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Simple Summary: Artificial intelligence is transforming how doctors use brain imaging to diagnose 
and treat diseases. While there’s been significant progress in using artificial intelligence for adult 
brain scans, less is known about its benefits for children with brain cancer. Our review examines 
how artificial intelligence can improve pediatric brain imaging to detect and treat cancer more 
effectively. We found that artificial intelligence can make imaging faster and safer for children by 
reducing the time they spend in scanners and lowering their exposure to radiation and contrast 
dyes. Artificial intelligence also helps doctors identify tumors more accurately and predict how well 
treatments might work. However, challenges like limited data from children and the need for 
artificial intelligence tools that doctors can easily understand still exist. We suggest ways to 
overcome these hurdles so that artificial intelligence can better assist in caring for children with 
cancer in the future. 

Abstract: Background/Objectives: Artificial intelligence is transforming neuroimaging by 
enhancing diagnostic precision and treatment planning. However, its applications in pediatric 
cancer neuroimaging remain limited. This review assesses the current state, potential applications, 
and challenges of AI in pediatric neuroimaging for cancer, emphasizing the unique needs of the 
pediatric population. Methods: A comprehensive literature review was conducted, focusing on 
artificial intelligence impact on pediatric neuroimaging through accelerated image acquisition, 
reduced radiation, and improved tumor detection. Key methods include convolutional neural 
networks for tumor segmentation, radiomics for tumor characterization, and several tools for 
functional imaging. We analyzed challenges such as limited pediatric datasets, developmental 
variability, ethical concerns, and the need for explainable models. Results: Artificial intelligence has 
shown significant potential to improve imaging quality, reduce scan times, and enhance diagnostic 
accuracy in pediatric neuroimaging. Artificial intelligence algorithms demonstrated improved 
accuracy in tumor segmentation and outcome prediction for tumor treatments. Conclusions: 
Artificial intelligence offers significant potential for enhancing pediatric neuroimaging in cancer 
care, aiding in precise diagnoses and personalized treatments. To overcome current limitations, 
future research should focus on building robust pediatric datasets and developing interpretable 
models suited for clinical practice. 

Keywords: artificial intelligence; deep learning; machine learning; neuroimaging; cancer; 
medulloblastoma; craniopharyngioma; low-grade glioma 

 

1. Introduction 

Pediatric neuroimaging plays a pivotal role in diagnosing and managing neurological conditions 
affecting children with cancer. As technological advancements, particularly in artificial intelligence 
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(AI), continue to reshape medical practices, it becomes imperative to assess the evolving landscape 
of AI applications in this specialized field. Children present unique challenges due to ongoing brain 
development, distinct pathologies, and the necessity for child-friendly imaging protocols. Clinicians 
often face practical challenges such as limited imaging time due to patient discomfort and the need 
for sedation, which can impact image quality and diagnostic accuracy. From an AI expert’s 
perspective, technological limitations include the scarcity of large, high-quality datasets specific to 
pediatric populations, which hampers the development of robust AI models. 

Patients and their families are central to this discussion. Improved diagnostic tools can lead to 
earlier detection, less invasive procedures, and more personalized treatments, significantly impacting 
patient experiences and outcomes. Therefore, integrating AI into pediatric neuroimaging is not just a 
technological advancement but a patient-centric imperative. 

This review aims to address the scarcity of comprehensive assessments focusing on the 
intersection of AI, neuroimaging, and pediatric cancer, providing an understanding of the current 
state, potential applications, and limitations in this evolving field. In the landscape of pediatric 
neuroimaging, this review stands apart by directing its focus toward a specific and critical realm — 
AI applications in neuroimaging for pediatric cancer. While existing reviews offer comprehensive 
insights into general pediatric neuroradiology [1–4], our manuscript takes a distinctive approach, 
homing in on the unique challenges and advancements within the realm of catastrophic conditions 
in pediatric patients. This focus allows us to unravel intricacies, highlight advancements, and identify 
opportunities that are particularly pertinent to the complex landscape of pediatric cancer. 

AI refers to the computational automatization of tasks that mimic human intelligence. AI may 
even surpass human intelligence in areas such as memory storage, working memory capacity, 
parallel multitasking, steadfast decision-making criteria, pattern and recognition, among others [5]. 
Machine learning is a sub-branch of AI that enables a computational, automatized system to learn, 
make decisions, and adapt itself to perform new tasks based on newly imputed data without being 
explicitly programmed for those new tasks [6]. The predictive accuracy of the machine’s algorithm 
can then be assessed by comparing the outputs produced to actual outcomes obtained with a new 
data set that was not used for training [7]. Machine learning can be categorized as supervised, 
unsupervised, reinforcement learning, or evolutionary. In supervised learning, algorithms are 
trained on labeled data for which the input and corresponding output are provided, and the goal is 
to learn a mapping between inputs and outputs [8]. This category includes classification, regression, 
and time series forecasting. In unsupervised learning, algorithms are trained on unlabeled data, and 
their goal is to discover patterns and structures within the data without specific guidance [9]. This 
category includes clustering, dimensionality reduction, and anomaly detection. In reinforcement 
learning, agents interact with an environment and learn to take actions to maximize a cumulative 
reward, which guides them toward achieving specific goals [10]. This category includes model-based, 
model-free, and deep learning. As a more recent type of machine learning, deep learning incorporates 
artificial neural networks that simulate the learning process and structure of the human brain (Figure 
1). In evolutionary learning, the concepts of natural selection are represented in code to iterate a 
population of “organisms” to obtain an optimal solution. The steps involved in evolutionary learning 
are parent selection, progeny generation, and population evaluation [11]. 
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Figure 1. Chronological development of sub-categories and approaches in AI. 

The use of artificial intelligence in pediatric neuroimaging has increased in recent years (Figure 
2). Some common deep learning algorithms applied in neuroimaging include convolutional neural 
networks (CNNs), generative adversarial networks (GANs), and autoencoders. CNNs are deep 
learning approaches consisting of multiple neural layers [12]. When a volume of a sample, for 
example, three-dimensional (3D) images, is used as input data to train a CNN, the developed network 
is a 3D-CNN. Recently, 3D-CNNs have been used to identify patterns in neuroimaging data [13]. 
AlexNet, with deeper and stacked convolutional layers [14], and GoogLeNet, with 22 layers 
developed by Google researchers [15], are CNN models commonly used in object detection and 
image classification. Moreover, the residual neural network (ResNet), which is also a CNN 
architecture containing deeper layers that learn residual functions with reference to the input layer 
[16], has gained popularity in image recognition after AlexNet and GoogLeNet. Conversely, GANs 
can be especially applicable when the training data is limited, because they can create new data 
resembling the training data. A typical GAN has two components: a generator (a neural network that 
learns to generate data) and a discriminator (a classifier that can tell how “realistic” the generated 
data are). Autoencoders are effective at reconstructing images because they are feedforward neural 
networks that are trained to first encode the image then transform it to a different representation and 
eventually decode it to generate a reconstructed image. Autoencoders are a special subset of encoder–
decoder models with identical input and output domains. 
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Figure 2. Number of papers published per year containing the keywords “artificial intelligence”, 
“neuroimaging”, and “cancer”, according to the ScienceDirect search tool 
(www.sciencedirect.com/search). 

