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Abstract: Large Language Models (LLMs) have been proven remarkable in natural language
processing, which prompts numerous works on knowledge extraction, knowledge fusion, knowledge
representation, and knowledge completion. Existing works mainly focus on static multi-relational
knowledge graph (KG). Unlike static knowledge graph, temporal knowledge graph (TKG) contains
temporal information and evolves over time. Learning and reasoning about the representation
of temporal knowledge graph are more difficult. Training or fine-tuning LLMs for temporal
graph related tasks incurs significant computational overhead and requires the design of prompts.
Conducting tasks of TKG does not necessarily require such complex work. Therefore, we explore
temporal knowledge graph completion (IKGC) based on pre-trained "small" language model. We
propose TKG-BERT by applying BERT for temporal knowledge graph completion and classification.
Specifically, We introduce three ways to model temporal knowledge in TKG-BERT: vanilla knowledge
embedding (Van.), explicit time modeling (Exp.) and implicit time modeling (Imp.). TKG-BERT(Van.)
only adopts static knowledge without embedding time information; TKG-BERT(Exp.) embeds
timestamp in quadruple explicitly; TKG-BERT(Imp.) models time implicitly, by dividing the
training set and testing set in chronological order. We conduct experiments on ICEWS14 and
ICEWS05-15, which are two public temporal knowledge graph datasets. Various experiments of
temporal knowledge graph completion and classification tasks show the effectiveness of pre-trained
language model for TKG completion. We also compare the performance of TKG-BERT accross
different time modeling way and proportion of training set.

Keywords: knowledge graph; knowledge graph representation; temporal knowledge graph;
pre-trained language model

1. Introduction

Knowledge graph is a kind of graph-structured data for representing knowledge, which supports
knowledge reasoning. Knowledge graphs are widely used in various applications such as information
retrieval, recommendation, and natural language processing. However, most existing knowledge
graphs are incomplete and need to be reasoned and completed. Regarding this purpose, Knowledge
Graph Embedding (KGE) transforms knowledge into low-dimensional vector space, to obtain the form
of quantifiable, computable and reasonable knowledge for knowledge graph completion. Existing
KGE methods can be classified into two categories: static KGE and temporal KGE. Static knowledge
embedding considers the representation of static triples without considering changes in entities
and relations along with time. Temporal knowledge embedding focuses on modeling the dynamic
evolutionary properties of knowledge.

There are two main categories of approaches to modeling temporal knowledge: timestamp
transformation-based models and snapshot-based models. Timestamp transformation-based models
represent timestamps within text. They incorporates timestamps into embedding vectors of entities or
relations, or model time using hyperplane projections. Snapshot-based models represent temporal
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knowledge as a sequence of graphs, and using time-and-graph or time-then-graph to model graph
structures [1]. Figure 1 is a temporal knowledge graph example, and some of its knowledge is
represented in quadruple displayed in Table 1. The relation between entities consistently vary with time.
The difficulty in complete temporal knowledge graph is modeling temporal information accurately to
help complete historical knowledge or predict future fact.

1 . .

Dominican Republic Dominican Republic Dominican Republic
Express intent te Arrest, detain, or Consull Consult
meet or negotiate charge with legal action ~ Threaten  ‘ost a visit

t, ts ts time axis

B = @ oo i g

Joseph Robinette Imlgig';’ ants Caribbean Turkish Airlines Joseph Robinette
Biden (Cuba) Community Biden »
Haiti
Figure 1. Example of temporal knowledge graph.
Table 1. Examples of temporal knowledge represented by quadruples.
subject entity relation object entity timestamp

Joseph Robinette Biden Express intent to meet or negotiate Dominican Republic t1
Dominican Republic Arrest, detain, or charge with legal action =~ Immigrants (Cuba) t2
Carijbbean Community Threaten Dominican Republic t3
Dominican Republic Host a visit Turkish Airlines t4
Joseph Robinette Biden Consult Dominican Republic t5

LLMs have demonstrated remarkable success in natural language processing tasks. This leads
to numerous research efforts in knowledge extraction, fusion, representation, and completion using
pre-trained language models. However, there are the following challenges in directly applying large
models to temporal knowledge graphs: 1) Calculation threshold: Training and fine-tuning large
models require a significant amount of computational resources; 2) Prompt requirement: The use
of large models requires the design of high-quality prompts; 3) Adaptation problem: The graph is
generally sparse, and using large models can easily cause overfitting.

Recently, researchers have explored the design and application of small pre-trained language
models (SLMs), and various small model architectures have emerged [2]. The performance of
small models in certain tasks is not inferior to that of large models, indicating that the task of
completing temporal knowledge graphs may be relatively effective through simplified language
model architecture.

Driven by this motivation, we explored the application of BERT, the most basic pre-trained
language model (PLM) architecture whose parameter number is far less than LLM, in tasks related to
temporal knowledge graphs. We propose TKG-BERT (Temporal Knowledge Graph by Bidirectional
Encoder Representations from Transformers). Our approach extends the capabilities of pre-trained
language models to capture temporal aspects by introducing three methods for modeling temporal
knowledge: vanilla knowledge embedding, explicit time modeling and implicit time modeling.
These methods leverage the pre-trained representations learned by BERT and aim to enhance the
understanding and completion of TKGs. We conduct experiments with various temporal models and
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explore the capacity of TKG-BERT to model temporal knowledge. The contributions of this paper are
summarized as follows:

¢ Application of pre-trained language models to temporal knowledge graphs. This work explores
the utilization of PLMs, specifically BERT, for temporal knowledge graph completion. It extends
the application of PLMs beyond static KGs and investigates their effectiveness in capturing and
modeling temporal aspects.

¢ Three ways for temporal knowledge embedding. We introduce three methods: vanilla knowledge
embedding, explicit time modeling and implicit time modeling for embedding temporal
knowledge. Main fine-tuning tasks includes masked entity modeling, masked relation modeling,
and tuple classification modeling.

