Pre prints.org

Article Not peer-reviewed version

Remaining Useful Life Prediction in
Varied Operational Conditions
Considering Change Point: A Novel
Deep Learning Approach with Optimum
Features

Subrata Rath " , Deepjyoti Saha , Subhashish Chatterjee , Ashis Kumar Chakraborty

Posted Date: 20 November 2024

doi: 10.20944/preprints202411.1533.v1

Keywords: Remaining Useful Life (RUL); Internet of Things (IoT); Sensors; Bi-directional long short-term
memory (BiLSTM); Feature engineering; Change point

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4020971
https://sciprofiles.com/profile/4021161
https://sciprofiles.com/profile/4029448

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2024 d0i:10.20944/preprints202411.1533.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Remaining Useful Life Prediction in Varied

Operational Conditions Considering Change Point: A
Novel Deep Learning Approach with Optimum
Features

Subrata Rath *, Deepjyoti Saha 2, Subhashis Chatterjee > and Ashis Kumar Chakraborty *

1 Subrata Rath: Statistical Quality Control and Operations Research Unit, Indian Statistical Institute, Pune,
India

2 Deepjyoti Saha, Department of Mathematics & Computing, Indian Institute of Technology (ISM),
Dhanbad, India

3 Subhashis Chatterjee, Department of Mathematics & Computing, Indian Institute of Technology (ISM),
Dhanbad, India

4 Ashis Kumar Chakraborty, Statistical Quality Control and Operations Research Unit, Indian Statistical

Institute, Kolkata, India

Correspondence: srath02@yahoo.com

Abstract: In the era of Internet of Things (IoT), remaining useful life (RUL) prediction of turbofan engines is
crucial. Various deep learning (DL) techniques are proposed recently to predict RUL for such systems, have
remained silent on the effect of environmental changes on machine reliability. This paper has proposed three-
fold aims, (i) to identify the change point in RUL trend and pattern (ii) to select most relevant features, and (iii)
to predict RUL with the selected features and identified change point. A two-stage feature selection algorithm
was developed, followed by a change point identification mechanism and finally, a Bi-directional long short-
term memory (BiLSTM) model has been designed to predict RUL. The study utilizes NASA’s C-MAPSS dataset
to check the performance of the proposed methodology. The findings affirm that the proposed method
enhances the stability of DL models, resulting in an approximate 30% improvement in RUL prediction
compared to popular and cutting-edge DL models.

Keywords: Remaining Useful Life (RUL); Internet of Things (IoT); sensors; bi-directional long short-term
memory (BiLSTM); feature engineering; change point

1. Introduction

In today's Artificial Intelligence (Al)-driven advanced technological era, particularly in the field
of aviation, ensuring the reliability, availability, and performance of aircraft systems is crucial to
prevent unexpected failures, malfunctioning, and breakdowns[1]. One of the most important
techniques in achieving this objective is the accurate prediction of RUL value of turbofan engines[2].
Gradual degradation of reliability and performance of a turbofan engine is a natural phenomenon.
Sensors are used to understand such degradation patterns as well as to track machine conditions
through a machine health index value. This index value is used to predict RUL value[3, 4]. The RUL
prediction offers confidence to the aircraft engineers on how long the engine or its components will
continue to operate effectively before reaching a critical state. The accurate estimation of RUL serves
as a proactive approach in optimal aircraft maintenance, enabling timely interventions and thereby
preventing any untoward incidences of the engine[5, 6]. Aviation engineers and maintenance
personnel can plan and execute maintenance activities optimally by accurately foreseeing the point
at which components might degrade or fail. This predictive maintenance strategy avoids unplanned
downtime, enhances safety, and contributes to a more cost-effective and streamlined operational
processes[7-9].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Due to the rapid advancements in IoT-based sensor technology, a wide array of sensors is now
employed to monitor the operational health of turbofan engines[10]. Leveraging sensor-generated
data, researchers have recently developed different data-driven models to forecast the RUL of these
turbofan engines[5, 11]. A hybrid Autoregressive Integrated Moving Average-Support Vector
Machine (ARIMA-SVM) model was proposed by Ordonez et al.[12] for RUL prediction. In this study,
the ARIMA model has been used to forecast sensor signals over time, and the SVM model was used
later to predict RUL using the predicted sensor signals. Wang et al.[13] developed a Hidden Markov
Model (HMM) for RUL prediction. A data-driven model was developed by Liu et al.[14] considering
various sensor data to predict sensor anomaly and RUL of various complex machines. A fuzzy
inference system (FIS)-based model was developed by Wu et al.[15] to predict the RUL of different
matching tools. Wu et al.[16] utilized an extreme machine learning model to predict the RUL of
lithium-ion battery. Li et al.[17] developed a convolution neural network (CNN)-based model to
achieve better accuracy of RUL prediction. In this study, different time series models were used to
predict the Sensor signals, and then the CNN model was used based on these predicted sensor signals
to predict the RUL. A modified deep CNN model was proposed by Li et al.[18] for RUL prediction.
Most of these studies considered all available sensor-based data for RUL prediction. However, not
all sensors have similar importance in RUL prediction. Therefore, it is important to consider the most
relevant sensors through feature engineering techniques for RUL prediction.

