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Abstract: Using the optical interaction potential between an electron and a helium atom, we calculate the collision

frequency and energy transfer rate during the elastic scattering of electrons on helium atoms. The resulting

effective frequency as a function of energy exhibits a maximum consistent with experimental data. The rate of

energy transfer is in good agreement with other authors’ calculations at low electron energies, with discrepancies

increasing as the energy increases.
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1. Introduction

For the successful development of plasma technologies, accurate data on the properties of the
generated plasma and the processes occurring within it are necessary. Such data can be obtained and
interpreted through experimental and theoretical studies that complement each other. It should be
noted that particle collisions involving free electrons play a key role in plasma processes. Over the
past few decades, significant progress has been made in computational and experimental methods
used to study and simulate electron-driven processes. The advent of modern supercomputers has
made it possible to model collisions involving electrons and complex atomic or molecular systems,
significantly enhancing the ability to simulate and analyze the behavior of various plasmas [1–4].

Electron collision physics finds applications across numerous fields, including thermonuclear
fusion research [5–8], atmospheric and space sciences [9,10], radiation physics [11–13], semiconductor
technology [14–16], and medical diagnostics [17–19], where understanding electron interactions with
atoms and molecules is crucial for both experimental and theoretical advancements. In connection with
the urgent problems of energy supply in the modern world, a very important area is the study of the
properties of plasma generated in controlled thermonuclear fusion plants with magnetic confinement.
In the divertor region of tokamak-type installations, bound states, specifically helium atoms, are
present alongside charged electrons and ions. This study investigates some physical quantities caused
by electron scattering on helium atoms in tokamak plasma, including collision frequencies and energy
transfer rates.

As is well known, particle collisions establish temperature equilibrium in a multi-particle system.
In the case of plasma, a critical task is determining the temperatures of its various components. To
accomplish this, energy balance equations can be used, requiring data on energy transfer rates between
colliding particles [20–24]. A general expression for the average energy exchange rate between two
gases with a Maxwellian velocity distribution in thermal disequilibrium was obtained by Desloge
[25]. Banks [22] used this expression to calculate collision frequencies and energy transfer rates of
interest in aeronomy. Itikawa [26] showed that the average collision frequency for energy transfer, as
determined by Banks, gives satisfactory results when used to calculate transfer coefficients. However,
he found that some of Banks’ semi-empirical collision frequency formulas are inaccurate at high
electron temperatures.
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The formalism describing the energy transfer rate, by defining an appropriate collision frequency
and momentum-transfer cross section was developed by Banks, who originally applied it in aeronomy
in the upper atmosphere [22]. In the framework of this formalism, the cross-section of electron-atom
collisions was taken as a constant value. Banks’ approach remains relevant for the divertor region of
the tokamaks at relatively low energies (up to several eV). In our work, we determine the cross-section
of electron-atom collisions based on the phase function method, which gives us the dependence of the
cross-section on the energy of the incident particle and ultimately affects the collision frequency and
the rate of energy transfer in electron-atom collisions.

An important point is also the question of the influence of the plasma environment on collision
processes in the divertor region of the tokamak. It is well known that in the central region of the
tokamak and in the divertor region, which is not adjacent to the walls, the plasma is almost ideal in the
sense that the kinetic energy of the plasma particles greatly exceeds the potential energy of particle
interaction at the average interparticle distance. The parameter characterizing the non-ideality of the
plasma is the coupling parameter:

Γ =
e2

4πϵ0akBT
. (1)

where e is the elementary charge, ϵ0 is the permittivity of free space, kB is the Boltzmann constant,

a =
( 3

4πn
)1/3

, n is the plasma density and T is the temperature of the plasma. For ideal plasma, Γ ≪ 1.
Even though in the divertor region the electron density is higher compared to the upper atmosphere,
nevertheless the coupling parameter remains low, i.e., Γ ≪ 1. This indicates that in this system the
influence of collective effects can be neglected. Thus, electron-atom collisions in the divertor region, as
well as in the upper atmosphere, are treated as two-body interactions with negligible screening effects
of the plasma environment.

The structure of this paper is as follows: Section 2 provides a detailed explanation of the methods
used in calculating the collision frequency and energy transfer rate for electron-helium scattering.
Section 3 presents the results of implementing the above methods. The final part contains conclusions.