¢ Evaluation of PLM capacity for temporal knowledge modeling. We conducts experiments on two
temporal KG datasets to assess the capacity of TKG-BERT in temporal knowledge completion.
It evaluates the ability of TKG-BERT to conduct knowledge reasoning under different time
modeling ways.

The rest of this paper is organized as follows: Section 2 provides an overview of related work in
temporal knowledge graph embedding and pre-trained language models for KGE. Section 3 gives the
notations and problem definition. Section 4 presents the model architecture, and three time modeling
methods of our proposed approach TKG-BERT. Section 5 describes the experimental setup and presents
the results and analysis. Finally, Section 6 gives the discussions and conclusions of this research.

2. Related Work

In this section, we first introduce related research of temporal knowledge embedding, and then
introduce some work of pre-trained language model for KGE.

2.1. Temporal KGE

Temporal knowledge graph embedding (TKGE) methods usually extends static KGE methods
to model the information of temporal feature interactions, so as to learn the accurate knowledge
embedding. TKGE has become the focus and attracted numerous scholars to explore in recent years.

Timestamp-based models includes tensor decomposition models and timestamp
transformation-based models. Tensor decomposition models [3-6] decompose the tensor into
low-dimensional matrices and consider timestamps as an additional mode of tensor, and then
low-dimensional representations for timestamps are learned for the score measurement. Timestamp
transformation-based models [7-10] regards timestamps as a transformation to learn the embedding
for entity and/or relation corresponding to the specific time.

Dynamic-based embedding models [6,11-14] aim at capturing the objective occurrence sequence
or evolved mechanisms by encoding the dynamic relations. For example, flowering usually
occurs before fruiting. Such sequential characteristics of such events can be modeled by these
models. Snapshot-based models [15-18] divide the original knowledge graphs into a series of
snapshots or subgraphs, so that the evolving subgraph that has varying relation connections can
be learned. Historical context-based models [10,16,17,19,20] rely on historical information to enhance
the representation of dynamic knowledge.

The above embedding models are all designed for temporal knowledge graph, and they are
inadequate in capturing the global information of knowledge graph. Moreover, the existing TKGE
models are easy to lose the potential temporal semantic information.

2.2. PLM for KGE

Pre-trained language model [21-25] have been studied to encode KG. These methods mainly
extend self-attention to learn long-range pairwise relations in common graph, and learn rich structural
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and semantic information. In addition, some works attempt to change the input form of transformer
or improve the architecture of transformer to form a unified model.

With the further application of pre-trained language model in graph, especially
transformers-based models, various efforts for static knowledge graph embedding have been explored.
Among them, KG-BERT [26] takes triples in knowledge graph as textual sequences as the input of
pre-trained language models such as BERT [27]. PKGC [28] converts each triple and relevant attributes
into prompt sentences, and further fed into PLM. HittER [29] designs a hierarchical Transformer for
KGE, and uses entity and context information as key additional information. KGTransformer [30]
uses masked pretraining and fine-tuning strategies based on transformer. SimKGC [31] applies
contrastive learning to KGE. The proposed method include three types of negatives: in-batch negatives,
pre-batch negatives, and self-negatives which act as a simple form of hard negatives, which improves
the performance of PLMs in KGE. Relphormer [32] uses Triple2Seq and uniformly regards entities and
relations as nodes. In addition, the proposed structure-enhanced mechanism effectively preserve the
important structural information in the context subgraph, which is particularly beneficial in handling
complex structure knowledge.

For temporal knowledge graph, TEMT [33] predicts time intervals of facts by fusing their textual
and temporal information. It also supports inductive inference by utilizing PLMs. PPT [34] converts a
series of sampled quadruples into pre-trained language model inputs and convert intervals between
timestamps into different prompts to make coherent sentences with implicit semantic information.
However, these method all involve the design of prompt to achieve a slight improvement.

3. Notations and Problem Definition

We first list the general notations used in model description in Table 2, and define the problem of
temporal knowledge graph.

Table 2. Notation description.

Notation ‘ Description

temporal knowledge graph
entity set
relation set
timestamp set
quadruple (s, v, 0, t)
subject entity
relation
object entity
timestamp

0o 2T v JIA<CTQ

A temporal knowledge graph G can be formalized by quadruple g = (s, r, 0, ), which is a triple
with timestamp ¢. The quadruple denote an fact that happen at timestamp ¢, wheret € 7. s € V and
o0 € V are subject entity and object entity, respectively. r € R denote a relationship fact between s and
0. The notations used in this seciton are listed in Table 2.

There are three common tasks of temporal knowledge embedding: entity prediction, relation
prediction, and tuple classification. Entity prediction is to predict the missing subject entity s in the
incomplete quadruple (?, 7, o, t) or the missing object entity o in (s, 7, ?, t). Relation prediction is to
predict the missing relation  in (s, ?, o, t). Tuple classification is to determine whether the given tuple
(s, r, 0, t) is correct or incorrect.

For ease of reading, the abbreviations and meanings of the three models proposed in this study
are listed in Table 3, as well as the abbreviations and explanations of the knowledge graph completion
tasks that were adopted.
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Table 3. Abbreviation of models and tasks.
Model ‘ Description
TKG-BERT (Van.) The vanilla version of TKG-BERT, without time modeling
TKG-BERT (Exp.) TKG-BERT with explicit time modeling
TKG-BERT (Imp.) TKG-BERT with implicit time modeling
Tasks \ Description
sop subject object prediction, namely entity prediction
p relation prediction
tc and qc tuple classification (tuc), including triplet classification (tc) and quadruple classification (gc)

4. Methodology

This section introduce our proposed temporal knowledge graph embedding approach: TKG-BERT.
We illustrate model architecture of TKG-BERT in Section 4.1. Then, we introduced three temporal
knowledge modeling methods based on TKG-BERT in sequence, including vanilla, explicit, and
implicit modeling. We provide a detailed introduction on how to design and perform input-output
tasks for each of these three different modeling approaches.