The primary challenge in performance degradation monitoring, machine health checking, and
RUL prediction involves deriving important features from raw data collected from sensors [19].
Generally, various sensors are used to collect information related to time-domain and frequency-
domain-based features with the assumption of a stationary degradation model until a fault occurs.
However, these features might only be effective during specific operational stages, posing limitations.
Additionally, modern machineries often function under diverse operating conditions, complicating
the extraction of representative features. Variations in operating conditions can lead to distinct
degradation models for the same machine, reflecting data dynamics and challenging the usability of
conventional stationary features [20]. One prevalent approach to tackle this challenge is the
utilization of feature engineering methods tailored to degradation patterns in the data. These
methods aim at extracting more relevant features capable of accommodating different operating
conditions. Kundu et al.[21] proposed a Weibull Accelerated Failure Time Regression (WAFTR)
model specifically designed to extract representative features under various conditions. Wang and
Zhao[20] also designed a three-step-based feature selection method to select important features
before prediction of RUL. Buchaiah and shakya[22] proposed a RUL prediction algorithm based on
Bhattacharyya distance and SVM techniques. A random forest algorithm was initially developed in
this study for important feature selection, which helped to achieve better accuracy in RUL prediction
for turbofan engines. Most of these developed methodologies for RUL prediction have assumed
uniform operating conditions following similar and systematic patterns of RUL, which may not be
the case in reality. Therefore, there is a need to develop a RUL-prediction model considering such
changes in operating and environmental conditions.

Changes in the basic levels of operating conditions, environments, and skills to operate and
maintain an engine, with their respective fluctuations around the levels, are expected to change the
trend and pattern of RUL. In this context, the alteration in RUL patterns is identified as a change
point[23]. Finding the exact location of the change point helps to estimate the RUL more accurately.
Therefore, change point detection has recently become a significant and crucial problem for RUL
estimation. Detecting change point in RUL prediction involves analyzing various data obtained from
sensors or monitoring systems attached to the equipment. Wen et al.[24] proposed a model initially
to predict the change point location in RUL. A dual-long short-term memory (LSTM) model was also
developed by Shi and Chehade[25] to find the location of change point in RUL. In this study, they
showed the performance of their developed model is better than baseline deep learning models. The
identification of these change point locations allows predictive maintenance models to adapt or be
revised in response to the machinery's evolving behaviour, thereby enhancing the accuracy of RUL
estimations.
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Turbofan engine, with its multi-dimensional complexity and dynamics, makes it extremely
difficult to predict its health condition and RUL. Therefore, deep neural network models are more
suitable for prediction than classical machine learning models, and the same is discussed in recent
literatures[17, 18, 26-30]. Among various deep learning models, Bidirectional Long Short-Term
Memory networks (BiLSTMs) hold significant importance in time series data modelling, especially
in tasks requiring context from past and future information[31]. BiLSTMs offer advantages over
traditional LSTM networks and other Recurrent Neural Networks (RNN) as they can simultaneously
capture information from preceding and succeeding sequences, diminish information loss during
network training, and model long-term dependencies in sequential data[32]. In this article, a BILSTM
network has been developed to predict RUL for turbofan engines. For RUL prediction, initially a
feature selection algorithm has been proposed in this article to identify crucial features from a pool
of sensor data. This algorithm not only discerns important features but also tracks the weights of
these features, aiding in subsequent RUL prediction. It acts as a filter, eliminating unnecessary sensor
signals for accurate RUL prediction. An algorithm for change point detection has also been proposed
here based on the selected features to identify the change point location for every engine. This change
point analysis, conducted on the chosen features, significantly contributes to RUL prediction in this
study. Finally, a BILSTM model has been proposed here based on selected sensors and change points
to predict the health index as well as the RUL value of turbofan engines. The main contributions of
the paper can be summarized as follows:

