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Abstract: This overview examines recent advancements in EEG-based biometric identification, with a particular
focus on the integration of emotional recognition to enhance the robustness and accuracy of biometric systems.
By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals
based on neural responses. The overview discusses the influence of emotional states on EEG signals and the
consequent impact on biometric reliability. It also evaluates recent emotion recognition techniques, including
machine learning methods such as Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and
Long Short-Term Memory networks (LSTM). Additionally, the role of multimodal EEG datasets in enhancing
emotion recognition accuracy is explored. Findings from key studies are synthesized to highlight the potential of
EEG for secure, adaptive biometric systems that account for emotional variability. This overview emphasizes the
need for future research on resilient biometric identification that integrates emotional context, aiming to establish

EEG as a viable component of advanced biometric technologies.

Keywords: EEG; biometric identification; emotion; machine learning; signal processing

1. Introduction

Currently, human identification relies on methods such as passwords, access cards, and PINs,
which are vulnerable to theft, loss, or forgetfulness. To address these limitations, biometric systems
have been developed to identify individuals based on physical characteristics or physiological signals.
Commonly used physical characteristics include fingerprints, iris patterns, and facial features, while
physiological signals involve data like voice, EEG, EMG, and ECG, among others [1]. Physiological
signals, particularly EEG, have garnered significant interest for biometric applications due to their
unique characteristics and inherent robustness against impersonation attacks, as they are not visible to
the human eye [2].

EEG signals, generated by the brain’s electrical activity, are commonly used in identifying patholo-
gies such as brain tumors, cerebral dysfunctions, and sleep disorders. Their suitability for biometric
identification stems from their universality, uniqueness, permanence, and measurable properties [3].
This makes EEG an attractive candidate for secure identification systems, as it can effectively distin-
guish between individuals [4].

In [5] a biometric system based on EEG signals was proposed. The researchers formulated a
binary optimization problem for channel selection and utilized a Support Vector Machine with a Radial
Basis Function kernel (SVM-RBF) using features based on autoregressive coefficients. The proposed
method achieved an accuracy of 94.13% using 23 sensors with 5 autoregressive coefficients.

Research has explored various approaches for EEG-based biometric systems. For example, [5]
proposed a system using a Support Vector Machine with a Radial Basis Function kernel (SVM-RBEF)
and achieved 94.13% accuracy. Other studies, such as [6], introduced advanced EEG channel selection
methods, obtaining high accuracy with fewer sensors. Deep learning approaches have also been tested,
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with models such as CNNs, LSTMs, and GRUs achieving accuracies above 96% [7]. Moreover, EEG
has been applied in single-channel setups achieving substantial accuracy through signal segmentation
and feature extraction techniques [8].

As outlined in the preceding paragraphs, EEG-based biometric systems have shown promising
results in identification tasks. Nonetheless, these systems remain an area of active research due to
the sensitivity of EEG signals to influences such as emotions, health conditions, and other variables,
which introduce variability in the reference signals used for system training. This variability can
negatively impact system performance, underscoring the need to address these challenges to improve
the robustness and reliability of EEG-based biometric identification. Additional research is necessary
to mitigate signal variability and enhance overall system performance. In parallel, numerous studies
have explored the use of EEG signals for emotion recognition, expanding the potential applications of
EEG in the biometric field [9][10]Kumar and Kumar [11].

In [12], a portable brainwave system was proposed for recognizing positive, negative, and neutral
emotions using the DEAP and SEED databases. Among the various methods tested, the Long Short-
Term Memory (LSTM) deep learning approach demonstrated the best performance, achieving an
impressive accuracy of 94.12% in identifying emotional states. Similarly, [13] presented machine
learning models, such as the KNN regressor with Manhattan distance, which utilized features from
Alpha, Beta, and Gamma bands, as well as the differential asymmetry of the Alpha band. This
approach showed promising results in predicting valence and arousal, achieving an accuracy of 84.4%.
These findings underscore the potential of EEG-based models to infer emotional states and deepen the
understanding of affective responses. Further studies on EEG-based biometric recognition using deep
learning techniques illustrate how convolutional and recurrent neural networks can extract distinctive
features from brain signals, achieving high levels of accuracy in biometric identification. These
advanced approaches open new pathways for developing more secure and adaptive identification
systems that are capable of functioning effectively under challenging conditions [14].