4.1. Overview of Temporal Knowledge Graph BERT

BERT (Bidirectional Encoder Representations from Transformers) [27] is a pre-trained language
model based on multi-layer Transformer encoder [35]. BERT learns deep bidirectional representations
from unlabeled text by jointly conditioning on both the left and right context in all layers. The same as
other language model, BERT consists of two steps: pre-training and fine-tuning. During pre-training,
BERT is trained on large scale unlabeled general domain corpus. In fine-tuning phase, BERT is
initialized with pre-traind parameters, and then is fine-tuned on specific domain corpus and tasks
such as named entity recognition, question answering, and sentence pair classification.

To leverage the rich language patterns and contextual representations effectively, we fine-tune
the pre-trained BERT model for temporal knowledge completion tasks. We concatenate the entity
tokens, relation tokens, and timestamp tokens as word sequences into BERT for fine-tuning. Such
architecture is called TKG-BERT (Temporal Knowledge Graph based on BERT). TKG-BERT utilize
pre-trained BERT (BERT _base), and are fine-tuned on sequence classification with temporal knowldge
graph corpus.

The left part of Figure 2 shows the architecture of TKG-BERT for modeling knowledge represented
by tuple (triple or quadruple). For each tuple, we represent the entities and relation as their text word
sequences. TKG-BERT take entity and relation word sequences as the input sentence for fine-tuning.
As shown in Figure 2, we concatenate the word sequences of (s, 7, 0) as a single input sequence, i.e.,
the input token sequence to BERT. This is the general universal architecture, because the inpput tokens
and the output labels maybe different according to different modeling modes. For example, there is an
temporal quadruple:

(Islamic Rebirth Party, Make a visit, Tatarstan, 2014-03-21),
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Figure 2. Illustrations of fine-tuning TKG-BERT with different time moedling ways on various tasks.
KG-BERT takes the following token sequences as an input:
([CLS], Islamic, Rebirth, Party, [SEP], Make, visit, [SEP], Tatarstan, [SEP], 2014-03-21, [SEP]).

In original BERT, [CLS] is the special symbol for classification output, and [SEP] is the special
symbol to separate non-consecutive token sequences. In our TKG-BERT, the first token of each input
sequence is always [CLS], denoting the tuple representation is fed into an output layer for classification.
The word sequences of entities and relations are seperated by [SEP].

Token sequences of knowledge are input into pre-trained BERT to generate embeddings (blue
blocks marked with E in Figure 2). The embedding of each given token is generated by summing
token embedding, segment embedding, and position embedding. Token embedding is the original
word embedding of current token. Segment embedding is the embedding to distinguish the tokens in
different segment. The tokens seperated by [SEP] have different segment embeddings, whereas tokens
within one same entity or relation have the same segment embedding. Position embedding aims to
fuse position information, so different tokens at the same position have the same position embedding.
The token embeddings are fed into BERT, generate the final hidden vectors (green blocks marked with
"C"and "T" in Figure 2) after Transformer encoding. The final hidden vector "C" is used for aggregating
sequence representation for computing the final label. Other hidden vectors marked "T" corresponds
to entity tokens, relation tokens, and [SEP] tokens. Label denotes the final output given input triple,
which is different due to different training task and mode.

Attention(Q, K, V) = softmax <QKT> % (1)
o en
MultiHead(Q, K, V) = Concat(heady, ..., head},) W® )
T = Norm(FeedForward(Mid) + Mid) 3)
Mid = Norm(E + MultiHead(E)) (4)

The pre-trained BERT layer consists of 12 bidirectional Transformer encoders. Each bidirectional
Transformer encoder implements a multi-head self-attention. The multi-head attention generate
multiple sets of (Q, K, V) according to different weight matrices. Q, K, V refers to query, key, and value
in multi-head self-attention. Transformer calculate attention according to Equation (1). The output of
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Multi-head attention is Equation (2). The final hidden vector T are calculated by Equation (3), wherein
Mid is the output of normalized multi-head after residual, calculated by Equation (4).

Building on the above, we designed three approaches for fine-tuning TKG-BERT on temporal
knowledge graph reasoning tasks. This enables us to investigate whether temporal information plays
a role when using language models for knowledge graph reasoning, as well as the extent to which
different temporal modeling methods affect the reasoning outcomes.

4.2. Vanilla Knowledge Embedding of TKG-BERT

The vanilla knowledge embedding design of TKG-BERT (Abbreviated as TKG-BERT (Van.))
intends to investigate its performance on temporal knowledge graph tasks without incorporating
temporal information. The task modeling approach for TKG-BERT (Van.) is illustrated in the middle
section of Figure 2. Under this configuration, TKG-BERT does not model the temporal information
present in the temporal knowledge graph but instead trains and predicts using only the static triple
components of the temporal quadruples: (s, , 0). The tasks are identical to those performed on static
knowledge graphs.

Original BERT randomly masks some tokens of the input sequences and then predict those
masked token. Inspired by this masked language modeling, TKG-BERT adopts masking entity or
relation in triple to learning their embeddings. As depicted, the three tasks include entity prediction,
relation prediction, and triple classification. For the entity prediction task, masked entity modeling is
employed, while for the relation prediction task, masked relation modeling is used.

¢ Masked entity modeling is to construct positive and negative tuple samples by randomly corrupt
the subject entity s or the object entity 0. TKG-BERT will learning the optimal embeddings to
make the triple scores of positive and negative samples seperated as far as possible. Then during
the test phase, the masked entity would be predicted towards the correct scoring.

* Masked relaiton modeling is to delete the relation in input tuple sequence. Only the subject
entity and object entity are input into fine-tuning. The relations are regarded as labels. TKG-BERT
learns to embedding the entities towards fitting the relation label representations.

The architecture of TKG-BERT(Van.) for triple classification mode is shown in Figure 2. On
this task, TKG-BERT also take the concatenation of word sequences of entities and relation as token
sequence input, whereas the output label denotes the quadruple is true or false.