e Proposing a new feature selection algorithm to identify the most important features from all
sensor data for RUL prediction. This proposed algorithm also keeps track of the feature weight
corresponding to each important feature, which helps to predict the RUL later. The feature
selection algorithm is a prerequisite to filter out the unnecessary sensor signals for RUL
prediction.

¢ Introducing a logistic regression-based algorithm for change point detection for each engine on
the basis of their respective selected important features.

e  Designing a BILSTM network for prediction of RUL with the optimal number of sensors so that
both long-term and short-term dependencies within the sensor can be characterized
bidirectionally via the BILSTM network. Therefore, historical information can be preserved as
much as possible and used for health index as well as RUL prediction.

¢  Demonstrating the superior performance of the proposed methodology on the basis of C-MAPSS
data and comparing the performances with some existing models.

Before delving into the specifics of the paper, structural flow in this article is outlined in five
sections. Having introduced the study in section 1, the subsequent sections have been laid out. Section
2 provides the essential backgrounds and related mathematical formulations needed for this study.
The details of the proposed methodology are described in Section 3. Section 4 demonstrates the
experimental setup and performance comparison of the proposed methodology against existing
models, and finally, Section 5 offers concluding remarks.

2. Prerequisites

This section introduces some mathematical and other theoretical background knowledge and
information required to develop the proposed model of RUL prediction. In this study, a special kind
of Recurrent Neural Network (RNN) network called Bidirectional Long short-term memory
(BiLSTM) has been used for RUL prediction. Details of different deep learning techniques like:
Recurrent Neural Network (RNN), Long short-term memory (LSTM), and Bidirectional Long short-
term memory (BiLSTM) have been described in this section.

2.1. Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) are the extensions of conventional feed-forward neural
networks, which can take care of sequence data. Unlike a unidirectional feed forward neural network,
a bidirectional artificial neural network permits information to flow in both forward and backward
directions[33]. That indicates the output from certain nodes can influence subsequent input to the
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succeeding nodes in a network environment. Capability of the network utilizes internal memory to
handle various sequences of inputs suitably for the prediction of different tasks such as handwriting
recognition, speech recognition, etc. The pictorial representation of an RNN model has been given in
Figure 1. A formal definition of RNN can be given as follows:

t t t t t
a =(a,,a,,...,a,,...,a
Let us assume ( D=2y B T) t

represents RNN memory at time step t. Then, RNN can be updated its memory with the formula

represents input vectors with length T and

using:
k,=a(S,.a,+Sk,_,+b,) )

where o(p) is a nonlinear activation function (e.g., logistic sigmoid function or hyperbolic tangent

: S,,S : . . . .
function), ~*’~Mare weight matrices, and " !is a constant bias for time stamp t.

l Output Layer: Y

-

| Input Layer: X

Figure 1. Architecture of an RNN model.

Generally, two problems can be looked at while training a RNN model; one is known as
“vanishing gradients”, and the other is known as “exploding gradients”. The information passes
through many layers, and it will vanish or wash out by the time it reaches the last layer or the first
layer. This phenomenon is called as “vanishing gradients”. On the other hand, “exploding gradients”
refers to the cases in which information about the gradient becomes large when it passes through a
lot of layers. It will then result in a very high gradient when it reaches to the last layer or first layer.
These problems make it hard to train the network. These problems can be solved by truncating or
squashing the gradients[25].

