with set notation to
represent graphs, however, becomes increasingly cumbersome as the number of nodes and connections
grow. To manage this, linear algebra has been established as a ubiquitous mathematical framework
for modeling and analyzing graph structures. Hence, vectors are still represented by bold lowercase
letters (e.g., r ∈ RN×1), and matrices are denoted by bold uppercase letters (e.g., A ∈ RN×N).

In any graph, the interaction strengths between vertices u and v can be represented by scalar
quantities auv ∈ R. These edge weights can then be summarized in a so-called combination matrix
A = [auv] ∈ RN×N , where N denotes the number of vertices, i.e. the cardinality of V [23]. The spatial
relationships among the vertices are naturally captured in the matrix structure by the arrangement of
these weights. The combination matrix A is formally constructed as

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

 (15)

where auv indicates the interaction strength across vertices u and v.
This concise graph representation framework also allows for a logical inversion, where any square

matrix can be interpreted as a graph structure, especially when its elements carry physical meaning.
For example, consider a collection of N asset return realizations rk[n], k ∈ {0, 1, . . . , N − 1}. The
matrix W , as shown in eq. 17 below, can be defined to contain the absolute correlation coefficients |ρij|
between all return pairs (ri[n], r j[n]) in which σij = cov(ri[n], r j[n]) is the sample covariance.

|ρij| =
|σij|
√

σiiσjj
(16)

Subsequently, W takes the form

W =


1 |ρ12| · · · |ρ1N |
|ρ21| 1 · · · |ρ2N |

...
...

. . .
...

|ρN1| |ρN2| · · · 1

 (17)
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where we note that 0 ≤ |ρij| ≤ 1 and |ρij| = |ρji| by construction. To construct the correlation market
graph, nodes representing assets are connected only if they are statistically correlated, with edges
weighted according to the strength of this correlation. Figure 1 illustrates this using 9 randomly
chosen stocks from the S&P500 index, where nodes are labeled by stock ticker symbols and edges are
color-coded to qualitatively represent return data correlations.

Figure 1. Correlation market graph visual for 9 randomly selected S&P500 stocks. Edges represent
the absolute correlation coefficients between pairs of distinct stock return time-series based on daily
closing prices from 31 DEC 2017 until 02 JAN 2019 inclusive.

Apart from aesthetic appeal, the market graph visual offers a geometrical interpretation of our
data. For example, the strong connections between Microsoft (’MSFT’), Cisco (’CSCO’), and Intel
(’INTC’) could reveal overlapping market factors such as industry, reinforcing the need for careful
consideration of the investment universe prior to optimization.

Correlation graphs are typically complete, resulting in a quadratic increase in the number of edges
as the number of nodes grow [23]. The maximum number of edges in an N-vertex complete graph is
given by (N

2 ) =
1
2 N(N − 1), and consequently, the combination matrix A has no null entries, leading

to market graph visuals that can become cluttered and difficult to interpret.

4. Sparsification

Graph sparsification is a process that approximates dense graphs by reducing the number of edges
and nodes based on application-specific algorithms [24]. Several sparsification algorithms exist in the
literature, each employing different methodologies. Zhang et. al [25] use Ricci curvature sparsification
to reduce computational burden in graph neural networks (GNNs), whereas Ahmadinejad et. al [26],
for example, employ a singular value approximation approach as an alternative to standard [27]
(directed) graph approximations. To promote interpretability of the sparsification process, however,
we employ a threshold-based sparsification algorithm on the correlation market graph W as shown
below.

Given some correlation matrix W ∈ RN×N and a correlation threshold 0 ≤ τ ≤ 1, the algorithm
iterates over the upper triangular portion of W . There is no need to iterate over every pair as the
correlation matrix is symmetric by construction, i.e. W T = W . For each pair of assets, if the absolute
correlation is less than or equal to the threshold τ, those assets are added to the set S representing the
new investment universe in which |S| ≤ N.

A visual demonstration of this sparsification algorithm is shown in Figure 2, where it has been
applied on the market graph of the previous section for consistency. Moreover, we employ three
correlation thresholds of 0.6, 0.4, and 0.2 to demonstrate the stock filtering capabilities of the algorithm.
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Algorithm 1 Sparsification of Market Graph

Require: Corr. matrix W ∈ RN×N , corr. threshold τ ∈ [0, 1]
Ensure: A reduced investment universe S of assets (set)

1: S ← ∅
2: for each i = 0 to N − 1 do
3: for each j = i to N − 1 do
4: if W ij ≤ τ then
5: S ← S ∪ {asseti} ∪ {assetj}
6: end if
7: end for
8: end for
9: return S

Note that, initially, the total number of stocks were 9, but after each sparsification procedure, only
case (C) shows a reduced investment universe. In the two remaining cases the graphs were indeed
sparsified but only at an edge level.

Figure 2. Sparsified correlation market graph visuals with an initial 9 randomly selected S&P500 stocks.
Edges represent the absolute correlation coefficients between pairs of distinct stock return time-series
based on daily closing prices from 31 DEC 2017 up until 02 JAN 2019 inclusive. Example (A) shows
edges for asset correlations of at most 0.6, whereas (B) and (C) show edges of correlations of at most 0.4
and 0.2, respectively. Only (C) shows a reduced investment universe.