4.3. Explicit Time Modeling of TKG-BERT

Explicit Temporal Modeling of TKG-BERT (Abbreviated as TKG-BERT (Exp.)) refers to the process
of explicitly incorporating time-related information into models designed for handling data that has
a temporal component. This modeling method typically involves the explicit representation and
utilization of timestamps or other temporal features in the learning and inference mechanisms of the
model.

Temporal knowledge graph is usually formally represented as quadruple: (s, 7, o, t), wherein
t is the time that the triple fact happens. Explicit time modeling is to treat the timestamp as
individual elements as entity and relaiton, and learn the embedding of the timestamp. Compared to
TKG-BERT(Van.) with no temporal modeling, TKG-BERT(Exp.) embeds timestamps alongside entities
and relations, appending the timestamp token after the entity-relation triple, thereby inputting the
temporal quadruples into the model. Tasks under explicit temporal modeling include entity prediction
with timestamps, relation prediction with timestamps, and quadruple classification. The inputs and
outputs for these three tasks are illustrated in the right part of Figure 2.

TKG-BERT(Exp.) for predicting entity takes the concatenation of subject entity, relation, object
entity, and timestamp in quadruple as token sequence input. Embedded by the pre-trained BERT layer,
the token embeddings are transformed to final hidden vectors. The hidden vector C of the special token
[CLS] aggregates the sequence representation, then calculate the quadruple score as the model output.

d0i:10.20944/preprints202411.1524.v1
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TKG-BERT(Exp.) for predicting relation only use the tokens of subject entity s, the object entity o,
and timestamp t to predict the relation r between them. In preliminary of KG-BERT [36], predicting
with two entities directly is better than using entity prediction mode with relation corruption. So we
adopt the same way for predicting relation. After encoding and final hidden vector generating, the
model output the relation label y € R of given entity pair.

TKG-BERT(Exp.) for quadruple classification takes the quadruple as token sequence input.
The only difference between quadruple classification and triple classification is the addition of the
timestamp. Quadruple classification also adopt binary classification, distinguish positive and negative
quadruple samples.

4.4. Implicit Time Modeling of TKG-BERT

In previous research on temporal knowledge graphs, the modes of knowledge prediction include
interpolation and extrapolation. As shown in the left part of Figure 3, "interpolation” involves
randomly selecting a portion of the knowledge for model training and speculating on the missing
knowledge. In this mode, the model may infer missing historical knowledge based on knowledge from
future time points. "Interpolation” mode corresponds to vanilla knowledge modeling of TKG-BERT.
"Extrapolation”, on the other hand, involves training the model using historical data and then reasoning
or predicting knowledge at future time points. In the previous subsection on explicit temporal
modeling, we adopted the interpolation setting. However, in practice, the extrapolation mode is more
aligned with practical applications. Therefore, we designed a time modeling approach under the
extrapolation setting, which is the implicit temporal modeling (Abbreviated as TKG-BERT (Imp.)).

interpolation ICEWS14 (re-construct)
I nm

time axis
2014.1.1~2014.10.18 (history) 2014.10.19~2014.12.31 (future)

2005.1.1~2013.10.18 (history) 2013.10.19~2015.12.31 (future)

training knowledge
predicted knowledge

extrapolation ICEWS05-15 (re-construct)

time axis

Figure 3. The task setting of interpolation and extrapolation and the reconstruction of datasets.

As illustrated in the right part of Figure 3, we restructured the two datasets used in this study
according to their temporal order, selecting 80% of the historical data for the training set and the more
recent data for the test set. Under this setting, similar to the TKG-BERT(Van.), we do not explicitly
embed temporal information such as timestamps. Instead, we implicitly model time through the
restructuring of the dataset , learning from history to predict the future.

TKG-BERT(Imp.) captures temporal dynamics within a KG without explicitly encoding or
representing time-related information. In this method, the model learns to infer temporal patterns and
dependencies from the input data itself, rather than relying on explicit timestamps or time intervals.
For the given temporal knowledge graph, we reconstruct the graph, create training set by selecting the
fact quadruples that occurred relatively earlier, and conduct entity or relation prediction of the fact
quadruples which occurr in a relatively future time.
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4.5. Training Loss

The three modeling ways of TKG-BERT use different training objectives. For entity prediction
tasks and tuple classification tasks, we train the model by learning the scores of tuples, so that the
scores of positive samples are much higher than those of negative samples. The acquisition of negative
samples is generated through negative sampling.

The scoring function for a quadruple (s, 1, 0, £) is f(5.04) = sigmod(CWT), where W is the
classification layer weights and, "C" is the output embedding of token [CLS]. Given the positive
quadruple set D' and a negative triple set D™, constructed accordingly, we calculate cross-entropy
loss with f(, . , ;) and triple labels:

L=— ¥ (velog(fo)+(1-ye)log(frr)) ®
TeDTUD-
where y; € {0,1} is the label (negative or positive) of that quadruple. The negative quadruple
set D™ is simply generated by replacing subject entity s or object entity r in a positive quadruple
(s,r,0,t) € DT with a randomly entity s’ or o’

D™ = {(s,r,0,t)|[W € VAS #£sA(s,r,0,t) ¢ D"}

6
U{(s,r,0,t)|o € VA # oA (s,10,t) ¢ D"} ©

where V is the set of entities. A quadruple will not be treated as a negative example if it is already
in positive set D. The pre-trained parameter weights and new weights W can be updated via gradient
descent.

For relation prediction task, the final hidden state "C" corresponding to [CLS] is used as the
representation of the two entities. The only new parameters introduced in relation prediction
fine-tuning are classification layer weights W € RR*H where R is the number of relations in a
KG. The scoring function for a quadruple is f('s,m’t) = softmax(CW'T).

We compute the following cross-entropy loss with f(’ ) and relation labels:

s,r,0,t

R
L'=—=), Y yrlog(fr) @)
et i=1
where 7 is an observed positive triple, ¥’ is the relation indicator for the triple 7, .. = 1 when
r=iandy’; = 0whenr #i.