Neuroimaging is a branch of medical imaging that maps the brain in a non-invasive manner to 
understand its structural, functional, biochemical, and pathological features. Neuroimaging has led 
to significant advances in diagnosing and treating neurological abnormalities. Some neuroimaging 
modalities are magnetic resonance imaging (MRI) (which includes functional, structural, diffusion, 
angiographic, and spectroscopic imaging), electroencephalography (EEG), 
magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), positron emission tomography 
(PET), and computed tomography (CT). Functional neuroimaging refers to imaging the brain while 
participants perform set tasks to study task-related functions of the brain, rather than its structure. 

Recently developed deep learning algorithms can perform object segmentation and recognition 
in a short time with high accuracy. These algorithms offer the advantages of saving time and 
optimizing the use of resources. As a result, AI has gradually been integrated into daily medical 
practice and has made considerable contributions to medical image processing. The realm of 
neuroimaging has seen substantial integration of AI across various domains encompassing a wide 
spectrum of functions. This widely encompassing AI use spans improving radiology workflow [17], 
real-time image acquisition adjustments [18], image acquisition enhancement [19], and reconstruction 
tasks such as bolstering image signal-to-noise ratios (SNRs), refining image sharpness, and 
expediting reconstruction processes [20]. AI has also found applications in noise-reduction efforts 
[21], postprocessing of images, predicting specific absorption rates [22], prioritizing time-sensitive 
image interpretations [23], predicting and classifying types and subtypes of brain lesions based on 
molecular markers [24,25], and tissue characterization [26–28], as well as in anticipating treatment 
responses [29,30] and survival outcomes [31]. Importantly, these AI applications serve to elevate the 
efficiency of individual neuroscientists and physicians, optimize departmental workflows, enhance 
institutional-level operations, and ultimately enrich the experiences of pediatric patients and their 
families. 

As AI has demonstrated considerable usefulness and potential in neuroimaging, applying AI to 
pediatric neuroimaging for cancer could have a significant impact on patient outcomes and 
healthcare. AI holds immense promise in elucidating and addressing challenges in pediatric 
neuroimaging. Pediatric cancer encompasses many severe and life-threatening conditions that affect 
children from infancy through adolescence. This disease is characterized by its devastating impact 
on a child’s overall health, development, and well-being [32]. Children with cancer may experience 
chronic pain, physical disabilities, cognitive impairments, and disruptions of their normal growth 
and development [33]. The pediatric cancer addressed in this review include craniopharyngioma, 
low-grade glioma (LGG), and medulloblastoma. 

Pediatric cancers and their treatments are often associated with cognitive impairment. 
Craniopharyngioma is a common, mostly benign, congenital tumor of the central nervous system 
that typically causes disturbances of the visual system [34]. Although pediatric patients with 
craniopharyngioma display intact intellectual functioning, impairments of memory, executive 
function, attention, and processing speed have been observed [35,36]. 

Gliomas, which develop from the glial cells of the brain [37], are categorized into four grades: 
grade I and II gliomas are classified as low-grade gliomas (LGGs), whereas grade III and IV gliomas 
are classified as high-grade gliomas (HGGs) [38]. Neurocognitive deficits in children with LGGs can 
range from memory impairment and attention problems to decreased processing speed, depending 
on the location of the glioma [39]. 

Medulloblastoma is a malignant, invasive embryonal tumor that originates in the cerebellum or 
posterior fossa and spreads throughout the brain via the cerebrospinal fluid [40]. Survivors of 
medulloblastoma exhibit a decrease of 2–4 IQ points per year over time [41], in addition to deficits in 
attention, processing speed, and memory. 

The unique characteristics of the developing pediatric brain introduce complexities that 
necessitate tailored approaches for accurate diagnoses and effective treatment strategies. This review 
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aims to explore the evolving landscape where AI intersects with pediatric neuroimaging, 
emphasizing the distinctive considerations and challenges inherent to the pediatric population. As 
we delve into the intricacies of AI applications in pediatric neuroimaging, it is crucial to recognize 
that this field necessitates a multidisciplinary understanding. Clinicians, neuroimaging specialists, 
and AI experts converge to navigate the complexities posed by the developing brain. 

Our objective is to provide insights accessible to AI experts, neuroimaging specialists, and 
clinical practitioners alike. The convergence of these domains is pivotal for fostering collaborative 
solutions that enhance the understanding and treatment of pediatric neurological conditions. By 
establishing this common ground, we aim to propel the field forward, leveraging the potential of AI 
in pediatric neuroimaging to improve diagnostics, treatment planning, and outcomes for our young 
patients. 

This review is organized into the following sections: challenges in pediatric neuroimaging, AI 
for improving image acquisition and preprocessing, AI for tumor detection and classification, AI for 
functional neuroimaging and neuromodulation, AI for selecting and modifying personalized 
therapies, and AI applications for specific pediatric diseases, followed by a discussion and 
conclusions. 

2. Challenges in Pediatric Neuroimaging 

Navigating the landscape of pediatric neuroimaging is inherently fraught with challenges, each 
intricately tied to the unique characteristics of the developing brain. AI emerges as a transformative 
ally, offering tailored solutions to overcome these hurdles and enhance diagnostic precision and 
treatment efficacy in pediatric populations. Pediatric neuroimaging faces a substantial challenge due 
to the scarcity of comprehensive datasets specific to this demographic. AI interventions can play a 
pivotal role in overcoming this limitation through innovative techniques like transfer learning, 
enabling models trained on larger datasets to be fine-tuned for pediatric applications. Collaborative 
efforts for data sharing among institutions and research centers further amplify the potential for 
developing robust AI models. 

The diverse and dynamic nature of pediatric brain development introduces a layer of complexity 
in image analysis. AI algorithms, particularly those equipped with advanced learning capabilities, 
hold the promise of deciphering intricate patterns associated with different stages of brain 
maturation. This adaptability ensures that neuroimaging analyses remain attuned to the nuances of 
evolving pediatric neuroanatomy. 

For pediatric neuroimaging to truly benefit patient care, AI applications must extend beyond 
research settings to real-time clinical relevance. AI-driven tools can expedite data analysis, aiding in 
early detection, diagnosis, and treatment planning. The development of closed-loop systems, guided 
by real-time functional imaging data, showcases the potential of AI to dynamically adapt 
neuromodulation strategies, ensuring personalized and efficient interventions for pediatric patients. 

Combining neuroimaging and neuromodulation with AI could be used to mitigate and redress 
cognitive deficits, as an emerging approach to targeted modulation of the neural network underlying 
the cognitive deficit. Neuromodulation can be invasive, as with deep brain stimulation (DBS) and 
spinal cord stimulation, or non-invasive, as with transcranial magnetic stimulation (TMS). 
Neuromodulation can be used to treat neurological abnormalities, such as chronic pain [42,43] and 
tinnitus [44]. The development of real-time acquisition and display of functional data has enabled 
functional neuroimaging to be used in neurofeedback studies [45,46]. Neurofeedback permits 
participants in functional imaging studies to self-regulate their neural activity by presenting neural 
data in real time [47]. Therefore, neurofeedback, like brain stimulation, enables neural activity to be 
used as an independent variable when brain activity and behavior are studied. The demonstration of 
successful neural self-regulation has led to neurofeedback being used to control external devices 
through brain–machine interfaces [48]. 