2.2. Long-Short Term Memory (LSTM)

Due to difficulties created during training RNNs, a new RNN technique called long short-term
memory (LSTM) model was developed to tackle the long-term dependencies of input data by
Hochreiter and Schmidhuber in 1997[34]. LSTM model is an extension of the RNN model developed
to address the vanishing gradient problem. The LSTM memory is called a “Gated” cell, where the
decision to preserve or ignore of the information is made. An LSTM model takes the information
from the input features and keeps the information in the cell for a long period of time. The
information, that is deleted from cell, is decided based on allocated weights on the features while
training the model[35]. The architecture of the LSTM model is given in Figure 2.


https://doi.org/10.20944/preprints202411.1533.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2024 d0i:10.20944/preprints202411.1533.v1

Hidden Layers
[
7]
-
=
e
)
—
=
T
7]
-
=

[ | O N

Figure 2. Architecture of an LSTM model.

The LSTM model generally consists of three gates like: “Forget gate”, “Input gate”, and “Output
gate”.

2.2.1. Forget Gate

In this gate, a decision is taken for preserving or deleting information. The preserving or deleting
the information depends on the allocated weights of the input features. A sigmoid function is used

in this gate during training the LSTM model. The decision is made based on the values of K12, .
The output of the gate, Mt , lies between 0 and 1. Here, 0 indicates total forget about the feature and
1 implies preserving the whole information about the feature. Mathematically, the formula can be
written as follows:

M, =o(SymlK. 1], Smla ] by) )

b
where O is the sigmoid activation functionand ~M is the bias.

2.2.2. Input Gate

In this gate, a decision is taken on whether new information is added or not in the LSTM
memory. This gate contains two layers: one is the sigmoid layer, and the other is the tanh layer. Based
on sigmoid layer, it is decided whether the information is required or not, and the tanh layer updates
the memory by adding information related to important features. The outputs of these two layers are
computed by the formula:

N, =Skl Snlac] by) 3)

L =tanh(S, [k, 1.5,[a,].b,)

(4)

N L
where ' !'represents whether the values are updated or not and ~!represents the new values that

will be added to the memory. Here, by and b, are the biases of the sigmoid and tanh layers
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respectively. Finally, the combination of these two layers is used to update the value in the LSTM
memory. The formula used for the upgradation of the memory value is as follows:

L, =M, xL,,+N,xL, 5)
where M, is the output of the forget layer, whose value lies between 0 and 1.

2.2.3. Output Gate

In this gate, two operations are performed. Initially, a sigmoid activation function is used to
decide which specific features are going to contribute the output. A nonlinear tanh activation function
is then used on the output of input layer, which values lie between -1 to 1. Finally, the result is
multiplied by the output of the sigmoid layer of this gate. Mathematically, the formula can be written
as follows:

0O, =0(S,o[k1]Siola ], bo) (6)
h,=Opxtanh(L) )

by . . 0,. . :
where ~9is the bias of the output layer, ~ 'is the output value, and is the output representation as a

and

value between -1 and 1. Due to increase in the interdependency of explanatory variables, capturing
the context of future information becomes crucial with capturing the context of past information.
LSTM model can capture only past information but not future information. To acknowledge this
issue, a bidirectional LSTM model was developed later. The detailed architecture of the BiLSTM is
given in the next subsection.

2.3. Bidirectional Long Short-Term Memory (BiLSTM)

The BiLSTM model is the extension of the LSTM model, which consists of two LSTM models[31].
The primary advantage of using a BILSTM over an LSTM is its ability to capture context from past
and future information and use it during testing. This bidirectional approach helps in understanding
the context of a sequence more comprehensively, making it particularly useful in tasks where the
complete context of the sequence matters, such as various time series prediction problems like
predicting RUL in a machine. During BiLSTM model training, one LSTM model is trained as a
forward layer, and the other LSTM model is trained as a backward layer to the input features.
Applying two consecutive LSTMs helps to increase prediction accuracy[32]. An architecture of the
BiLSTM model is given in Figure 3.