5. Experiments

We conduct abundant experiments to evaluate the performance of TKG-BERT on public temporal
KG datasets. In the following sections, we first introduce experiment settings, including dataset
selection, evaluation tasks and metrics, and hyperparameter settings. Then we present each part of the
experiment results, analyze the role of time and temporal information in knowledge reasoning tasks.

5.1. Experimental Settings

This section introduces the temporal knowledge graph dataset used in this research, the
experimental tasks, and the evaluation metrics, as well as the of hyperparameter settings during
model training.

5.1.1. Datasets

We evaluate TKG-BERT on two temporal KG dataset: ICEWS14 and ICEWS05-15. They are
constructed from ICEWS (Integrated Crisis Early Warning System) [37], an periodic updated event
graph. ICEWS consists of events that represent interactions between the socio-political actors (for
instance, cooperative or hostile actions between individuals, groups, sectors and nation states). ICEWS
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has been discontinued, changed to POLECAT !. POLECAT contains event data from 2018 to the
present, updated weekly, and previously events of terminated years stored monthly. Event knowledge
are stored in fields according to an event standard. However, as most of the research and experiments
on temporal knowledge graphs are based on the ICEWS dataset, we also used this series of datasets
for research purposes in order to facilitate performance comparison with baseline models.

ICEWS14 and ICEWS05-15 used in this work are subsets of the data present in the ICEWS
repository as created by Garcia-Duran et al. [38]. The statistics of the 2 datasets are listed in Table 4.
ICEWSI14 is a short-range dataset consisting of the events that occurred in 2014. ICEWS05-15 is a
long-range dataset consisting of the events that occurred between 2005 to 2015. We take the same
partition proportion for training/validation/test set as DE [39], which is a classic temporal KGE model.

Table 4. Dataset statistical information.

Dataset |  Entity Relation Time Span Time Gap
ICEWS14 7,128 230 2014 365
ICEWS05-15 10,488 251  2005-2015 4,017
Dataset ‘ Training  Validation Test Total
ICEWS14 72,826 8,941 8,963 90,730
ICEWS05-15 386,962 46,275 46,092 479,329

5.1.2. Tasks and Metrics

Four kinds of tasks are adopted to evaluate different time modeling way of TKG-BERT, including
sop, tp, tc, and qc, as listed in Table 5. The most principal task for temporal knowledge graph completion
(TKGC) is sop, namely entity prediction. It aims to forecast the absent entity within a test quadruple (s,
1, 0, t). Specifically, it means predicting the missing s when presented with (?, 7, o, t), or predicting the
missing o when given (s, 1, ?, t). For each test quadruple, we substitute the unknown entity with every
candidate entity from the entity set V, thereby creating a collection of corrupted quadruples. We then
evaluate these corrupted quadruples using temporal KG embedding models to assign scores.

Table 5. Designed tasks on datasets.

Dataset \ TKG-BERT
‘ Van. ‘ Exp. ‘ Imp.
ICEWS14 Sop | S0P\ sop
ICEWS05-15 P P P
tc qc tc
ICEWS14 I A
(20%, 40%, 60%, 80%, 100% training set) ti . ;

A superior model should position the genuine quadruple ahead of the corrupted ones in its
ranking. Consequently, we ascertain the rank of the genuine quadruple among the corrupted set. The
mean rank across all test quadruples is denoted as MR, while the mean reciprocal rank is referred to
as MRR. Hits@n measures the percentage of correctly predicted entities that appear within the top n
ranks. Lower MR values, higher MRR values, and increased Hits@n percentages all indicate enhanced
model performance. To conduct a quantitative comparison of different models, we utilize the widely
accepted evaluation metrics: Mean Rank (MR), Mean Reciprocal Rank (MRR), and Hits@n (where the
value of nis 1, 3, and 10).

1 https:/ /dataverse. harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/AJGVIT
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5.1.3. Hyper-Parameter Setting

TKG-BERT are implemented with deep learning framework PyTorch and is trained on GPU
of NVIDIA GeForce RTX 4090. Unless otherwise specified, we take the default setting for all
hyper-parameters, which are listed as follows: learning rate is 5¢ >, training batch size is 32, evaluation
batch size is 135, the max token sequence is limited to 15, the training epochs are 5.0, negative ratio is 2,
embedding size is 50, output embedding dimension is 100; we use multi-head attention in fine-tuning,
and set the number of head to 2, the margin of hinge loss is 5. We use pre-trained BERT word
embeddings bert-base-uncased.

5.2. Temporal Knowledge Graph Completion

This section is the main experimental part of TKGC, which includes three temporal knowledge
modeling methods for subject entity and object entity prediction, relation prediction, and tuple
classification tasks.

5.2.1. Comparison on Entity Prediction

For entity prediction task, we compare TKG-BERT with two categories of models: static KGE
model and temporal KGE model. We compare TKG-BERT (Van.) with static KGE models to
explore their completion capabilities without temporal modeling. Meanwhile, TKG-BERT(Exp.) and
TKG-BERT(Imp.) are contrasted with temporal models to investigate the performance gains achieved
through time-aware information modeling.

¢ Compared static models: DistMult [40], ComplEx [41], R-GCN [42], ConvE [43], ConvTransE [44],
RotatE [45].

e Compared temporal models under the interpolation setting: HyTE [46], TTransE [47],
TA-DistMult [38], and DE [39]. The interpolation setting is appropriate for the comparison
of TKG-BERT(Exp.).

* Compared temporal models under the extrapolation setting: RG-CRN [48], CyGNet [49],
RE-NET [50], RE-GCN [19]. The extrapolation setting is appropriate for comparison of
TKG-BERT(Imp.).

Table 6 present the entity prediction results on the test sets of ICEWS14 and ICEWS05-15. The
results of baseline models are from RE-GCN [20]. As demonstrated in the table, the three time
modeling approaches of TKG-BERT consistently outperform the baselines across most metrics, showing
significant improvements.

d0i:10.20944/preprints202411.1524.v1
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Table 6. Performance for the entity prediction task on ICESW14 and ICEWS05-15 with raw metrics (in
percentage). The best results are in bold. All results are in percentage. Retention of decimals is subject
to the rounding principle.