Building on recent advances, research in EEG-based biometric identification and emotion recog-
nition has underscored the importance of multimodal databases and fusion strategies to improve
recognition accuracy. A systematic review of studies from 2017 to 2023 identified the DEAP, SEED,
DREAMER, and SEED-IV databases as the most widely used, with deep learning models like TNAS,
GLFANet, ACTNN, and ECNN-C proving effective in enhancing emotion recognition [15]. Addi-
tionally, the MED4 database, integrating EEG signals with photoplethysmography, speech, and facial
images, has demonstrated substantial accuracy gains in emotion detection through feature- and
decision-level fusion, achieving up to 25.92% improvement over speech and 1.67% over EEG alone
in anechoic conditions [16]. Further advancements, such as Binary Particle Swarm Optimization for
EEG channel selection, highlight the benefit of focusing on specific brain regions to improve emotion
recognition accuracy [17]. The introduction of the M3CV database, which includes multiple subjects,
sessions, and tasks, supports the development of robust machine learning algorithms capable of
managing intra- and inter-subject variability [18]. These findings highlight the potential of multi-
modal approaches and the necessity for innovative techniques in EEG-based biometric and emotion
recognition, opening promising avenues for future exploration.

Considering this, it is clear that effective and computationally efficient biometric identification
techniques are essential, especially as emotional states can significantly impact the accuracy of these
systems. Therefore, developing methods that account for variations in EEG signals due to emotions is
crucial to enhance the robustness and reliability of EEG-based identification. This article is structured as
follows: after the introduction, we present a review of the methods and databases used for EEG-based
biometric identification and emotion recognition. The following sections discuss relevant machine
learning techniques, multimodal approaches, and strategies to address signal variability. We conclude
with a discussion on current challenges and future research directions in the field


https://doi.org/10.20944/preprints202411.1264.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 November 2024 d0i:10.20944/preprints202411.1264.v1

30f20

2. Literature Review Process

Few studies specifically address biometric identification based on EEG signals in relation to
emotional states, aiming to correlate emotions with identification processes. This overview article seeks
to provide relevant insights into this research area by synthesizing findings on emotion recognition,
biometric identification, and the interrelation between the two. To conduct this review, we utilized
the Scopus database, applying targeted search criteria. The keyword field included queries such
as “emotion recognition,” “biometric identification,” and “EEG biometric identification.” Article
selection was guided by criteria prioritizing innovative methodologies, publicly available databases,
studies linking emotions with biometric identification, and experimental articles focused on biometrics
and emotions. The collected information was subsequently analyzed and discussed to construct a
comprehensive overview of the field.

In Figure 1 is shown the number of publications on Scopus using the terms ‘biometric identification
and EEG,” "emotion recognition and EEG,” and 'biometric identification and emotion recognition and
EEG’ has revealed interesting findings in current research on the integration of EEG signals in biometric
identification and emotion recognition. The results indicate that, individually, emotion recognition has
been the subject of significantly more studies compared to biometric identification using EEG signals.
Additionally, the integration of biometric identification considering emotional states is an emerging
field. This pattern suggests a growing convergence between the disciplines of biometric identification
and emotion recognition, offering significant opportunities for advancement in the development of
more complex and context-aware systems.

Emotion identification has experienced steady growth, peaking in 2023 with 539 studies, followed
by biometric identification in 2021 with 34 studies. The integration of both areas has been less explored
compared to individual disciplines, with a growing number of studies over the years, reaching its peak
in 2021 with 6 studies.
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Figure 1. Number of Publications in Scopus

3. Electroencephalography (EEG): Foundations and Applications

3.1. Brain Anatomy Relevant to EEG

The human brain is the most complex part of our central nervous system (CNS). According
to [19] (Diamond et al., 2014) "almost all organs in the human body are potentially transplantable.
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However, brain transplantation would be equivalent to transplanting the person." The brain allows
self-awareness, speech, and movement. On the other hand, the brain directs the functions of our body.
It enables us to store memories, generate thoughts, regulate body movements, and coordinate speech
and balance. The human brain is divided into two connected hemispheres, the right and the left,
each specializing in different functions. They also have an inverse relationship with the human body;,
meaning the right hemisphere coordinates the movement of the left side, and vice versa. The right
hemisphere dominates memories through images, interpretations, and processes emotions, images,
and taste. It is the non-verbal hemisphere responsible for emotional processing. The left hemisphere,
on the other hand, dominates symbols, letters, numbers, and words. It is the rational hemisphere[20].