2. Methods

2.1. Momentum-Transfer Cross-Sections via the Method of Phase Functions

To accurately determine the collision frequency and energy transfer rate in particle interactions, it
is essential to calculate the momentum transfer cross-section, which represents the average momentum
transferred by a particle during a collision. This cross-section is calculated using the partial wave
decomposition of scattered waves:

Qea
T (k) =

4π

k2

∞

∑
l=0

(l + 1) sin2(δl+1 − δl). (2)

To perform this calculation, we employed the method of phase functions [27], also known as the
variable phase approach [28]. This technique efficiently computes the phase shifts δl , by solving the
first-degree phase equation, thereby circumventing the exhaustive wave function calculations typical
of conventional approaches [29,30]. The interaction potential used in the phase equation is defined via
the optical potential approach, as detailed in the following section.

The phase equation is given as follows:

dδl(r)
dr

= −1
k

(
2me

h̄2

)
V(r)[cos(δl(r))jl(kr)− sin(δl(r))nl(kr)]2, (3)

and is solved with the boundary condition:

δl(0) = 0, (4)
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where δl(r) is the phase function, V(r) is the interaction potential between an electron and an atom at
a distance r from the atomic nucleus, jl(kr) and nl(kr) are the Riccati-Bessel functions, k is the wave
number of the incoming electron, me is the electron mass, and h̄ is the reduced Planck’s constant. The
phase shift is defined as the asymptotic value of the phase function at large distances:

δl = lim
r→∞

δl(r). (5)

2.2. Optical Potential

At relatively low energies, the study of electron scattering on atoms becomes increasingly complex
due to the necessity of accounting for multiparticle interactions. To address this challenge, the optical
potential method simplifies the analysis by reducing electron scattering to a consideration of the pair
interaction potential Vopt(r). This potential can be expressed as a sum of three key components: static,
correlation-polarization, and exchange interactions:

Vopt(r) = VS(r) + VP(r) + Vex(r). (6)

The static potential VS(r) represents the Coulomb interaction between an electron and the nucleus,
as well as the other electrons of the target atom, characterized by its electron density ρ(r) and charge
number Z. When the electron density at position r′, denoted as ρ(r′), is derived by solving the
Schrödinger equation, the potential is referred to as the Hartree-Fock potential:

VHF(r) = − Ze2

4πϵ0r
+

e2

4πϵ0

∫
ρ(r′)
|r − r′|d

3r′. (7)

In scenarios where relativistic effects are significant, the Dirac equation can be employed, resulting
in the Dirac-Hartree-Fock-Slater potential VDHFS(r). For our analysis, we utilized the analytical form
of the static potential VDHFS(r) as presented by Salvat et al. [31]:

VDHFS(r) = −Z
r

N

∑
i=1

Aie−αir, (8)

where Ai and αi are fitting parameters specific to the target atom, with their values for helium
provided in Table 1.

Table 1. Parameters for Helium.

Z A1 A2 α1 α2

2 -0.2259 1.2259 5.5272 2.3992

The incoming electrons induce a polarization of the charge cloud of the target atom, which leads
to an induced dipole moment that, in turn, acts back on the electrons. The semi-empirical potential
used as the polarization potential is presented in the work of Arretche et al. [32]:

VP(r, rc) = − e2

2r4

(
1 − exp

(
−
(

r
rc

)6
))

, (9)

where rc is the cutoff parameter, determined by fitting it to reproduce previously known experimental
or theoretical data. For the e-He interaction, the cutoff parameter is rc = 0.526a0, and the polarizability
of the atom is αd = 1.38a3

0, with a0 being the Bohr radius. The cutoff function in Equation (9) reduces
the potential at short distances (r < rc), while restoring the asymptotic form − αd

2r4 for r > rc. This
asymptotic form is derived within the framework of the adiabatic approximation, and the given
equation accounts for non-adiabatic effects [33,34].
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When the incoming particle is an electron, we must also consider rearrangement collisions, where
the incoming electron swaps place with an atomic electron. To account for exchange effects, a local
exchange potential was used as described by Rosmej et al. [35]. This potential is approximated in the
context of a free electron gas [36]:

Vr
ex(r) = VM

ex [r, K(r)] = − 2
π

KF(r)F(η), (10)

where the function F(η) is given by:

F(η) =
1
2
+

1 − η2

4η
ln
∣∣∣∣η + 1
η − 1

∣∣∣∣, (11)

and η is defined as the ratio of the momentum of the incoming electron to the maximum momentum
corresponding to the surface of the Fermi sphere in momentum space:

η =
K(r)
KF(r)

, (12)

where the Fermi wave vector KF(r) is defined as:

KF(r) = [3π2ρ(r)]1/3. (13)

The value of K(r) is chosen as given by Rosmej et al. [35]:

K2
RRR(r) = k2 +

2m
h̄2

(
|VHF(r)|+ |VP(r)|+ |VM

ex (r, 0)|
)

, (14)

where

VM
ex (r, 0) = − 2

π
KF(r). (15)

2.3. Effective Collision Frequency and Energy Transfer Rate

The effective collision frequency νeff for an electron interacting with a neutral atom in a Maxwellian
plasma is derived from the momentum transfer cross section Qea

T as follows [22]:

νeff =
8

3
√

π
n
(

me

2kBTe

)5/2 ∫ ∞

0
v5Qea

T (v) exp
(
−mev2

2kTe

)
dv, (16)

where v is the electron velocity, kB is the Boltzmann constant, n is the density of the atoms, and Te is
the electron temperature.

In this equation, the integral captures the contributions of various electron velocities to the
effective collision frequency, emphasizing the weight of higher velocities through the v5 term. The
exponential term accounts for the thermal distribution of velocities in the plasma, ensuring that lower
velocities have a significantly reduced impact on the effective collision frequency.

Using the effective collision frequency νeff from the previous equation, the energy transfer rate
can be determined as follows:

dUe

dt
= −3ne

me

m2
kB(Te − THe)νeff. (17)

where THe and mHe are the temperature and mass of the helium atoms.
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3. Results and Discussion

3.1. Interaction Potentials

The graphs of the potentials described above are shown in Figure 1. The main contributions
to the optical potential are from the polarization potential VP(r) and the Dirac-Hartree-Fock-Slater
potential VDHFS(r). As shown in Figure 1, the behavior of the optical potential tends asymptotically
to −αd/(2r4) for distances greater than the cutoff parameter rc in the polarization potential (see
Equation (9)). The optical potential has a minimum, which is due to the superposition of the different
potentials.

The polarization potential (VP(r)) accounts for the induced dipole moment resulting from the
interaction between the electron and the helium atom. The exchange potential (Vex(r)) accounts for
the exchange interaction where the incoming electron and one of the atomic electrons exchange places,
which becomes significant for low-energy scattering.

The figure illustrates that the optical potential has a well-defined minimum due to the combined
effects of the static and polarization components, providing an attractive interaction at certain distances
that influence scattering properties.

Figure 1. Potential energies of the e-He interaction. The optical potential is represented by a solid line,
showing contributions from static (VDHFS), polarization (VP), and exchange (Vex) potentials.

3.2. Phase Shifts and Momentum Transfer Cross-Sections

The scattering phase shifts, as defined in Equation (3), were calculated based on the optical
potential given in Equation (6). Figure 2 shows the results for various angular momentum quantum
numbers l as a function of electron energy E. Positive phase shifts (δl > 0) indicate an attractive
interaction potential. Our results align well with both the theoretical predictions of McEachran et
al. [37] and the experimental findings of Williams et al. [38].

For the s-wave, as shown in Figure 2, Levinson’s theorem [39] is satisfied, indicating that the
scattering phase shift at zero energy is δl(0) = πn, where n is the number of bound states.
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Figure 2. Phase shifts of electron scattering on a helium atom for s-wave (l = 0), p-wave (l = 1), and
d-wave (l = 2).

Figure 3 shows the momentum transfer cross sections for electron scattering on a helium atom,
compared with theoretical and experimental data from other authors. In our study, we used an
optical potential approach similar to that presented in [35,40], where the electron-atom interaction
is modelled by combining Coulomb and polarization potentials to account for interactions at short
and long distances, respectively. The exchange contribution is represented by an effective local field
defined using the static exchange approximation. Our numerical results are in good agreement with
experimental data [41–43], as well as with the results of Adibzadeh [44]. The Dirac equation was
solved to determine VS(r) in Adibzadeh’s work, whereas we used a model potential, as noted in
Equation (2), which allowed us to perform calculations more efficiently without solving complex
quantum mechanical equations.

Figure 3. Momentum-transfer cross section of electron scattering on a helium atom.
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3.3. Effective Collision Frequency and Energy Transfer Rate

The results of our effective collision frequency calculations are shown in Figure 4, compared
with the results from other authors. The use of the momentum transfer cross-section calculated by
the optical potential method led to an interesting result. The resulting effective frequency shows a
maximum at an energy of approximately 5 eV, which has not been found in other theoretical works
that mostly use constant values for the momentum transfer cross-section. Experimental data from
Sokolov et al. [45] is consistent with this maximum, and at energies lower than the maximum, our
results match well with other theoretical and experimental works [46].