Method \ ICEWS14 \ ICEWS05-15
| MRR Hits@l Hits@3 Hits@10 | MRR Hits@l Hits@3 Hits@10
DistMult 2032 613 2759 4661 | 1991 563 2722 4733
ComplEx 2261 988 2893 4757 | 2026 666 2643  47.31
R-GCN 2803 1942 3195 4483 | 2713 1883 3041 4316
ConvE 3030 2130 3442 4789 | 3140 2156 3570 5096
ConvTransE 3150 2246 3498 5003 | 3028 2079 3380 4995
RotatE 2571 1641 2901 4516 | 1901 1042 2135 = 36.92
TKG-BERT(Van.) | 51.92 36.46 6288  78.20 | 6534 59.07  68.06  72.69
HyTE 1678 213 2484 4394 | 1605 653 2020 3472
TTransE 1286 314 1572 3365 | 1653 551 2077 39.26
TA-DistMult 2622 1683 2972 4523 | 2751 1757 3146  47.32
DE-TransE 3260 1240 4670 6860 | 3140 1080 4530 6850

DE-DistMult 50.10  39.20 56.90 70.80 4840  36.60 54.60 71.80
TKG-BERT(Exp.) | 52.17  40.12 58.27 70.91 53.58  38.54 63.37 75.99

RG-CRN 33.31  24.08 36.55 51.54 3593 2623 40.02 54.63
CyGNet 3468  25.35 38.88 53.16 3546 2544 40.20 54.47
RE-NET 35.77 2599 40.10 54.87 36.86 2624 41.85 57.60
RE-GCN 37.78 2717 42.50 58.84 38.27  27.43 43.06 59.93

TKG-BERT(Imp.) | 49.35  35.64 57.33 75.76 50.57  39.43 54.97 69.25

Specifically, for static knowledge graph embedding, which there is no time information modeling,
TKG-BERT(Van.) far exceed all baselines. On ICEWS14, TKG-BERT(Van.) achieves the improvements
of 20.42%(51.92-31.50) on MRR, 14.0% (36.26-22.46) on Hits@1, 27.9% (62.88-34.98) on Hits@3,
28.17% (78.20-50.03) on Hits@10, compared with suboptimal model (ConvTransE). On ICEWS05-15,
TKG-BERT(Van.) achieves the improvements of 35.06%(85.34-30.28) on MRR, 37.51% (59.07-21.56) on
Hits@1, 32.36% (68.06-35.70) on Hits@3, 21.73% (72.69-50.96) on Hits@10 compared with suboptimal
model (ConvTransE). There is a huge improvement in both ICEWS14 and ICEWS05-15, and the
improvement in ICEWS05-15 is greater than that in ICEWS14.

For temporal knowledge graph embedding under interpolation setting, corresponding to
explicit time modeling, TKG-BERT(Exp.) also show superiority on entity prediction. On
ICEWS14, TKG-BERT(Exp.) achieves the improvements of 2.07%(52.17-50.10) on MRR, 0.92%
(40.12-39.20) on Hits@1, 1.37% (58.27-56.90) on Hits@3, 0.11% (70.91-70.80) on Hits@10 compared
with suboptimal model (DE-DistMult). On ICEWS05-15, TKG-BERT(Exp.) achieves the improvements
of 5.18%(53.58-48.40) on MRR, 1.94% (38.54-36.60) on Hits@1, 8.77% (63.37-54.60) on Hits@3, 4.19%
(75.99-71.80) on Hits@10 compared with suboptimal model (DE-DistMult). The effect improvement
of TKG-BERT(Exp.) is relatively small compared to TKG-BERT(Van.), and the improvement on
ICEWS05-15 is slightly higher than that on ICEWS14.

For temporal knowledge graph embedding under extrapolation setting, corresponding to
implicit time modeling. TKG-BERT(Imp.) also show superiority on entity prediction. On ICEWS14,
TKG-BERT(Imp.) achieves the improvements of 11.57%(49.35-37.78) on MRR, 8.47% (35.64-27.17) on
Hits@1, 14.83% (57.33-42.50) on Hits@3, 16.92% (75.76-58.84) on Hits@10 compared with suboptimal
model (RE-GCN). On ICEWS05-15, TKG-BERT(Exp.) achieves the improvements of 12.3%(50.57-38.27)
on MRR, 12% (39.43-27.43) on Hits@1, 11.91% (54.97-43.06) on Hits@3, 9.32% (69.25-59.93) on Hits@10
compared with suboptimal model (RE-GCN). The effect improvement of TKG-BERT(Imp.) is relatively
significant compared to TKG-BERT(Exp.), whereas the improvement on ICEWS14 and that on
ICEWS05-15 is almost equivalent.

The excellent performance of TKG-BERT shows the powerful contextual prediction capability
of BERT. According to the statistics of three datasets in Table 4, ICEWS05-15 has more complicated
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graph structure than ICEWS14. Correspondingly, the entity prediction results on ICEWS05-15 is
better compared with ICEWS14. These results indicates that TKG-BERT take good advantage of BERT
because it is expert in dealing with complex graph structure. Futhermore, From the comparative results
of the three types of KGE models, it can be seen that without utilizing time information, the entity
prediction capability of TKG-BERT far exceeds that of static models. However, under conditions where
time modeling is employed, the improvement in TKG-BERT’s performance is limited. TKG-BERT
with implicit time modeling (TKG-BERT(Imp.)) has a slight advantage over TKG-BERT with explicit
time modeling (TKG-BERT(Exp.)) in entity prediction. This is because implicit time modeling and
explicit time modeling are equivalent to different tasks, with implicit modeling being more difficult
and therefore performing worse.