5. Numerical Example

To evaluate the performance of the DRMAD portfolio under the proposed graph sparsification
scheme we used historical daily stock closing price data from the S&P500’s 100 most liquid stocks
based on average trading volume. The dataset spans the period 31 DEC 2017 to 02 JAN 2024 but we
split it into training and testing sets. The training data (31 DEC 2017 to 02 JAN 2019) was used to
generate portfolio weights, whereas the testing dataset (02 JAN 2019 to 02 JAN 2024) was used to
evaluate portfolio performance based mainly on the Sharpe ratio (SR), which in this study is defined
as the ratio over the average portfolio returns to their standard deviation.

We implemented three DRMAD optimisers using the CVXPY package [28,29] with Wasserstein
radii of 0, 0.1, and 1, respectively. Note that the portfolio weights from the 0 radius case are equivalent
to those produced by a classic MAD portfolio as defined in eq. 8 [9]. Before deploying the optimisers,
however, we also performed our graph sparsification method on the 100-asset correlation matrix using
the threshold values of 0.001, 0.01, and 1. Trivially, when the correlation threshold was set to 1, the
investment universe remained intact, consisting of all 100 stocks, but when using a threshold of 0.01 and
0.001 the number of assets under consideration were reduced to 32 and 9, respectively. It is common
in the literature to also deploy the minimum variance (MV) portfolio (see eq. 3) whose investment
universe will not be subject to sparsification. For consistency, all target returns were set to the
asset-wide average training set return. Finally, we tracked the computational time needed to generate
the portfolio weights under all DRMAD configurations in order to investigate the computational
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efficiency gain due to sparsification.
Subsequently, we applied the obtained portfolio weights to the test-set returns data spanning 5

years. To evaluate performance, we compared the growth of a $1 initial investment in each portfolio
on top of the growth of the S&P500 index during the same period. Figure 3a, 3b, and 3c display the
accumulation of wealth, where each figure displays a set of DRMAD portfolios with common radius
across different sparsification schemes. We also zoomed in the first six months of 2020 to observe the
performance of our portfolios during unforeseen events like the breakout of the COVID-19 pandemic.

(a) Wealth evolution of DRMAD portfolios of radius 0

(b) Wealth evolution of DRMAD portfolios of radius 0.1

(c) Wealth evolution of DRMAD portfolios of radius 1
Figure 3. Growth of a $1 investment placed in the S&P500 index, minimum variance, and
distributionally robust mean absolute deviation (DRMAD) portfolios under various sparsification
schemes of 0.001, 0.01 and 1 correlation thresholds yielding 9, 32, and 100 assets respectively. Target
returns were set to the training set average return.

We immediately observe that all DRMAD portfolios perform the best when the Wasserstein
radius is sufficiently large. In this example, a ball radius of 1 yields the best results. This can be
attributed to the regularizing effect of the radius hyperparameter aiding in generalization by virtue of
distributional robustness. In all of the cases however, irrespective of radius, we notice that the smaller
sized DRMAD portfolios consistently outperform their full 100-stock counterparts. Indeed, there exists
some correlation threshold which reduces the investment dimension without sacrificing generalization,
in fact, improving it. The sparsification process should not be too intense since an investment universe
that is too small could prove insufficient and potentially produce sub-optimal results.

We quantitatively summarize our findings in term of test-set return statistics and optimizer
runtime on table 1. Notice that with only 32 stocks (i.e. a third of our initial investment universe) we
were able to obtain portfolios that offer higher Sharpe ratios (SR) than those with equal Wasserstein
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radius. The best portfolio obtained used said 32 stocks with a radius of 1 resulting in a Sharpe ratio
(SR) of 0.062, surpassing the S&P500 index by 37.8% during the same 5-year period. Even with a radius
of 0.1, the 32-stock portfolio achieves a superior Sharpe ratio compared to the 100-stock portfolio, even
when the latter is allowed a radius ten times larger.

Table 1. Test-set return statistics and optimizer computation time for the DRMAD portfolios under the
proposed graph sparsification framework. Notice that there exists some threshold value resulting in
superior Sharpe ratios (SR) across all radii values. The MV portfolio and the S&P500 index attained the
Sharpe ratios of SRMV = 0.045, and SRS&P500 = 0.044, respectively.

Threshold Radius Returns
avg. (%)

Returns
stddev. SR Runtime

(ms)

0.001
(9 assets)

0 0.065 0.016 0.041 91
0.1 0.074 0.016 0.048 95
1 0.086 0.016 0.053 52

0.01
(32 assets)

0 0.072 0.016 0.046 99
0.1 0.093 0.016 0.059 75
1 0.109 0.018 0.062 75

1
(100 assets)

0 0.060 0.014 0.044 452
0.1 0.078 0.015 0.052 278
1 0.081 0.015 0.054 267

Finally, the best portfolio in this example highlighted with bold font on table 1, required 75ms to
compute, whereas the 100-stock equivalent needed more than triple the time.

6. Conclusions

Our study highlights the effectiveness of reducing the dimensionality of the Wasserstein DRMAD
portfolio optimization method through a threshold-based sparsification procedure. By eliminating
stocks with excessive statistical correlations in historical returns data, we significantly reduce the
computational burden of subsequent optimization efforts and, more importantly, filter out unnecessary
signal noise, thereby improving test-set generalization. Additionally, sparsifying the correlation market
graph enhances robustness and promotes a faithful representation of data’s true stochastic nature,
which is crucial in identifying the worst-case distribution within the Wasserstein ball centered on the
empirical estimate. This novel framework, which couples DRO and sparsification, offers both visual
and mathematical clarity in the decision-making process in a way that is resourceful and interpretable.
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