Figure 4. Effective collision frequency between an electron and a helium atom.

The effective collision frequency given by expression (16) exhibits a maximum with increasing
electron temperature. This behavior can be explained by a complex interplay between the electron
velocity distribution and the momentum-transfer cross-section. With increasing electron temperature
Te, the fraction of fast electrons in the Maxwell distribution also increases. At the same time, the
momentum transfer cross-section does not depend on the electron temperature but on the energy of
the incident electron. If the Maxwell distribution has a maximum at electron energies corresponding to
the region where the cross section increases, a rise in the collision frequency can be observed. However,
a further increase in the fraction of fast electrons leads to a decrease in the collision frequency.

Figure 5 shows the dependence of the energy transfer rate on the electron temperature at Helium
gas temperature of THe = 5 eV. Figures 7 and 8 illustrate the energy transfer over time for electron
temperatures of Te = 5 eV and Te = 20 eV, respectively, with THe = 5 eV.

In Figure 5, the energy transfer rate shows a gradual increase with electron energy until it reaches
a maximum near 5 eV. This behavior can be attributed to an increase in the collision frequency at
lower electron energies, which results in the efficient energy transfer between the electrons and helium
atoms.
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Figure 5. Energy transfer rate between an electron and a helium atom at THe = 5 eV.

Figure 6 illustrates the energy transfer rate between electrons and helium atoms, with the rate
governed by the relation (17). The energy transfer rate behavior reflects a competition between the
electron and helium temperatures. The transfer rate peaks at lower electron temperatures when helium
atoms have higher temperatures (which is rather impossible).

As the electron temperature increases beyond the helium temperature, the energy transfer rate
diminishes, eventually becoming negative. The negative values indicate that electrons begin to transfer
energy to the helium atoms, reversing the direction of energy flow. This crossover occurs because the
temperature difference (Te − THe) changes sign, causing a shift in the energy flow direction.

Figure 6. energy transfer rate between electrons and helium atoms as a function of electron and helium
temperatures.

Figure 7 illustrates the energy transfer between an electron and a helium atom over time for an
electron temperature of Te = 5 eV and a gas atom temperature of THe = 5 eV. At this temperature, the
energy transfer remains relatively stable over time, indicating that the collision frequency reaches an
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optimal value. This results in a consistent energy exchange, which can be beneficial for maintaining
equilibrium conditions in plasma.

Figure 7. Energy transfer between an electron and a helium atom as a function of time at Te = 5 eV
and THe = 5 eV.

At a higher electron temperature of Te = 20 eV, as seen in Figure 8, the energy transfer rate
decreases significantly compared to the lower temperature cases. This is mainly due to a reduction
in the effective collision frequency as the electron energy increases beyond the previously noted
maximum. As the effective collisions become less frequent, the energy transfer rate diminishes,
resulting in slower temperature equalization between the electrons and helium atoms.

Figure 8. Energy transfer between an electron and a helium atom as a function of time at Te = 20 eV
and THe = 5 eV.

These results indicate that at higher electron temperatures, the efficiency of energy transfer
decreases, which has important implications for plasma behavior in high-temperature environments,
such as those found in fusion reactors.
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4. Conclusions

The collision frequency and energy transfer rate for electron-helium scattering were determined
using the optical potential approach and the phase function method. The results on the collision
frequency are consistent with data from other theoretical studies in the field of low electron energies,
and at energies above 1 eV, they correspond well with the results obtained in experiments. The
presence of a maximum in the collision frequency is a consequence of a decrease in the momentum
transfer cross-section with an increase in energy.

At energy values above the detected maximum for the collision frequency, energy transfer
calculations indicated that temperature equalization between helium and the electron occurs more
slowly. These results are important for determining plasma transport properties such as electron
mobility and diffusion coefficients, as well as for calculating electron temperature.

The obtained results can be used in modelling energy exchange processes in the divertor region
in Tokamaks. This is an important task, since the processes occurring in the divertor region and even
the near-wall region directly affect the processes in the central region of tokamaks and, ultimately, the
plasma confinement. In recent studies of electron distribution in tokamaks [47], it has been shown that
the electron distribution is often described by the so-called kappa distribution [48,49]. In the Ref. [47]
using the kappa distribution resolves discrepancies between experiments and theory based on the
use of the Maxwellian distribution function. Since our work shows that considering the Maxwellian
velocity distribution and momentum transfer cross-section led to the appearance of the maximum in
the dependence of the collision frequency on the electron temperature, at the next stage of our research
we plan to consider the effect of the kappa distribution on energy transfer.
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