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Technical Note 
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Abstract: In this article we describe the synthesis of a β-truxinate from the [2+2] dimerization of methyl 4-
nitrocinnamate and its isomerization by different bases using liquid-assisted grinding (LAG) technique. With 
this methodology it is possible to obtain the corresponding ζ- and δ-truxinates in short reaction times and with 
only small amounts of solvent. Furthermore, it is possible to steer the process towards the preferential 
formation of ζ- or δ-truxinate depending on the base used. 
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1. Introduction 

Green Chemistry, a field that emerged in the 1990s, is a way of designing processes and chemical 
products through methodologies that reduce or eliminate the production of substances that are 
hazardous to humans and the environment.[1] This is supported by The Twelve Principles 
introduced by Paul Anastas and John Warren in 1998.[2] Mechanochemistry, on the other hand, is a 
synthesis technique that is distinguished by the absence of solvent and by promoting chemical 
reactions through kinetic energy.[3] This technique was developed from Principle five of Green 
Chemistry, which is oriented to avoid the use of solvents in chemical reactions. Mechanochemistry 
has become a powerful alternative to traditional solvent-based processes, which allows for a cleaner 
route for chemical transformations. The liquid-assisted grinding (LAG) technique is a method 
derived from mechanochemistry that consists in the use of catalytic quantities of solvent to facilitate 
the integration process of the reactants in a chemical reaction.[4] The use of the LAG technique serves 
to improve the efficiency of solvent-free reactions by introducing small amounts of solvent to 
facilitate the reaction and proper integration of the starting material. LAG is quantified by ways of 
the parameter η (μL/mg), which is the ratio of the amount of solvent used (μL) to the total mass of 
the reactants (mg). A value η = 0 corresponds to a reaction in grinding, values of η ≈ 0-1 correspond 
to LAG reactions, η ≈ 1-10 correspond to slurry reactions, and when η > 10 it is considered a reaction 
in solution.[5] LAG Technique has been widely used for the synthesis of Active Pharmaceutical 
Ingredients (APIs) and pharmaceutically relevant fragments, providing a cleaner, safer and more 
efficient synthesis route.[6] 

Truxinic and truxillic acids are structures derived from cyclobutanes with more than 100 derived 
structures found in nature.[7] In addition, some derivatives have been reported to have biological 
activities, highlighting anticancer, anti-inflammatory, anti-neuroinflammatory, neuroprotective and 
antidiabetic activities.[8] Other applications of truxinic/truxillic derivatives include their use in the 
synthesis of biobased functional materials,[9] and the truxilline forms present in cocaine serves as its 
geographical, manufacture, and storage “fingerprint“ of cocaine samples.[10]  

The main method of formation of truxinic and truxillic acid derivatives is by [2+2] cycloaddition 
reactions. This way of synthesizing cyclobutane derivatives is limited by the poor regio- and 
diastereoselectivity of the intermediates, which are formed by irradiating the unsaturated structures 
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with ultraviolet light. To redeem this, techniques have been developed that promote [2+2] 
dimerization in a regio- and diastereoselective manner.[11] In addition, cycloadducts obtained by 
[2+2] cycloadditions can be isomerized to obtain structures with less accessible stereochemistry.[12]  

Recently, the synthesis of the derivative β-truxinate rctt-3a from methyl 4-nitrocinnamate and 
its isomerization with DBU forming the corresponding ζ- and δ-truxinate in situ has been reported in 
our research group (Error! Reference source not found.).[13] With this methodology it is possible to 
access three truxinate diastereoisomers out of the six possible ones. Also, in this work the 
diastereoisomers are named as cis, trans, trans (rctt-3a); cis, cis, trans (rcct-3b) and trans, cis, trans (rtct-
3 c) according to the relative orientation of the substituents with respect to the carbonyl group (C1) 
marked in Error! Reference source not found..[14]  

 
Scheme 1. Previous published work β- → ζ- → δ-truxinate isomerization using DBU (0.2 equiv) in 
different deuterated solvents. 

In this work we present the process of β- → ζ- → δ-truxinate isomerization by LAG technique 
using bases with different pKa values. This novel methodology provides a high proportion of the 
diastereoisomers was reached in short reaction times and with small amounts of solvents. 

2. Materials and Methods 

All chemicals were obtained commercially (Aldrich) and used without further purification. 
Reactions were monitored by TLC on Merck Al plates coated with silica gel of 0.25 mm with 
fluorescent indicator (60F-254) using ultraviolet light, iodine, and potassium permanganate as relay 
agents as appropriate. The [2+2] cycloaddition reactions were carried out in a 110 Volt RPR 100 
Reactor Rayonet equipped with model RPR-2537A lamps with a wavelength of 254 nm. 

For the liquid-assisted grinding isomerization process β- → ζ- → δ-truxinate it was decided to 
explore the following bases: N,N-diisopropylethylamine (DIPEA), benzylamine (BnNH2), 4-
dimethylamino-pyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO), triethylamine (TEA), 
N,N,N′,N′-tetramethylguanidine (TMG) and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU). The pKa 
values of the bases in acetonitrile are presented in Error! Reference source not found..[16–18] 
Dissolutions of the bases in acetonitrile were prepared. Since the η values of the reactions are found 
to be between 0.8 - 1.4 these processes are classified as LAG. 

 
Figure 1. Bases used for the isomerization process β- → ζ- → δ-truxinate isomerization process and 
the pKa values of their conjugated acids (pKa value in MeCN). 

3. Results and Discussion 
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3.1. Synthesis of β-Truxinato rctt-3a 

β-Truxinate rctt-3a was obtained by the synthesis route shown in Error! Reference source not 
found..  

 
Scheme 2. Synthesis route for the formation of β-truxinate rctt-3a. 