A major challenge in pediatric neuroimaging is the variability in brain structure, function, and 
chemistry across ages due to rapid brain development during childhood and adolescence. The 
developing brain undergoes quick structural and functional changes over time, which presents 
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unique challenges in pediatric neuroimaging. An example is the rapid change in the myelination of 
brain white matter in early childhood. Pediatric brains are not merely scaled-down versions of the 
adult brain; there are age-dependent loco-regional variations. Therefore, accurate interpretation of 
age-related differences requires careful consideration of age-appropriate image acquisition and 
analysis methods [49]. The brain changes in shape and white/gray matter composition until the fourth 
decade of age [50,51] as the brain matures. When the brain matures through infancy, new sulci are 
formed, and older sulci deepen. Fractional anisotropy (FA) values on diffusion MRI increase with 
developmental age, reflecting the maturation of white matter tracts [52]. Additionally, the poor gray–
white matter myelination contrast in patients younger than 6 months affects the quality of 
conventional automatic segmentation [53]. 

Imaging metrics of normal brain development involve identifying myelination and gyrification 
patterns in individuals or in a specific population and comparing them to the patterns in the brains 
of controls of the same age [54–56]. Accordingly, age-specific templates and atlases are essential to 
account for variations in brain morphology across different developmental stages [57]. Spatial 
normalization for MRI is based on a standard template that defines a common coordinate system for 
group analysis. ICBM152 and MNI305 are among the most used templates for adults; however, 
MNI305 is suboptimal for normalization and segmentation of pediatric brain images because of the 
previously discussed age-related changes [57]. Some pediatric templates are available, such as the 
custom age templates produced by Template-O-Matic [58] and neonate templates [59,60]. However, 
there is a lack of corresponding atlases for those templates. The Haskins pediatric atlas [61] labels 113 
cortical and subcortical regions, but only 72 brains were used in its development. Longitudinal 
imaging studies that track brain development over time are essential for understanding 
neurodevelopmental trajectories and for identifying early signs of neurological disorders. 
Longitudinal studies provide valuable insights into the dynamic changes in the developing brain and 
offer opportunities for early interventions [62]. 

Another challenge in pediatric neuroimaging is the small sample sizes of the currently available 
pediatric data. Large sample sizes are essential for robust statistical analyses and generalizability of 
results. However, recruiting sufficient pediatric participants for neuroimaging studies can be 
challenging because of consent issues, logistical constraints, and the potential impact of imaging on 
young patients. Multi-site collaborations and data-sharing initiatives could help address this 
challenge and enhance the power of pediatric neuroimaging studies [63]. Integrating data from 
multiple neuroimaging modalities, such as structural MRI, functional MRI, and diffusion tensor 
imaging (DTI), can provide a comprehensive view of brain development and connectivity. 
Combining multimodal data enables researchers to examine brain changes at both the macroscopic 
and microscopic levels, leading to a more comprehensive understanding of the developing brain [64]. 

The concept of multi-institutional data sharing in the realm of healthcare and medical research 
is indeed complex and multifaceted. It involves exchanging sensitive information across different 
organizations, which inevitably gives rise to a range of legal, ethical, and privacy concerns. From a 
legal standpoint, sharing medical data across institutions often requires navigating a complex web of 
regulations and compliance standards, such as the Health Insurance Portability and Accountability 
Act (HIPAA) in the United States and the General Data Protection Regulation (GDPR) in Europe. 
These regulations are designed to safeguard patient privacy and data security, making it imperative 
for institutions to ensure that any data-sharing practices are in strict compliance with these legal 
frameworks. There are significant ethical considerations surrounding multi-institutional data 
sharing. These encompass questions related to patient consent, data ownership, and the potential for 
unintended consequences. Institutions must grapple with issues such as obtaining informed consent 
from patients for data sharing, ensuring that their rights are respected, and addressing concerns 
about how their data will be used, especially in research contexts. Moreover, privacy concerns are 
paramount when sharing medical data. Patient information must be de-identified and protected 
rigorously to prevent data breaches or the identification of individuals. Striking the correct balance 
between sharing data for the common good of medical research and preserving individual privacy is 
a critical ethical challenge. The notion of federated learning holds promises as a potential solution to 
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these barriers [65]. It operates on the principle of decentralized AI training, whereby machine 
learning models are developed collaboratively across multiple institutions without the need to 
centrally pool sensitive data. Instead, the models are trained locally on each institution’s data, and 
only aggregated model updates are shared, thus preserving data privacy. However, it is important 
to note that federated learning is still an evolving concept and that it faces its own set of challenges, 
including technical complexities and standardization issues. 

Another concern is the quality of the data recorded from children. Young children may have 
difficulty remaining still during neuroimaging sessions, leading to motion artifacts in the acquired 
data. Motion can degrade image quality and compromise the validity of results. Innovative motion 
correction techniques and child-friendly imaging protocols are needed to mitigate the impact of 
motion artifacts on pediatric neuroimaging data [66]. 

Research involving pediatric populations also raises ethical concerns, particularly regarding 
informed consent and the vulnerability of child participants. Balancing the potential benefits of 
neuroimaging research with protecting the rights of children is crucial. Ethical guidelines and careful 
consent procedures must be implemented to ensure the well-being and privacy of pediatric 
participants [67]. 

AI holds great promise for enhancing the interpretability and utility of pediatric neuroimaging 
data. Methods such as automated image analysis can aid in identifying subtle brain alterations 
associated with neurodevelopmental disorders and can facilitate early diagnosis and personalized 
treatment strategies [68]. 

Deep learning neural networks, such as CNN, have proved successful in automatically 
segmenting infant brains and delineating gray–white boundaries in neonates [53]. The use of deep 
learning in segmenting individual cortical and subcortical regions of interest (ROIs) based on features 
such as local shape, myelination, gyrification patterns, and clusters of functional activation is a 
promising field for exploration. AI can also be applied to tumor detection, segmentation, and 
categorization. 

Furthermore, AI-based neuroimaging techniques facilitate the integration of multimodal data 
that combine structural and functional information from various imaging modalities. This fusion of 
data can enhance the overall understanding of complex neurological conditions in pediatric 
catastrophic disease patients and survivors and promote a more comprehensive approach to 
diagnosis and treatment [69]. 

3. AI for Improving Image Acquisition and Preprocessing 

The optimization of image acquisition and preprocessing is crucial in neuroimaging, 
significantly impacting the accuracy and reliability of subsequent analyses. In this section, we delve 
into the challenges and advancements related to these processes, highlighting the pivotal role of 
artificial intelligence. 