Selection Algorithm

l_*

Proposed Feature }

Sensor Data ans:der Each Data . Optimised Health Conditions
Collection ensorasa Normalisation Features Modelling
Feature L [ et ) AT . oseesel )
h 4 ‘
BIiLSTM for Assignment of Health Logistic Regression
Health Index ¢ Index Value Considering based Algorithm for
Prediction Predicted Change Point Change Point Detection

\

S,

RUL Prediction

Figure 3. Architecture of a BILSTM model.
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Figure 3 shows how two LSTM models work together in forward and backward layers for RUL
prediction. The details of the proposed methodology have been discussed in the next section.

3. Proposed Methodology

A novel methodology has been proposed in this study to predict RUL value of turbofan engines.
Collected data from various sensors are utilized as inputs for the RUL prediction. The proposed
methodology consists of five steps are as under:

e normalization of the input features,

e  optimal feature selection from all the sensors,

e  change point detection for each turbofan engine,

e  predict the health index of turbofan engines,

e  RUL prediction based on the health index values for each turbofan engine.

Figure 4 depicts the workflow of the proposed methodology. The detailed steps of the proposed
methodology have been described in the following subsections.

Y1 [H Y2 fe— Y3 fe—. Yn e

Output Layer

Backward
Layer

7Fon~ard
Layer

Input Layer

Figure 4. The flow diagram of the proposed methodology.

3.1. Feature Normalization

Incompatibility, inconsistency, and computational complexity in terms of measurement unit,
values, and variations of features, to connect while relating the RUL values requires normalization of
input features. This process also aids in outlier detection (if available), that is crucial for accurate RUL
predictions. Therefore, a standard normalization formula is applied to input features for the
development of RUL prediction model. In this study, the min-max rescaling technique is employed
to normalize input vectors within the range of 0 to 1. Following the proposed methodology steps, the
subsequent stage involves determining the most significant features from the pool of available
features.

3.2. Feature Selection

Feature selection aims to consider only important features without compromising the prediction
accuracy of the prediction model and reducing computational complexities. The emphasis is on
removing redundant or noninformative variables that make negligible contributions to the
performance of the RUL prediction model or might induce overfitting concerns. Pertaining to RUL
prediction, the identification of the most pertinent features from sensor data aids in constructing
predictive models capable of more precise estimations regarding the remaining life span of machines
or systems. This subsequently enhances maintenance planning and the allocation of resources. This
study introduces a two-stage-based methodology for feature selection, as elaborated in the proposed
feature selection algorithm outlined in the next subsection. The progressive flow of development and
working of the proposed model is available in Figure 5.
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Figure 5. Flowchart of the proposed feature selection algorithm.

3.2.1. Proposed Two-Stage Feature Selection Algorithm
D={S,.S,,...., SiN}, Target set ={RUL,} for 1=10)N.
Parameter: N: number of input features, n: number of total observations

Output: Optimized feature set T=[Jand FW =];
1¢t step: Step for removal of irrelevant features
for j in 1: Total number of features (N)

Input: Input feature set

S.
Consider 'and RUL columns

S.
Sort and rank R !and RUL columns
2

D. )
Calculate ~'= difference between two rank columns and !

6 x Zn: Di2
__ =

pi=l-—

Calculate n(n"-1)

[>0.05

S.
Add ! toTand update T
Collect Ip J | as weights and add to FW
else

Remove from the list

end
end

2nd Step: Step for removal of redundant features and collect feature weights

N’
dw (ai ’ aj) = Zwrz{(xir - Xjr) zil(xir - Xjr)T}
Define r=1 # where > is covariance matrix of

input features and T is used for transpose of the matrix and w is weight matrix.
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K(p) = exp(—§>

A(yi’yi ') :| Yi _yi'|

output of multi-linear regression model

Define ¢ Oisa constant

Define # absolute distance between two points and yi is the
Input: N" is the number of features after removing irrelevant features
foriinlton

forjinlto N’

i~ N
Z k(dw(xi’xj))
j=1, j#i
end
NE
A = D S;A(RUL,RUL,)
=1, j=i

n N'
Fw)==x YL+ > w,?