We started with a Knoevenagel condensation reaction between 4-nitrobenzaldehyde and 
malonic acid in pyridine.[19] 4-Nitrocinnamic acid 1 was obtained as a white solid with a mp = 292-
296 °C and 89 % yield, consistent with literature data.[20] 

The formation of methyl 4-nitrocinnamate ester 2 was achieved from the esterification of α,β-
unsaturated acid 1 using thionyl chloride and methanol. Ester 2 was obtained as a slightly yellow 
solid with a mp = 161-164 °C and a yield of 95 %, coinciding with that reported in the literature.[21] 

β-Truxinate derivative rctt-3a was synthesized from ultraviolet light irradiation (λ = 254 nm) of 
the ester α,β-unsaturated 2 in an RPR-100 Photochemical Reactor via solvent-free. The product 
obtained was isolated as a slightly yellow solid with a mp = 128-130 °C and a yield of 51 %, consistent 
with literature data.[22] 

3.2. Truxinate Isomerization Process Using Different Bases 

The isomerization reactions were carried out in a vial of 1 mL at 55 °C in an oil bath. For each 
reaction, 20 mg (4.8x10-2 mmol) of rctt-3a and 0.2 equiv (9.6x10-3 mmol) of base were used (Error! 
Reference source not found.). 

 
Scheme 3. General isomerization process β- → ζ- → δ-truxinate in situ using LAG technique. 

The reactions were monitored by thin layer chromatography in a 7:3 hexane:EtOAc system 
eluted twice. The reactions were stopped by performing percolations in silica using a 1:1 
hexane:EtOAc system, thus removing the bases and recovering the reaction crudes. The ratios of the 
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diastereoisomers formed were determined by 1H NMR (See Supplementary Material). The results 
of the ratios are presented in the Error! Reference source not found.. 

Table 1. Ratios of the isomers β-, ζ- and δ-truxinate obtained by 1H NMR. 

Entry pKa Base η (μL/mg) Time rctt-3a (%) rcct-rac-3b (%) rtct-rac-3c (%) 
1 16.9 BnNH2 0.8 48 h 98 2 0 
2 17.9 DMAP 1.0 48 h 74 26 0 
3 18.2 DABCO 0.9 48 h 72 28 0 
4a 18.4 TEA 1.1 48 h 100 0 0 
5a 18.6 DIPEA 1.4 48 h 100 0 0 
6 23.3 TMG 1.0 90 min  2 91 7 
7 24.3 DBU 1.2 20 min 2 61 37 
8 24.3 DBU 1.2 45 min 1 37 62 

aNo reaction progress was observed by thin layer chromatography. 

It was observed that bases with lower pKa values (Entry 1-5) resulted in longer reaction times 
(48 h) and lower diastereoisomer ratios. As can be seen by TLC (Error! Reference source not found.). 
On the other hand, no reaction advance is observed when the DIPEA and TEA are used. 

 

Figure 2. Thin layer chromatography (hexane:EtOAc, 7:3) of the reactions using DIPEA, TEA and 
DMAP. 

When TMG and DBU bases were used, reaction times were considerably reduced (Entry 6-8). 
As shown in Error! Reference source not found., in 45 min of reaction using DBU a yield of 37 % for 
rcct-rac-3b and 62 % for rtct-rac-3c was obtained. With TMG, ζ-truxinate was obtained with 91 % yield 
in 90 min. This difference in reaction rates between β- → ζ- and ζ- → δ-truxinate processes employing 
TMG can be explained in steric hindrance terms of the nucleophilic nitrogen of the bases. 

3.3. ζδ-Truxinate Isomerization Process Using TMG and DBU 

To analyze the rate difference of the ζ- → δ-truxinate process using DBU and TMG, ζ-truxinate 
was isolated and the ζ- → δ-truxinate process was evaluated as shown in Error! Reference source not 
found.. 
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Scheme 4. ζ- → δ-Truxinate isomerization process using DBU and TMG. 

First, isomerization reactions using DBU were carried out in a 1 mL vial at 55 °C in an oil bath. 
For this reaction, 20 mg (4.8x10-2 mmol) of rctt-3a and 0.2 equiv (9.6x10-3 mmol) of DBU were used. 
The reaction was monitored by thin layer chromatography and the reaction was terminated at 4.5 h 
due to no longer perceptible reaction progress observed. The proportions of the diastereoisomers 
were evaluated by 1H NMR (See Supplementary Material). Subsequently, the same reaction was 
carried out but using TMG instead as a base. In the same manner the reaction was monitored by thin 
layer chromatography and stopped at 4.5 h. The proportions of the diastereoisomers were 
determined by 1H NMR and shown in Error! Reference source not found.. 

Table 2. Ratios of the isomers ζ- and δ-truxinate obtained by 1H NMR. 

Entry pKa Base η (μL/mg) Time rcct-rac-3b (%) rtct-rac-3c (%) 
1 23.3 TMG 1.0 4.5 h 70 30 
2 24.3 DBU 1.2 4.5 h 31 69 

4. Conclusions 

In summary, the formation of the cycloadducts ζ-truxinate and δ-truxinate from the 
isomerization of β-truxinate was achieved with high yields using the Liquid-Assisted Grinding 
technique. This novel technique provides shorter reaction times compared to the solution analogue. 
It was observed that bases with low pKa result in longer reaction times, while bases with higher pKa 
values resulted in short reaction times. By selection of the base the process can be directed to obtain 
preferentially the β- or ζ-truxinate. 

Supplementary Material: The following supporting information can be downloaded at the website of this paper 
posted on Preprints.org. The Supplementary Material contains experimental procedures, spectroscopic 
characterization of compounds and 1H NMR spectra of the reaction crudes. 
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