There are multiple challenges and risks associated with pediatric image acquisition, such as 
motion artifacts, reduced tolerance to scanning durations, and the need for age-specific protocols. AI 
has emerged as a valuable tool to address these challenges. Automated motion correction algorithms, 
guided by machine learning, enhance the quality of acquired images by mitigating the impact of 
motion artifacts, particularly prevalent in pediatric populations. The most critical challenge in this 
context is scanning time, as most children are unable to stay still, are prone to moving, and cannot 
bear long scan durations. Owing to the need to re-scan motion-corrupted data, imaging can be a 
lengthy process. In a pediatric setting, general anesthesia is commonly used to decrease the risk of 
motion artifacts appearing in the images and in consideration of patient throughput, comfort, and 
cost. However, ionizing radiation exposure and the side effects of contrast agents have always been 
a major concern, including among children and their parents. Obtaining high-quality images, ideally 
with high contrast, good spatial resolution, and high SNRs, is critical to ensure accurate diagnoses 
and suitable treatment plans. Accordingly, reducing the dose of contrast agents may mean sacrificing 
image quality and decreasing SNRs. 
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In addition to the challenges faced during image acquisition, limitations are also encountered in 
image reconstruction. For example, MR images are acquired in the Fourier or spatial-frequency 
domain (also known as k-space); hence, image reconstruction is important in transforming the raw 
data into clinically interpretable images [70]. An inverse Fourier transform operation is required to 
reconstruct an image, which is collected based on the Nyquist sampling theorem [71]. However, 
because of the considerations regarding minimizing scan time, optimizing patient comfort, and 
ensuring safety in pediatric populations, only a limited number of measurements are acquired by the 
scanners, which leads to difficulties in solving the inverse transform [72]. The fundamental physics, 
practical engineering aspects, and biological tissue response factors underlying the image-acquisition 
process make fully sampled MRI acquisitions very slow [70]. Furthermore, patient motion, system 
noise, and other imperfections during scanning can corrupt the collected raw data. 

AI plays a relevant role in preprocessing steps, encompassing image denoising, normalization, 
and registration. These processes are essential for creating a standardized and comparable dataset. 
AI algorithms contribute significantly to noise reduction, enhancing signal-to-noise ratios and 
subsequently improving the accuracy of downstream analyses. Registration and normalization are 
critical steps in aligning imaging data across individuals or different imaging modalities. In pediatric 
neuroimaging, challenges arise due to the dynamic changes in brain anatomy during development. 
Conventional methods may struggle with the anatomical variability present in pediatric populations, 
necessitating advanced solutions. Accurate registration and normalization are fundamental for 
creating population-based templates and atlases, facilitating a common spatial framework for 
analysis. AI-based registration algorithms, capable of adapting to the unique anatomical features of 
pediatric brains, contribute to improved spatial normalization, ensuring more precise comparisons 
across subjects [73]. 

3.1. Accelerating Image Acquisition 

In MRI, compressed sensing (CS) is used to accelerate scanning and reduce the resources 
required by acquiring MR images with good in-plane resolution but poor through-plane resolution 
[74]. CS assumes that suitably compressed under-sampled signals can be reconstructed accurately 
[75] without the need for full sampling. However, this technique limits interpretation to single 
directions and can introduce aliasing artifacts [76]. A deep learning–based algorithm called synthetic 
multi-orientation resolution enhancement (SMORE) has been applied to adult compressed scans in 
real time to reduce aliasing and improve spatial resolution [74]. A similar approach can, perhaps, be 
applied in pediatric MRI to reduce scan time and improve image resolution. Moreover, applying 
GANs has been shown to improve the SNR of images [77]. Combining GANs with fast imaging 
techniques in pediatric neuroimaging could lead to faster image acquisition for children who are 
unlikely or unwilling to remain still for an extended period. These methods may even reduce the 
need for general anesthesia and/or sedation [3]. 

3.2. Reducing Radiation Exposure or Contrast Doses 

A deep learning model based on an encoder–decoder CNN has been applied to generate high-
quality post-contrast MRI from pre-contrast MRI and low-dose post-contrast MRI [78]. The study 
showed that the gadolinium dosage for brain MRI can be reduced 10-fold MRI while preserving 
image contrast information and avoiding significant image quality degradation. For CT, deep 
learning has great potential for image denoising based on its use in realizing low-dose CT imaging 
for pediatric populations. Chen et al. [79] trained another encoder–decoder CNN model to learn 
feature-mapping from low-/normal-dose CT images. This model improved noise reduction when 
compared with other denoising methods. A deep CNN model using directional wavelets was 
effective at removing complex noise patterns for low-dose CT reconstruction [80]. An autoencoder 
CNN, which was used to train pairs of standard-dose and ultra-low-dose CT images, could filter 
streak artifacts (i.e., artifacts appearing between metal or bone as a result of beam hardening and 
scatter) and other noise for ultra-low-dose CT images [81]. Furthermore, it is possible to interpolate 
data from one modality with a neural network trained on data from a completely different modality. 
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Zaharchuk [82] trained a neural network with simultaneously acquired PET/MRI images to improve 
the resolution of low-dose PET imaging. These developments in deep learning show promise in terms 
of moving pediatric neuroimaging toward imaging with low or no radiation exposure. 

3.3. Removing Artifacts 

Accelerated MRI techniques such as CS and parallel imaging offer significant reductions in scan 
time. However, reconstructing images from the under-sampled data involves computationally 
intensive algorithms, thus posing a notable challenge because of the high computational costs 
incurred. Lee et al. [83] proposed deep ResNets that are much better at removing the aliasing artifacts 
from subsampled k-space data when compared with current CS and parallel reconstructions. Their 
deep learning framework provides high-quality reconstruction with shorter computational time than 
is required for CS methods. In addition to accelerating reconstruction, AI approaches can correct 
artifacts, such as those arising from MRI denoising [84] and motion correction [85,86] during image 
acquisition and reconstruction. Singh et al. [87] built two neural network layer structures by 
incorporating convolutions on both the frequency and image space features to remove noise, correct 
motion, and accelerate reconstruction. Deep learning–based approaches have also been investigated 
to reduce metal artifacts [88,89] that are common in CT imaging. 

4. AI for Tumor Detection and Classification 

In children with cancer predisposition syndromes, surveillance screening increases the chance 
of early tumor detection and, therefore, the survival rate [90]. Deep learning algorithms may help in 
identifying imaging protocols to achieve optimal accuracy for early cancer diagnosis [91]. 
Soltaninejad et al. [92] used CNN for automated brain tumor detection in MRI scans. CNNs have 
been used to detect and characterize tumors [93] and to find associations between genotypes and 
imaging tumor patterns. Machine learning has also been used to classify pediatric brain tumors [94–
96]. 

CNNs have the potential to identify the best model for categorizing pediatric brain abnormalities 
by combining brain features extracted from different mathematically derived measures, such as the 
spherical harmonic description method (SPHARM) [97], the multivariate concavity amplitude index 
(MCAI) [98], and Pyradiomics [99]. Moreover, CNNs can help in identifying the best approach for 
feature selection in pediatric brain data, such as a superpixel technique based on a simple linear 
iterative clustering (SLIC) method [92], combining spatial distance, intensity distance, spatial 
covariance, and mutual information. 