LOGIC @—\ /—@ CREATIVE

-0 8% o
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LANGUAGE \—o IMAGINATION

Figure 2. Representation of cerebral hemispheres by [21]

3.2. EEG Signals and Their Properties

Brain waves are the electrical impulses generated by chains of neurons, and these signals are
distinguished by their speed and frequency. There are 5 types of brain waves called alpha, beta, theta,
and delta. Some of them have low frequencies, while others have higher ones. These 5 waves remain
active throughout the day, and depending on the activity being performed, some of them tend to be
stronger than others. [22]

Delta waves (1 to 3 Hz) Those with greater amplitude and associated with deep sleep are the
delta waves. These waves are related to activities of which we are not aware, such as the heartbeat.
They are also observed during states of meditation. The production of delta rhythm coincides with the
regeneration and restoration of the central nervous system. [23]

Theta wave (3.5 to 8 Hz) Those associated with imagination and reflection are the theta waves.
These waves also appear during deep meditation. Theta waves are of great importance in learning
and are produced between wakefulness and sleep when processing unconscious information, such as
nightmares or fears.[24] Alpha wave (8 to 13 Hz) The alpha signals appear during states of low brain
activity and relaxation. They are waves of greater amplitude compared to beta waves. Generally, alpha
waves appear as a reward after a job well done.[25]

Beta waves (12 to 33 HZ) Beta waves appear during states when attention is directed towards
external cognitive tasks. They have a fast frequency and are associated with intense mental activities.
[26] Gamma waves (25 to 100 Hz) Gamma waves originate in the thalamus, and these signals are
related to tasks requiring high cognitive processing.[23]

3.3. Feature Extraction from EEG Signals

There are different feature extraction techniques, including methods in the time domain, fre-
quency domain, time-frequency domain, spatial domain, and non-linear domain. These different
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techniques aim to describe a signal by its characteristics. Some of the techniques used in EEG (Electroen-
cephalography) include variance, standard deviation, correlation coefficient, and Hjorth parameters.
These methods are computationally less complex. There are also autoregressive (AR) models, fast
Fourier transform (FFT), short-time Fourier transform (STFT), spectral power, wavelet transform,
Hilbert-Huang transform, common spatial patterns, entropy, among others. [42](Medina et al., 2018)

Methods in the time domain, such as AR, have advantages over techniques like FFT, offering
better frequency resolution and improved spectral estimations in short segments of EEG signals.
However, they also have limitations. One of these limitations is the lack of clear guidelines for selecting
the parameters of spectral estimations. Additionally, AR models require an optimal order, as too low
of an order may smooth out the spectrum, while too high of an order may introduce false peaks.

Among the frequency domain models, the FFT has the advantage of allowing mapping from the
time domain to the frequency domain, which helps investigate the amplitude distribution of spectra
and reflect different brain tasks. However, its limitations include not being suitable for representing
non-stationary signals, where the spectral content varies over time.

The Short-time Fourier Transform (SFFT) is simple and easy to implement, but its limitations
include longer segments violating the quasi-stationarity assumption required by the Fourier transform.

The Power Spectral Density (PSD) provides information about the energy distribution of the signal
across different frequencies. However, it is limited in presenting additional time-scale information,
considering that EEG signals possess non-stationary and nonlinear characteristics.[43](Manuel, 2005)

Among the time-frequency techniques, we have wavelets, which are particularly effective in
dealing with non-stationary signals. They allow the signal to be decomposed in both time and
frequency domains, enabling the simultaneous use of long time intervals for low-frequency information
and short time intervals for high-frequency information. However, they require a proper choice of the
mother wavelet and an appropriate number of decomposition levels for an accurate analysis of EEG
signals.