Formation of optimization function: N ia r=1
previous step

end

Divide training data in 5-parts for model training and validation

Train f(w) based on 4 parts and validate on 1 part

forjin1to N’

# Consider weight matrix of

W
Collect weights 1 from optimized model

W, = ——
i
2w,
i
end
Optimized feature set — OF =[] and normalized weight — NW = [I
w. >0.04
if )
S . W, )
Add ! inOF and collect ! and store in NW.
else
Remove as redundant feature
end

This proposed algorithm helps collect optimal features and the weights (in normalized form)
corresponding to each selected feature, which influence the health condition and RUL value of the
turbofan engines. Following the feature selection process, the subsequent subsection conducts a
change point analysis based on the chosen features.

3.3. Change Point Detection

As the flowchart of the proposed methodology in Figure 4 shows, once the data with optimal
features are fully prepared, the third step is to detect the change point for each engine based on the
multi-sensor data. Machines or equipment may operate under changing conditions, prompting the
need to detect shifts or changes in their operational context, such as variations in operating
conditions, maintenance activities, or external influences. Detecting these change points allows for
adjustments or updates to predictive maintenance models to accommodate the evolving behaviour
of the machinery. In this study, a change point analysis has been conducted for RUL prediction. The
sensors, selected through the proposed feature selection algorithm, serve as input for the change
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point detection process. A logistic regression model has been trained to pinpoint the change point
location for each Turbofan engine.

a,=[a,",a%,...,a"]

At time t, the input represents the normalized sensor data, where N’

is the optimal number of features selected based on the proposed feature selection algorithm. If m is

A(t_m)it = {at_m yueny at}

the number time stamps, represents N’ dimension-based input values from

time t-m to t and Y indicates the machine condition at time t. Due to changes in operational

conditions, machine performance degrades after a certain period. Therefore, Ye also changes when
performance degradation starts. Mathematically, it is defined as follows:

Y=

=1 before the degradation process

=0 after the degradation process starts

Yi

Considering the multi-sensors input values, A and the output machine condition value, !,
the logistic regression model has been trained to detect the location of the change point. The proposed
change point detection approach helps to identify change point of different Turbofan engine and to
predict Health index as well as RUL for turbofan engine accurately. The detailed methodology of the
health index prediction of turbofan engines has been described in the next subsection.

3.4. Health Index Value Prediction

Most of the existing RUL prediction methodologies directly predict the RUL value for various
turbofan engines by directly inputting multi-sensor data into the model. The true RUL value for each
engine is represented as a piecewise linear function due to the existence of a change point. Prior to
the change point, which signifies the onset of performance degradation, the RUL value remains
constant. Subsequently, following the start of the degradation process, the RUL value experiences a
linear decrease until it reaches zero. Consequently, direct RUL prediction based solely on multi-
sensor data might not be suitable. Furthermore, machines operating at the same health condition
level may exhibit varying change points over their respective spans of life. Hence, predicting the
health index value proves more crucial than directly estimating the RUL value. In this study, a health
index function has been designed to address the impact of the change point issue. Mathematically,
health index function, i.e., HI(t) of an engine, is designed in this paper as follows:

1 ift>Tcp
HI(t) ={1_Te 5 T <t<Ts (g
f~Tep
0 otherwise

where Tcris the change point and Ti is the life span of the engine. To predict HI values in this article,
a BiLSTM model has been proposed based on the input features A(t) and the output HI(t). During
BiLSTM model training, effective feature weight initialization ensures that the network can efficiently
extract relevant information from the input data, improving its ability to discover the hidden patterns
and dependencies following the sequence, which is crucial for accurate RUL prediction. Due to this
reason, the weights for input features predicted by the feature selection algorithm are used as initial
weights for training the BILSTM model. To optimize performance, Adam algorithm has been used in
this article to train the BILSTM model. Finally, the loss function that is used for the training BILSTM
model is given as follows:

Loss = HI(t) — predicted (HI(t)))* / N
2 )

©)
The predicted values of the health index are used in this article to predict the RUL values.