4.1. AI in Tumor Segmentation 

Early detection and precise classification of brain tumors are important for effective treatment 
[100]. The two main types of classification that can be performed based on brain images are 
classification into normal and abnormal tissues (i.e., whether a tumor is detected in the brain image) 
and classification into different classes of brain tumor (e.g., low-grade vs. high-grade) [101]. 

Segmenting tumors with AI methods has recently attracted much attention as a possible means 
of achieving more precise treatment. AI accomplishes brain tumor segmentation by identifying the 
class of each voxel (e.g., normal brain, glioma, or edema). Two main AI methods have been reported 
in the literature: (1) hand-engineered features used with older classification methods (e.g., support 
vector machine [SVM] classifiers) and (2) deep learning using CNNs. CNNs and their variations can 
self-learn from a hierarchy of complex features to perform image segmentation [102,103]. 

4.2. AI in Tumor Margin Detection 

Many brain tumors exhibit a distinctively infiltrative nature, which often results in poorly 
defined tumor margins. Compounding this challenge, the edema surrounding these tumors 
frequently manifests imaging characteristics similar to those of the tumor itself, further complicating 
the accurate delineation of the true tumor boundary. The precise identification of this boundary holds 
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immense significance, as it serves as a guiding principle for neurosurgeons aiming not only for gross 
total resection but also for margin-negative surgery, which is a critical factor in significantly 
enhancing patient survival rates. 

To address this complex issue, advanced MRI techniques and PET have been employed in 
attempts to refine the delineation of tumor margins, albeit with varying degrees of success. More 
recently, AIs based solely on MR images or on a combination of MRI and PET data have exhibited 
potential for substantially improving the accuracy of true tumor margin detection [65,104,105]. This 
innovative approach represents a significant leap forward in the field of neuroimaging, with the 
promise of new avenues for enhancing the precision of brain tumor surgery and ultimately 
improving patient outcomes. 

4.3. AI in Tumor Characterization 

As high-throughput computing facilitates converting multimodal medical images into mineable 
high-dimensional data, there has been increased interest in using radiomics and radiogenomics to 
detect and classify tumors. Radiomics refers to studies or approaches that extract quantitative high-
throughput features, which are usually invisible to the naked eye, from radiographic images 
[106,107], typically with the use of different machine learning techniques to attribute quantitative 
tumor characteristics. Radiomics has multifaceted applications, with one of its primary roles being 
tumor diagnosis and classification. By elucidating distinct radiomic signatures, it empowers 
radiologists to augment diagnostic accuracy and timeliness, in addition to predicting disease 
trajectories, thereby enabling tailored treatment strategies. By tracking changes in radiomic features 
over the course of treatment, it can play a pivotal role in evaluating therapeutic efficacy and making 
timely adjustments when indicated. In oncology, this capability is of paramount importance for 
optimizing patient outcomes. The true promise of radiomics lies in the realm of personalized 
medicine, as it integrates imaging data with clinical parameters, genomics, and other patient-specific 
variables. This convergence provides the foundation for precision medicine by tailoring treatments 
to individual patients, thereby improving therapeutic outcomes while mitigating adverse effects. 

Radiogenomics uses such radiographic image features to detect relationships specifically with 
genomic patterns [108]. Machine learning–based radiomics offers critical advantages in treating brain 
tumors that are genetically heterogeneous, and it can provide better predictions by linking genomics 
to extraordinarily complex imaging phenotypes. For example, predicting a tumor genotype 
noninvasively and preoperatively can help estimate the chance of survival and the treatment 
response [109]. By applying a radiomics model to preoperative MRI, it has been possible to predict 
key genetic drivers of gliomas [110–113]. 

Applying deep learning in radiomics is helpful in assessing higher-order features to improve 
the accuracy of prediction of brain tumor progression. Deep learning–based radiomics models have 
been applied for predicting survival [114,115] and for classifying the molecular characteristics 
[112,116,117] of brain tumors. Taking advantage of the 3D nature of MRI data, Casamitjana et al. [118] 
and Urban et al. [119] showed that a 3D-CNN could perform well for brain tumor segmentation. In 
addition, by reusing pre-trained models to learn a similar task (i.e., transfer learning) in deep 
learning, Yang et al. [120] predicted glioma grading from pre-surgical T1-weighted, contrast-
enhanced images for 113 patients, using the high-performing GoogLeNet and AlexNet softwares. A 
CNN-based classification system can be used to segment and classify multi-grade brain tumors [121]. 

4.4. Radiomics and Radiogenomics for Specific Pediatric Brain Tumors 

In the realm of diagnosing and treating pediatric brain tumors, the 2021 World Health 
Organization classification of central nervous system tumors has underscored the pivotal role of 
molecular classification. These tumors are currently characterized by using molecular markers. 
However, the techniques required for such molecular subgrouping, encompassing 
immunohistochemistry and genetic testing, are often not consistently available and are associated 
with significant delays, even in well-equipped healthcare settings. These delays introduce 
complexities into patient care, affecting various aspects ranging from prognosis and surgical 
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strategies to treatment choices and participation in clinical trials. Given this pressing need for a more 
efficient approach, machine learning methods hold great promise for rapidly and accurately 
predicting molecular markers in pediatric neuro-oncology practice. 

4.4.1. Posterior Fossa Tumors 

Posterior fossa tumors represent a challenging group of central nervous system tumors that 
primarily affect children. Timely and accurate diagnosis is pivotal in determining the appropriate 
course of treatment. However, the current gold standard for definitive diagnosis necessitates invasive 
procedures involving tissue collection and subsequent histopathological analysis, which can be 
burdensome and risky, especially for pediatric patients. Machine learning has emerged as a 
promising avenue for non-invasive diagnosis, having demonstrated its ability to attain exceptional 
diagnostic accuracy with an impressive area under the receiver operating characteristics curve 
(AUROC) exceeding 0.99, on par with that of experienced pediatric neuroradiologists, in 
distinguishing among the three most prevalent posterior fossa tumors: astrocytoma, 
medulloblastoma, and ependymoma [122,123]. Using sequential classifiers, radiomics analysis 
achieved an impressive micro-averaged F1 score of 88% and a binary F1 score of 95% for the 
classification of WNT-subgroup medulloblastomas and an impressive AUROC curve of 0.98 in 
distinguishing between group 3 and group 4 medulloblastomas [124]. These techniques have the 
potential to make tissue biopsies unnecessary in the future and to lead to better treatments [125]. 

4.4.2. Craniopharyngiomas 

Craniopharyngiomas have notoriously diverse shapes and types, with corresponding 
differences in their pathogenesis and malignancy. Manual diagnosis of craniopharyngiomas is time-
consuming, and inconsistencies in the results are common [126]. Such limitations can be overcome 
by using deep learning methods. Prince et al. [127] applied deep learning models for CT, MRI, and 
combined CT and MRI datasets to pinpoint parameters for identifying pediatric craniopharyngioma. 
They demonstrated high test accuracies and exceptional improvement in the performance of their 
baseline model. Therefore, AI may help to improve the accuracy of diagnosis. Machine learning has 
also been used to predict postoperative outcomes in craniopharyngioma [128,129]. 