5.2.2. Relation Prediction and Tuple Classification

In addition to entity prediction, relation prediction and tuple classification are also common tasks
used to evaluate the effectiveness of knowledge graph embedding and completion. We conducted
comparisons of the three time modeling approaches of TKG-BERT on the ICEWS14 and ICEWS05-15
datasets. For relation prediction and triple classification, we do not find baseline models on these two
datasets. The analysis for TKG-BERT on these two tasks is conducted by self-comparing.

The results of relation prediction and tuple classification are listed in Tables 7 and 8. From the
table, we can see that the overall performance ranking of the three modeling approaches of TKG-BERT
is: TKG-BERT (Exp.) > TKG-BERT (Van.) > TKG-BERT (Imp.). Comparing them pairwise, TKG-BERT
(Exp.) includes timestamp information in addition to what TKG-BERT (Van.) does, resulting in a slight
improvement in performance. Compared to TKG-BERT (Van.), TKG-BERT (Imp.) does not utilize
timestamp information either, but it reconstructs the dataset according to chronological order, training
on historical data and predicting future data, which falls under the ‘extrapolation’ setting for model
evaluation. In contrast, TKG-BERT (Van.) operates under the “interpolation” setting, which is relatively
easier as it does not strictly adhere to chronological data division, allowing the model to infer answers
for historical test samples from future data. This may contribute to its seemingly better performance.
When comparing TKG-BERT (Exp.) and TKG-BERT (Imp.), TKG-BERT (Exp.) performs interpolation
tasks with the assistance of timestamps, while TKG-BERT (Imp.) performs extrapolation tasks without
timestamps, thus TKG-BERT (Exp.) achieves better results than TKG-BERT (Imp.).

Table 7. Performance on relation prediction. Hits@n and accuracy are in percentage.

Dataset | Model | MR Hits@l Hits@3 Hits@10 Accuracy
TKG-BERT (Van.) | 6.73  40.19 63.96 86.04 40.14
icews14 TKG-BERT (Exp.) | 6.72  40.01 64.51 86.29 40.01
TKG-BERT (Imp.) | 8.10  36.16 60.22 83.08 36.16
TKG-BERT (Van.) | 6.06  39.83 64.04 86.79 39.83
icews05-15 | TKG-BERT (Exp.) | 598  40.69 65.14 87.16 40.69
TKG-BERT (Imp.) | 7.19  36.47 59.76 83.58 36.47

Table 8. Performance on tuple classification. All indicators are in percentage.

Dataset ‘ Model ‘Precision Recall F1 Accuracy

TKG-BERT (Van.) 77.69 89.82  83.32 82.01

icews14 TKG-BERT (Exp.) 77.18 90.47  83.30 81.86
TKG-BERT (Imp.) 77.50 8521 81.17 80.23

TKG-BERT (Van.) 80.79 9250 86.25 85.26

icews05-15 | TKG-BERT (Exp.) 80.88 9197 8594 85.00

TKG-BERT (Imp.) 80.39 81.55 8097 80.83
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The relation predict accuracy is about 0.4. Hits@1, Hits@3, and Hits@10 are about 0.4, 0.6, and 0.8,
respectively. For tuple classification, the F1, precision, recall and accuracy are basically between 0.8
and 0.9. The overall performance of tuple classification tasks is better than that of entity prediction
and relation prediction tasks, because the difficulty of binary classification tasks for tuples is lower
than that of multi classification tasks for entity or relation prediction. In practical applications, entity
and relation classification are suitable for more refined predictions and require greater computational
complexity.

5.2.3. Mean Rank of Entity and Relation

We have visualized the Mean Rank (MR) values for entities and relations in our entity prediction
and relation prediction experiments, and the results are shown in Figure 4. It can be seen from the
figure that, TKG-BERT reduces the entity MR of entity prediction task for both datasets to 6 and 7
respectively. This means that the vast majority of entities are trained to have ranked mean values
of about 6 and 7 in entity prediction task. Since other research works usually do not focus on this
metric, the baseline under this metric is not found for comparison in this study. It is known that the
MR of entities in static knowledge graphs is generally reduced to a few hundred to a few thousand
after training 2. Given the entity number of these two temporal datasets in this study (7,128 entities in
ICEWS14 and 10,488 entities in ICEWS05-15), reducing the MR of entities to less than 10 proves the
strong entity semantic learning and reasoning capability of TKG-BERT.

The lower part of Figure 4 represents the Mean Rank (MR) on ICEWS14 using different proportions
of the training set. As the size of the training set increases, TKG-BERT (Van.) consistently reduces
the overall MR value, lowering the rank of the correct entities and relations. This demonstrates that,
without time modeling, continuously increasing the training set helps improve TKG-BERT’s overall
predictive performance for both entities and relations.

20% 40% 60% 80% 100%
TKG-BERT(Van.): sop 7.2 8.9 7.6 6.5 6
TKG-BERT(Van.): rp 89 7.9 7.5 7 6.7 10
sop: Van. sop: Exp. sop: Imp. rp: Van. rp: Exp. rp: Imp.
5
icews14 6 7.1 74 6.7 6.7 8.1
icews05-15 6.8 5.8 7.9 6.1 6 7.2

Figure 4. Mean Rank of TKG-BERT on ICEWS datasets.

2 https:/ /paperswithcode.com/sota/link-prediction-on-fb15k-237
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5.3. Explicit Time Modeling v.s. Implicit Time Modeling

We compared the performance of TKG-BERT on different tasks under different time modeling
settings, including TKG-BERT(Van.), TKG-BERT(Exp.) and TKG-BERT(Imp.). The results are in
Figure 5. Horizontal coordinates represent the metrics for the tasks, including MR, Hits@3, precision,
recall, f1, and accuracy. Vertical coordinates represent the results of TKG-BERT on corresponding
metric. The metric values except MR are in percentage. The histograms show following findings:

¢ On a fixed dataset, whether or not time information is embedded does not significantly affect the
performance of reasoning tasks.

* For the sop task, the model performance ranking is: TKG-BERT(Van.) > TKG-BERT(Exp.) >
TKG-BERT(Imp.). For rp and tc tasks, there is almost no difference between TKG-BERT(Van.)
and TKG-BERT(Exp.), both performing slightly better than TKG-BERT(Imp.).