3.5. RUL Prediction
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The final stage of the proposed methodology is to predict the RUL values for the turbofan
engines. RUL of a turbofan engine is defined as the length from the current time to the failure time.
Mathematically, RUL can be calculated as follows:
RUL = total life span T; — current timet (10)

Total life span of an engine, Ti is predicted in this article based on equation (8), which helps to
estimate the RUL of different engines. The performance of the proposed methodology has been
checked in the next section.

4. Experiments and Results

This section aims at discussing about the salient features of the results obtained from the
proposed methodology. The methodology also involves inducting the results to similar systems.
Performance of the proposed methodology is then compared with the most relevant baseline
methodologies as well as the recently developed compatible methodologies[26, 36]. To assess the
consistency of the proposed methodology, a BILSTM model with two hidden layers has been trained
and tested. The weights from proposed feature selection algorithm are used here as initial weights of
BiLSTM model. To compare the performance among the proposed model and the other models, three
metrices viz. root mean square error (RMSE), mean absolute error (MAE), and relative percentage
error (RPE) are used[25]. The detailed discussion about performance metrices, and results are
showcased in the following subsections.

4.1. Implementation of Proposed Methodology

To implement the proposed methodology, a min-max normalization technique has been applied
initially to all input features. The proposed feature selection algorithm has been then applied to select
most important features. This proposed algorithm also include collecting the weights of all important
selected features, which are used later to predict RUL values. Based on selected features and RUL
values of turbofan engines, a change point analysis has been performed. The logistic regression
technique has been used for change point analysis. A BILSTM model has been designed to predict
the health index values of turbofan engines. The proposed BiLSTM model contains four layers: one
input layer (multi-sensor data), two hidden layers with 128 neurons and 20 look-back time-steps, and
one output layer (Health index). Adam optimizer is used with learning rate 0.01 and a batch size of
100 for 60 epochs. Finally, predicted health index value is used finally to predict RUL value of the
turbofan engines. The performance of the proposed methodology is validated on C-MAPSS data. The
details of the dataset are described in literature [37].

4.2. Performance Metrics

To compare the performance among the proposed methodology with other models, three
performance metrics are used here.

3.2.2. Root Means Square Error (RMSE)

The "root means square error” (RMSE) is a statistical metric used to measure the average
difference between observed and predicted RUL values. It calculates the square root of the average
of squared differences between predicted and observed values. RMSE provides a way to assess the
accuracy of a predictive model by quantifying the magnitude of errors between predicted and
observed values. Mathematically, the formula can be written as follows:

RMSE = \/EZ(Observed — Predicted)?
n
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3.2.2. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is a commonly used metric in machine learning, especially for
regression problems. It measures the average absolute difference between the predicted values
generated by a model and the actual observed values in the dataset. Mathematically, the formula can
be written as follows:

MAE = EZ| Observed — Predicted |
n

3.2.1. Relative Percentage Error (RPE)

In machine learning, percentage error or relative error is a way to evaluate the performance of a
model’s predictions in comparison to the actual values. While it might not be a direct evaluation
metric used in many machine learning libraries, it can be derived or used to interpret model
performance. Percentage error in machine learning is often calculated similarly to how it is calculated
in general:

Observed — predicted| 100%
Observed |

According to the definitions of three metrics, the best fitted model for RUL prediction is the one
that results smallest RMSE, RPE and percentage error value.

Percentage error ="

4.3. Performance Comparison and Discussion

Based on the proposed two-stage feature selection algorithm (mentioned in section 3.2), 14 most
important features have been selected. The normalized weights of the selected features have been
collected and is available in Figure 6. The normalized weights of the features help to estimate the
RUL values of turbofan engines later. The black points in this Figure 6 indicate the normalized
weights of the selected features.
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Figure 6. Selected features and their normalized weights based on proposed algorithm.