Mutations in the BRAF and CTNNB1 genes in craniopharyngiomas were predicted by applying 
radiomics and machine learning to MRI data [130]. An SVM model identified 11 optimal features 
with radiological features and was used to predict preoperative craniopharyngioma invasiveness 
[131]. 

4.4.3. Low-Grade Gliomas 

As the diagnosis of low-grade glioma (LLG) is clinically challenging, AI has been applied to LGG 
radiomics research. An SVM achieved better performance in predicting glioma grading when 
compared with 24 other classifiers [124]. However, GoogLeNet was reported to perform better than 
AlexNet in predicting glioma grading from preoperative T1 MRI [120]. Hybrid approaches also 
achieved high accuracy in classifying LGG subtypes [24,132]. Another approach used a custom deep 
neural network and MRI data to classify brain tumors as meningiomas, gliomas, or pituitary tumors 
and subsequently to categorize the gliomas as grade II, III, or IV [133]. Machine learning techniques 
using diffusion parameters have been used to predict the progression of optic pathway gliomas [134]. 

4.4.4. High-Grade Gliomas 

Among the various subtypes of pediatric-type high-grade gliomas, machine learning techniques 
have found their most extensive application in characterizing diffuse midline glioma H3 K27–altered 
[40]. This particular tumor typically affects central brain structures that are nearly always non-
resectable, resulting in a high fatality rate. Different machine learning techniques have been 
developed to predict this specific tumor marker with very high accuracy [135–138]. Radiomic analysis 
based on MRI data also shows promise in predicting progression-free survival among pediatric 
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patients diagnosed with diffuse midline glioma or diffuse intrinsic pontine glioma [139]. By 
employing diffusion and perfusion MRI parameters, a novel capability has emerged by which to 
delineate three spatially discrete tumor microenvironments that could potentially serve as predictive 
markers for patient outcomes [140]. 

4.4.5. Ependymomas 

By leveraging radiomic features extracted from T2-weighted MRI and post-contrast T1-weighted 
MRI through machine learning approaches, it becomes feasible to differentiate between MRI 
phenotypes corresponding to two distinct types of posterior fossa ependymoma and to identify high-
risk individuals within these groups [22]. Radiomic features can also differentiate supratentorial 
ependymomas from high-grade gliomas [141]. 

4.5. Hybrid Models 

Improving the quality of the input data and carefully selecting the most pertinent features are 
both crucial steps in training AI models to achieve optimal performance. Conventional types of 
machine Learning algorithms, such as the SVM and K-nearest neighbors (KNN) algorithms, are 
capable of quantifying and visualizing latent information contained within images [126,142]. 
Meanwhile, most recent deep learning algorithms, such as CNN, AlexNet, and GoogLeNet, excel at 
extracting features to derive comprehensive deep or high-order features [143]. Hence, hybrid models 
that use both methods may work better in complex cases with multi-source, heterogeneous medical 
data. This concept was put into practice through a recent development for classifying brain tumors, 
leading to improved classification accuracy. In the model, a modified GoogLeNet was employed to 
extract deep features that were subsequently used to train SVM and KNN classifiers [144]. By 
combining radiomics and deep features extracted by a CNN from medical images and selecting the 
optimal feature subset as input for an SVM, Ning et al. [145] demonstrated that integrating radiomics 
and deep features can be used to grade gliomas. Li et al. [146] used AlexNet to extract features and 
an SVM for classification to achieve high classification precision for glioblastoma multiforme 
diagnosis. Raza et al. [147] proposed a hybrid deep learning model by changing the last five layers of 
GoogLeNet to 15 new layers, thereby obtaining performance that was better overall than that of other 
pre-trained models. 

5. AI for Functional Imaging and Neuromodulation 

Functional imaging is used in brain tumor studies in two major ways: for preoperative mapping 
and to assess postoperative outcomes. In preoperative mapping, functional imaging helps surgeons 
to understand the spatial relations between lesions and functional areas and enables surgical 
planning that reduces long-term neurological deficits [148]. One retrospective, propensity-matched 
study found that patients with LGG who underwent preoperative fMRI subsequently underwent 
more aggressive surgeries when compared with other patients [148]. Although these surgeries did 
not significantly change the survival outcomes, non-significant trends of higher postoperative 
functional improvement were observed in those patients who underwent preoperative fMRI and 
aggressive surgeries. Postoperative functional imaging studies investigate the functional brain 
changes sustained by survivors of brain tumors with the goal of improving treatment regimens to 
reduce cognitive inhibition. For example, one fMRI-based study of pediatric patients with 
medulloblastoma found evidence of long-term effects of prophylactic reading intervention, including 
significantly increased sound awareness [149]. Notably, a longitudinal study of medulloblastoma 
survivors revealed that support vector machine classification of functional MRI data indicated a 
progressive divergence in brain activity patterns compared to healthy controls over time, suggesting 
delayed effects of cancer treatment on brain function [150]. Alterations in brain regions involved in 
visual processing and orthographic recognition during rapid naming tasks were correlated with 
performance in tasks involving sound awareness, reading fluency, and word attack, highlighting the 
dynamic nature of post-treatment neurofunctional alterations. Additionally, a functional imaging 
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study showed that adults who had experienced childhood craniopharyngioma exhibited cognitive 
interference processing abilities on a par with those of the control group, as fMRI of these survivors 
showed no compensatory activity within the cingulo-fronto-parietal attention network when they 
were compared to the control group [151]. 

Traditional deep learning models often lack transparency, making it challenging to understand 
which features contribute to their classification decisions. The eXplainable Artificial Intelligence 
fNIRS (xAI-fNIRS) system is an innovative approach that addresses the issue of explainability in deep 
learning methods for classifying fNIRS data. This is achieved by incorporating an explanation 
module that can decompose the output of the deep learning model into interpretable input features 
[152]. 

The goal of neuromodulation is to restore normal neural function in areas affected by 
neurobiological abnormalities or to facilitate compensatory mechanisms by stimulating alternative 
neural networks. Once an association is established between a functional neurobiological pattern and 
a neurocognitive alteration in pediatric catastrophic disease survivors, neuromodulation becomes a 
potentially relevant and promising strategy for intervention. In the context of pediatric catastrophic 
disease survivors, who may experience long-term neurocognitive deficits due to the disease or its 
treatment, neuromodulation offers several potential applications in neuroplasticity promotion, 
symptom management, cognitive enhancement, and personalized medicine. 

Epilepsy is a neurological disorder characterized by recurrent seizures, and it can occur in 
pediatric patients with cancer, such as LGGs [153]. The association between epilepsy and these 
conditions is often related to the location of the underlying disease within the brain and its impact on 
neural circuits. Dystonia is a movement disorder characterized by involuntary muscle contractions 
that cause repetitive or twisting movements and abnormal postures. Dystonia can occur in children 
with thalamic tumors, particularly when the tumor directly affects or compresses the thalamus or 
nearby brain structures involved in motor control [154]. 