The Hilbert-Huang Transform (HHT) does not require assumptions about the linearity and
stationarity of the signal. It allows for adaptive and multi-scale decomposition of the signal and
does not rely on any predefined function for decomposition. However, one of its limitations is that
it is defined by an iterative algorithm and lacks a mathematical formula. The final results can be
influenced by the way the algorithm is implemented and the definition of variables and control
structures. [44](Nacional et al., 2016)

Among the spatial techniques, we have Common Spatial Patterns (CSP), which have the capability
to project EEG signals from multiple channels into a subspace where differences between classes are
emphasized and similarities are minimized. The alternative method TDCSP optimizes CSP filters
and effectively reflects changes in discriminative spatial distribution over time. However, one of its
limitations is that it requires not only training samples but also class information to calculate the
linear transformation matrix. Additionally, this technique requires a large number of electrodes to be
effective.[42] (Medina et al., 2018).

Among the nonlinear techniques, entropy is robust in analyzing short data segments, resistant to
outliers, capable of dealing with noise through appropriate parameter tuning, and applicable to both
stochastic and deterministically chaotic signals. It offers various alternatives to characterize signal
complexity with changes over time and quantify dynamic changes of events related to EEG signals.
However, one of its limitations is the lack of clear guidelines on how to choose the parameters m
(embedding dimension of the series) and r (similarity tolerance) before calculating the approximate or
sample entropy. These parameters will affect the entropy of each EEG data record during different
mental tasks, thus impacting the classification accuracy.

Lyapunov exponents leverage the chaotic behavior of an EEG signal for classification tasks and,
when combined with other linear or nonlinear features, can lead to improved results. However, finding
optimal parameters to calculate the Lyapunov exponents requires significant effort to enhance its
performance. [45](Lara et al., 2003)
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4. Emotion Recognition and Biometric Identification Using EEG

Electroencephalography (EEG) has gained increasing attention in the fields of emotion recognition
and biometric identification due to its capacity to capture unique, brain-based physiological signals.
EEG not only allows for the identification of individuals through distinct neural patterns but also
provides insight into emotional states, which can influence biometric measurements. This section
explores three key applications of EEG: first, its use in biometric identification by analyzing distinct
brainwave patterns; second, the use of EEG for emotion recognition, highlighting how neural responses
vary with emotional states; and finally, an integrated approach that combines biometric identification
and emotion recognition. Together, these applications illustrate the versatility of EEG in creating
robust, adaptive systems that leverage both identity and emotional information for enhanced accuracy
and security.

4.1. Biometric from EEG Signals

Biometrics is the science of quantifying physiological or behavioral traits to identify individuals
through statistical analysis. This capability is inherently present in humans, enabling us to recognize
others by features such as voice tone, body shape, and facial characteristics, among others. Biometric
authentication confirms a person’s identity, while biometric identification determines if a person truly
is who they claim to be. With nearly 8 billion people in the world, each distinguished by their unique
identity, recognition methods fall into three main categories: 1) Knowledge-based identification,
which relies on information known only to the person, such as passwords, PINs, or ID numbers;
2) Possession-based identification, using unique objects like ID cards, passports, or badges; and 3)
Biometric identification, based on distinctive physical or behavioral traits, including fingerprints, facial
features, and voice patterns [46].

The inclusion of electroencephalography (EEG) signals in biometrics represents a significant
advancement in the field, leveraging unique brainwave patterns that are challenging to replicate and
thus highly secure for applications demanding rigorous authentication.

Biometric identification has gained significant traction due to its difficulty in being counterfeited
compared to knowledge-based and possession-based methods, which can be forgotten, duplicated,
stolen, or lost. This method offers enhanced security, especially when using unimodal, bimodal, or
multimodal systems, which incorporate one, two, or more physiological characteristics, respectively
[47].

The evolution of biometric identification with EEG signals has transformed personal authentica-
tion by introducing a method that is inherently linked to brain activity. Unlike traditional biometrics,
EEG-based systems offer higher resilience against external tampering, as brainwave patterns are
generated internally and are unique to each individual.