Based on the selected 14 important features, change point for each engine are detected based on
the change point detection algorithm here. The algorithm is mentioned in subsection 3.3 and is
visualised in Figure 7 for a sample engine. Performance accuracy of the RUL prediction model
depends on two factors viz. the relevant features selection and exact location of change point
detection. Figure 7 shows that the change point has been detected at 81 time-point for third engine
which is very closer to the actual change point (85 time point) based on the proposed methodology.
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Figure 7. Predicted change point for third engine based on change point detection algorithm.

Various machine learning models and deep learning models are now employed to compare the
performance of different models. The parameters of the compared models are given in Table 1.

Table 1. Different parameters of the compared models.

Number of hidden
Model name Number of models layers with number Learning rate Number of epochs
of neurons
Bidirectional long Single model 2 and 128 0.05 60
short-term memory
1 hort-
ong short-term Single model 2 and 128 0.05 60
memory
Elman neural Single model 2 and 128 0.05 60
network
Artificial neural Single model 1 and 128 0.05 60
network

Ensemble model 20 no of decision tree =~ -———---

In this article, three machine learning models like: decision tree, support vector machine,
artificial neural network model, and ensembling decision tree model are used for comparison of the
proposed model’s performance. The performance of the proposed model is also compared with deep
learning techniques like: Elman neural network model, LSTM model, and bidirectional LSTM

(BiLSTM) model. Table 2 gives the performance analysis of the proposed methodology and other
different models.

Table 2. Performance comparison of different RUL prediction models.

Model name RMSE MAE Percentage error
Decision tree? 97.58 81.32 52.20
Support vector machine? 69.69 54.67 34.82
Ensembling model? 88.65 73.52 42.98
Artificial neural network# 83.69 69.95 45.68
Elman neural network?® 79.91 65.71 39.84
LSTMS 64.72 51.01 17.27
BiLSTM” 51.22 48.21 15.23

Change point based BiLSTM? 26.80 31.16 11.18



https://doi.org/10.20944/preprints202411.1533.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2024 d0i:10.20944/preprints202411.1533.v1

14

Feature selection with BiLSTM? 51.1 48.32 16.12
Proposed model™ 18.71 21.08 8.07

Table 2 presents the comparison results derived from FD001 dataset based on three evaluation
metrics. Bold entries in Table 2 describe the performance metrics of the proposed methodology. Based
on the performance analysis, the proposed methodology achieved the best RUL prediction (lowest
RMSE, MAE, and percentage error). It means the proposed methodology can be very useful for RUL
prediction problem. Four machine learning models (superscript as 1, 2, 3, and 4) have higher RMSE,
MAE as well as RPE than every deep learning model values. It indicates that deep learning approach
is more appropriate for RUL prediction. Table 2 also shows that change point detection is very
important as it makes prediction more accurate. A precise change point detection can give more
accuracy for RUL prediction. In the proposed methodology, the feature selection algorithm and
change point detection make the prediction more accurate. Therefore, the proposed methodology can
be utilized for more accurate RUL prediction.

5. Conclusions

To predict remaining useful life (RUL) values of turbofan engines accurately, this article
introduces an innovative hybrid model that combines logistic regression with Bidirectional Long
Short-Term Memory (BiLSTM). Various sensor data have been utilized here to predict RUL values
through machine health index. During RUL prediction, two persistent challenges encountered are
the presence of both relevant and irrelevant features and the occurrence of change points in RUL. Not
all sensors used to contribute equally to RUL prediction, prompting the introduction of a novel
feature selection algorithm aimed at gathering the most crucial sensors for prediction. Therefore, a
feature selection algorithm has been proposed in this paper. Due to variations in operational
conditions and increased structural complexity of the machines, RUL prediction becomes
exceedingly challenging. Due to this reason, this article conducts a change point analysis on the
selected sensors. Finally, a BILSTM model has been designed to predict the RUL values of turbofan
engines. The proposed RUL prediction model has outperformed the existing machine learning and
deep learning models. Besides, the outstanding RUL performance achieved, the proposed
methodology also helps to ensure the reliability and availability of the machines as well as minimize
the maintenance costs.
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