For epilepsy, DBS is applied to the anterior thalamic nucleus to decrease brain excitement, which 
in turn decreases the frequency or duration of seizures [155]. For dystonia, DBS of the cerebellum has 
improved dystonia by reducing the severity of spasms and improving posture and pain relief [156]. 
Therefore, neuromodulation is a treatment option for a wide range of movement and brain disorders. 

With regard to neuromodulation, AI enables faster data collection and monitoring, which can 
aid in early diagnosis, treatment, patient monitoring, and disease prevention [30]. Machine learning 
can analyze large datasets to improve the efficiency of neuromodulation. A reinforcement learning 
paradigm intended to optimize a neuromodulation strategy for epilepsy treatment found a 
stimulation strategy that both reduces the frequency of seizures and minimizes the amount of 
stimulation applied [157]. Closed-loop DBS systems can use neural activity to find patterns in 
symptoms and produce parameters in real time to alter the stimulation and prevent tremors [158,159]. 

Even though there has been extensive research on using AI in neuromodulation, only a very 
small subset of this research has pertained to pediatrics. However, a machine learning technique to 
monitor and predict epileptic seizures in pediatric patients has been reported [160]. The application 
of scalp EEG data to create a treatment prediction model for vagus nerve stimulation in pediatric 
epilepsy, using brain functional connectivity features, has also been reported [161]. 

Incorporating AI into the data collection and monitoring stages of neurofeedback offers the 
potential for early detection and precise non-pharmacological management of neurological 
conditions. AI facilitates the analysis of extensive patient data, enhancing the effectiveness and 
efficiency of neurofeedback processes. Hence, there is a need for additional research to explore 
comprehensively and expand the use of brain–computer interfaces that incorporate AI [162]. 
Incorporating AI into neurofeedback holds promise for unlocking fresh avenues by which to enhance 
substantially the effectiveness of these therapeutic approaches for neurological disorders [162]. 

6. AI for Selecting and Modifying Personalized Therapies 

Personalized medicine is the future of oncology, and AI plays a crucial role. Personalized 
therapies reduce unnecessary side effects and improve quality of life. AI-driven treatment plans can 
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enhance patient experiences by focusing on therapies with the highest likelihood of success. In recent 
years, there has been a surge in clinical trials exploring diverse immunotherapy approaches, with 
several agents gaining approval from regulatory authorities such as the Food and Drug 
Administration (FDA). However, the outcomes of immunotherapy treatments have been variable, 
and this variability is often attributed to the absence of precise diagnostic tools for identifying patients 
who are likely to respond to specific therapies. To address this critical challenge, the integration of 
machine learning–based techniques hold great promise. Radiomics-based techniques have shown 
promise in predicting CD3 T-cell infiltration status in glioblastoma [163] and in predicting the 
survival of patients receiving programmed death–ligand 1 inhibition immunotherapy [164]. 

7. AI in Monitoring Treatment Response 

Monitoring the response of pediatric brain tumors to therapy can pose challenges, particularly 
because of the intense inflammation that may occur in the early phases of treatments such as radiation 
therapy and immunotherapy. This inflammation can be transient, often improving over time—a 
phenomenon referred to as pseudoprogression. Importantly, pseudoprogression shares imaging 
features with true tumor progression, making it crucial to distinguish between the two, as their 
clinical management strategies differ significantly. Although advanced MRI and PET techniques 
have been applied to address this issue in pediatric neuro-oncology, it remains a challenge. 
Encouragingly, machine learning techniques have been deployed to differentiate between these two 
conditions, demonstrating promising success in this endeavor [165,166]. 

8. AI in Predicting Survival for Patients with Pediatric Brain Tumors 

Despite extensive research, some pediatric brain tumors still carry a grim prognosis, with overall 
survival often being less than 2 years from the time of diagnosis. The molecular characterization of 
these tumors was a significant leap forward, offering clinicians valuable prognostic insights. 
However, considerable variability persists within specific tumor subgroups, and a universally 
applicable tool for accurately predicting survival in all patients with pediatric brain tumors remains 
elusive. Machine learning–based techniques present a promising avenue, particularly when it comes 
to predicting survival at the time of diagnosis and especially for tumors that are not amenable to 
surgical resection. A substantial collective effort is now focused on leveraging machine learning to 
develop predictive tools for these challenging cases. For instance, one notable approach involves a 
subregion-based survival prediction framework tailored for gliomas using multi-sequence MRI data, 
achieving an area under the receiver operating characteristic curve (AUC) of 0.98 in predicting 
survival outcomes [161]. By using radiomic features derived from T1-weighted post-contrast 
imaging, progression-free survival can be predicted with concordance indices of up to 0.7 [167]. 
Similarly, a multiparametric MRI-based radiomics signature, integrated with machine learning, 
demonstrated strong potential for preoperative prognosis stratification in pediatric 
medulloblastoma, achieving an AUC of up to 0.835 in the validation set [168]. 

9. AI for Transparent Explanations in Cancer Neuroimaging 

Research on explainable AI (XAI) for pediatric cancer neuroimaging is still limited, though 
recent efforts have focused on developing XAI models for neuroimaging in cancer populations, with 
opportunities to adapt these models for pediatric cases. These models aim to improve brain tumor 
detection, localization, and classification while providing interpretable results for clinicians. Recent 
research by Ashry et al. investigates the use of deep learning for automated recognition of pediatric 
Posterior Fossa Tumors (PFT) in brain MRIs [169]. They explored CNN models, including VGG16, 
VGG19, and ResNet50, for PFT detection and classification, using a dataset of 300,000 images from 
500 patients. The study also analyzed model behavior using Local Interpretable Model-Agnostic 
Explanations (LIME), SHapley Additive exPlanations (SHAP), and Individual Conditional 
Expectation (ICE). Results indicated that VGG16 was the best model compared to VGG19 and 
ResNet50. Rahman et al. (2023) proposed a lightweight CNN with Gradient-weighted Class 
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Activation Mapping (Grad-CAM) visualization, achieving high accuracy in brain cancer detection 
and localization [170]. The importance of XAI lies in its ability to visualize model features, improve 
interpretability, and enable human-machine interactions that are crucial for clinical adoption [171]. 
Recent developments, such as NeuroXAI, a framework implementing multiple XAI methods for MRI 
analysis of brain tumors, demonstrate the potential of XAI to enhance transparency and reliability in 
neuroimaging, facilitating the adoption of AI models in clinical practice for cancer diagnosis and 
treatment planning [172]. Another study explored the Adaptive Aquila Optimizer with XAI for 
effective colorectal and osteosarcoma cancer classification, combining Faster SqueezeNet for feature 
extraction, adaptive optimization for tuning, ensemble DL classifiers for diagnosis, and LIME for 
interpretability [173]. 

10. Discussion 

AI has the potential to transform medicine by enabling the analysis of large quantities of patient 
data to provide faster, more accurate diagnoses and to reduce the need for invasive procedures. AI 
can also help healthcare providers to optimize clinical workflows by automating repetitive tasks and 
reducing the administrative burden on clinicians. 