* The differences in the various time modeling approaches of TKG-BERT are more pronounced on

ICEWS05-15.
@ TKG-BERT(Van.) TKG-BERT(Exp.) TKG-BERT(Imp.)
sop on ICEWS14 rp on ICEWS14 tc on ICEWS14

100 70 100
60

80 80
50

60 40 60

40 30 40
20

20 20
10

o 0 0

Hits@3 Accuracy Hits@3 Accuracy Precision Recall Accuracy
sop on ICEWS05-15 rp on ICEWS05-15 tc on ICEWS05-15

80 70 100
60

60 80
50

40 60

40

30 40
20 20

20
10

O 0 0

Hits@3 Accuracy Hits@3 Accuracy Precision Recall Accuracy

Figure 5. Comparison of TKG-BERT time modeling on different tasks.

We re-construct ICEWS14 to model temporal information implicitly. Specifically, the fact
quadruples that happens in relatively previous time are used for training, those happens later are used
for testing. The proportion of the training, validating, and test set is the same as original dataset. This
setting increases the difficulty of the model in performing prediction tasks, so the results show worse.
Besides, there are some other reasons for the above phenomena:

¢ BERT uses pre-trained word vectors, which do not capture the implicit temporal information
in digital text. TKG-BERT(Exp.) embeds timestamp information directly, has little contribution
compared with conventional no-temporal modeling approach.

* We use reconstructed dataset for implicit temporal modeling. In original dataset, there is a
situation where some event knowledge with later timestamp is introduced into the training set
(test leakage), while knowledge with former timestamp is classified into test set, due to data
randomization. However, implicit temporal modeling, on the other hand, divides the training
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set and the test set according to the chronological order, so it does not suffer from such problem .
Correspondingly, TKG-BERT (Imp.) performs slightly worse under, which is more realistic.

® The inclusion of timestamp information had a weakening effect on the model’s performance in
entity prediction tasks, while it provided a slight improvement in relation prediction tasks. This
might be due to the large time span covered by the ICEWS05-15 dataset, making TKG-BERT
more sensitive to changes in the textual information of timestamps.

5.4. Performance on Different Training Proportion

Figure 6 reports the performance of TKG-BERT on four tasks of ICEWS14 dataset with various
proportion of training set. The horizontal axis represents the training set proportion we selected: 20%,
40%, 60%, 80%, 100%. The color of the fold line represents each metric on that task. We note that the
model effectiveness on each metric does not change much with different training set ratios. Along
with the training set ratio increases, the accuracy improves slowly, but with diminishing marginal
benefits. The most affected by training set ratio is entity prediction, with the best results at a training
set of 80%. Taking the metric of accuracy on entity prediction as an example, the model performance
varies within 10% between the best (on 80% training set) and the worst (on 40% training set) cases.

-O- MRR Hits@1 Hits@3 -~ Hits@10 Accuracy (- Precision Recall -O- F1
TKG-BERT (Van.) on sop TKG-BERT (Van.) on rp
100 ~ 100
80 g0 o—m———— "
,/\’_Q
0\/
60 - 60 4
40 \//\q 404
20 20
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
TKG-BERT (Van.) on tc TKG-BERT (Exp.) on sop
95 95
90 90
85 - 85
80 D/"’/o—/’_‘) ol D//—_o
751 /’/—0 75 o/""’/h\o
70 70
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

Figure 6. Performance on Different Training Proportion of ICEWS14.

The metrics for TKG-BERT in the rp and fc tasks gradually increase with the expansion of the
training set, indicating that the model’s performance on these two tasks is affected by the training set
in a relatively stable manner. Specifically, for the tuc task (triple classification for TKG-BERT (Van.) and
quadruple classification for TKG-BERT (Exp.)), the improvement in metrics becomes more pronounced
as the size of the training set increases.

For tasks less influenced by the training set (such as rp), they are suitable for predictions in
small-sample scenarios; for tasks with more stable influence from the training set (such as fc), they are
applicable in scenarios with larger training samples; and for tasks with greater fluctuations (such as
spp), optimal model settings need to be explored based on the actual situation.
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6. Conclusions

This paper proposes a novel approach called TKG-BERT for temporal knowledge graph
embedding. The paper investigates the role of temporal information in knowledge completion tasks.
TKG-BERT utilizes pre-trained language models, specifically BERT, to model temporal knowledge in
three different ways: vanilla static knowledge modeling, explicit time modeling, and implicit time
modeling. The proposed approach is evaluated through various KG completion task to explore the
capacity of pre-trained language models to handle temporal knowledge. Experimental results suggest
the following conclusions:

¢ The entity prediction task is the most complex, leading to the least stable model performance. In
contrast, the model shows relatively stable performance in the tuple classification task.

¢ Temporal information is necessary, and explicitly incorporating temporal information can lead to
a slight improvement in performance. But there is a need to find more effective ways of modeling

timing, in order to effectively utilize temporal information.

® When temporal information is lacking, the model can choose to mine existing knowledge
information, thereby improving the inference of unknown knowledge.

¢ Explicit temporal modeling is suitable for interpolation scenarios where timestamps are available,
while implicit temporal modeling is more applicable to stream data and extrapolation scenarios
where timestamps are not accessible, making it more aligned with practical needs.

Overall, the TKG-BERT approach presented in this paper fills the gap in the research on
temporal knowledge graph completion using pre-trained language models. The experimental results
demonstrate the effectiveness and potential of TKG-BERT in temporal knowledge graph representation.
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LLM Large Language Model
KG Knowledge Graph
TKG Tmploral Knowledge Graph
TKGC  Tmploral Knowledge Graph Completion
KGE Knowledge Graph Embedding
TKGE  Temporal Knowledge Graph Embedding
PLM Pre-trained Language Model
BERT Bidirectional Encoder Representations from Transformers
ICEWS Integrated Crisis Early Warning System
MR Mean Rank
MRR Mean Reciprocal Rank
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