A limitation of current work on using AI for neuroimaging applications in pediatric cancer is 
the lack of large datasets, as AI models require a substantial amount of data to learn. One way to 
overcome this limitation is to encourage collaboration and data sharing among laboratories across 
universities, research organizations, hospitals, and other healthcare institutions. This can be achieved 
by developing standardized protocols for data collection, processing, and analysis, as well as by 
establishing data sharing agreements that ensure data privacy and ethical use of data. An alternative 
approach to address the problem of limited datasets is transfer learning, in which pre-trained models 
from other domains or populations can be fine-tuned for use with smaller pediatric datasets. Another 
limitation of pediatric neuroimaging is the lack of standardization in imaging protocols and quality 
control measures across different research laboratories. If non-standardized datasets are combined in 
an AI model, such differences can decrease the accuracy and reliability of the model. 

There are several knowledge gaps concerning AI for neuroimaging applications in pediatric 
cancer. First, although AI models have shown promising results in diagnosing and predicting 
outcomes of some pediatric neurological diseases, such as brain tumors, there has been only limited 
research on the generalizability of these models across different patient populations. 

Second, there is a need for more research on the interpretability of AI models in pediatric 
neuroimaging. Interpretability of AI models is critical, especially in healthcare applications such as 
pediatric neuroimaging. Although AI models may provide accurate predictions, the black-box nature 
of some AI models can be a concern, as it may limit the ability of the user to understand how the 
model arrives at its decisions or predictions, thereby potentially limiting their clinical utility. 
Developing methods to explain the logic behind AI model predictions would help to improve their 
transparency, trustworthiness, and scientific contribution [152]. Third, there is a need for more 
research on integrating AI models into clinical practice. The development of AI models is only the 
first step in their implementation into clinical workflows, and more research is needed to determine 
how these models can be integrated into clinical decision making and how they can have an impact 
on patient outcomes. 

Explainable AI is paramount in pediatric neuroimaging for several reasons. In clinical 
applications, understanding the decision-making process of AI models is crucial for gaining trust 
among healthcare professionals and facilitating seamless integration into diagnostic workflows. 
Moreover, in cancer, where decisions can have profound implications, explainability ensures that 
clinicians and researchers comprehend how AI arrives at its predictions or classifications. The 
application of AI in pediatric neuroimaging demands a high level of interpretability. This 
transparency fosters a collaborative environment between AI tools and healthcare practitioners. As 
we navigate the future of AI in pediatric neuroimaging, emphasis should be placed on furthering the 
development of explainable AI techniques. This not only aligns with the growing demand for 
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transparency in AI applications but also positions pediatric catastrophic disease research at the 
forefront of responsible AI implementation. 

In summary, therefore, the current challenges in applying AI to neuroimaging in pediatric 
cancer are data availability, technical variability, interpretability, ethical considerations, and 
integration with clinical practice. Moreover, regulatory issues concerning safety, privacy, efficacy, 
and ethics related to the use of AI in pediatric neuroimaging raise specific challenges in different 
countries. 

Ethical concerns such as data privacy, bias, and transparency also need to be addressed in the 
development and implementation of AI models for pediatric neuroimaging. It is essential to ensure 
that these models are developed and validated in an ethical and responsible manner to avoid 
potential harm to patients and to maintain public trust in AI applications. As AI becomes more 
prominent in neuroimaging, it will be necessary to establish guidelines and ethical frameworks for 
its responsible use in patient care and research. 

AI can facilitate the integration and analysis of multimodal neuroimaging data from various 
sources and research centers [174,175]. Collaborative efforts with AI-based tools can accelerate 
discoveries and improve data sharing within the scientific community. 

AI can help identify novel biomarkers associated with various neurological and psychiatric 
conditions by analyzing large datasets of functional imaging data. These biomarkers could aid in 
early diagnosis and personalized treatment strategies. Advanced AI algorithms can predict the 
progression of neurological disorders and their response to specific neuromodulation treatments. 
This predictive capability can help clinicians to make more informed decisions about patient care and 
long-term management. 

The use of AI for pediatric neuroimaging is a rapidly growing field. Some of the key areas of 
focus for future developments in this field include large-scale data collection, multimodal integration 
of neuroimaging modalities (such as MRI, fMRI, resting-state fMRI, MRS, DTI, fNIRS, EEG, and 
MEG), early detection of pathologies, real-time neuroimage processing and analysis, personalized 
treatment planning, prediction of treatment outcomes, longitudinal neuroimaging analysis, and the 
theoretical explanation of pathological phenomena. 

When studying brains that were previously affected by solid tumors, the approaches used 
should consider 1) mass effect, with reference to displacement and compression indices; 2) edema, 
with reference to morphometry, density, and composition; and 3) maps of tissue damage, in terms of 
volume, morphometry, density and structural/functional connectivity. Density can be extracted from 
T1 MRI images, whereas composition is derived from PET scans. Structural connectivity analysis may 
consider diffusion imaging features extracted as voxel-based measures, such as the apparent 
diffusion coefficient, fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity, 
and tensor-based measures, such as tensor connectivity maps. AI can further refine and enhance the 
analysis of functional imaging data, such as fMRI. Advanced AI algorithms can extract more precise 
information from complex brain activity patterns and lead to better insights into brain function and 
connectivity. 

AI can enable closed-loop systems in which real-time functional imaging data is used to adapt 
and optimize neuromodulation in real time. This dynamic approach can ensure that stimulation 
parameters are continuously adjusted to suit the changing state of the brain, making treatments more 
efficient and effective. AI can be used in designing and optimizing neuromodulation devices, such as 
DBS systems. AI-driven simulations can assist in developing more precise and targeted stimulation 
paradigms. Moreover, AI can assist in identifying the most effective neuromodulation techniques for 
individual patients, based on their unique brain activity patterns. By considering patient-specific 
features, such as neural network connectivity, AI can optimize treatment parameters for better 
outcomes. 

11. Conclusion 

Although AI has seen significant advances in its application to neuroimaging in adult 
populations, its implementation in children with cancer has been limited by several factors, including 
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the scarcity of available datasets and the unique challenges of applying adult-focused AI methods to 
pediatric populations. The limited number of pediatric neuroimaging datasets poses a significant 
challenge in training AI models specifically for children with cancer. AI algorithms rely heavily on 
large, diverse datasets to learn patterns and make accurate predictions. Additionally, the 
neuroimaging characteristics of children are different from those of adults because of ongoing brain 
development, size differences, and diverse neurological conditions that may manifest differently in 
pediatric patients. Therefore, direct translation of AI approaches from adult neuroimaging to children 
might not be feasible without appropriate adjustments and validation. Conversely, AI models trained 
on a restricted pool of pediatric data might be less effective than those trained on larger and more 
comprehensive datasets derived from adults. 

To address these challenges and to foster the development of AI in pediatric neuroimaging, there 
is a need to build larger and more diverse pediatric neuroimaging databases. Collaboration among 
institutions and data sharing initiatives are essential to ensure the responsible and effective use of AI 
in pediatric populations. As collaborations and data sharing initiatives begin to standardize pediatric 
data collection, the development of AI approaches tailored specifically to pediatric applications will 
increase significantly. 
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