Conventional architectures for EEG-based biometric identification have been fundamental in
the development of accurate and efficient systems. In EEG biometrics, electrodes are strategically
positioned using protocols like the 10-20 system, which ensures consistent and replicable data capture.
This arrangement is critical, as it allows for precise identification of neural patterns unique to each
individual. The most prominent among them include: Artificial Neural Networks (ANN) which have
been widely used in emotion identification from EEG signals. These networks can learn complex
patterns and extract relevant features from the signals, providing a solid foundation for biometric
identification[48]. Support Vector Machines (SVM) have proven effective in classifying complex
patterns, enabling emotion identification from features extracted from EEG signals. Their ability to
handle high-dimensional datasets makes them a valuable option.[49]. Deep Neural Network-Based
Architectures as Convolutional Neural Networks (CNN) have gained popularity in EEG signal analysis
due to their ability to learn spatial and temporal feature hierarchies. They are particularly useful for
identifying complex patterns present in signals related to emotions. [50]. LSTM (Long Short-Term
Memory) networks, a variant of recurrent neural networks (RNN), have proven effective in modeling
temporal sequences in EEG signals. This is crucial for capturing the temporal dynamics of emotions
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expressed in the signals. [51]. EEG signals are preprocessed to enhance data quality by removing noise
and irrelevant signals using methods like Independent Component Analysis (ICA) and digital filters.
This preprocessing is crucial, as it reduces the potential interference from non-neural activity, thus
improving the precision of biometric identification systems.

Following preprocessing, relevant features are extracted from EEG signals, such as specific fre-
quency bands (e.g., Alpha, Beta, Gamma), power spectral density, and entropy measures. These
features represent unique neural patterns that can be used to differentiate individuals. Advanced tech-
niques, like the Fast Fourier Transform (FFT) and Wavelet Transform, have been widely implemented
for feature extraction due to their ability to isolate frequency-specific characteristics of EEG signals.

Predominant Methodologies The methodology used for biometric identification from EEG signals
typically follows a comprehensive approach encompassing the following steps: i) Data Acquisition
and Preprocessing: EEG signals are collected using specialized devices, and preprocessing techniques
are applied to remove artifacts and normalize the data. In [52] implements Independent Component
Analysis (ICA) as a pre-processing technique to remove eyeblink artifacts from the EEG signals. Digital
filter: in [53] mentioned use of a digital filter as one of the preprocessing methods. The digital filter is
applied to remove artifacts and noise from the measured EEG data. Artifact countermeasure: Another
preprocessing method mentioned in the paper is the artifact countermeasure. This method is used to
remove artifacts contained in the raw EEG data. Epoch: The paper also mentions the use of epoch as a
preprocessing method. Epoching involves dividing the EEG data into smaller segments to analyze
specific time intervals for adquisition of EEG signals [54]. Resting state: Pros include ease of use and
minimal participant effort, while cons include potential for lack of engagement and limited ability to
capture specific cognitive states. Visual stimuli: Pros include the ability to elicit specific responses
and capture cognitive processes, while cons include potential for variability in participant responses
and limited generalizability. Cognitive activities: Pros include the ability to capture specific mental
states and cognitive processes, while cons include potential for participant fatigue and variability
in task performance. ii) Feature Extraction: Relevant features are selected and extracted from EEG
signals, such as amplitudes, frequencies, and temporal patterns, using advanced signal processing
techniques. In [55] mentions that there are many techniques for extracting features from EEG signals,
including Eigenvector Methods (EM), different types of Wavelet Transform like Discrete Wavelet
Transform, Continuous Wavelet Transform, Time-Frequency Distribution (TFD), and Autoregressive
Method (ARM) . However, in this particular project, the Fast Fourier Transform (FFT) technique is
specifically used for feature extraction. The focus of the paper is on comparing the performance of
different feature extraction techniques, and the FFT technique is chosen as the primary method for
this study. The results of the study demonstrate the superiority of the proposed model using FFT for
feature extraction, achieving an accuracy of 96.81% in classifying EEG signals. iii) Model Training:
The selected architecture is trained using labeled datasets to recognize specific patterns associated
with different emotions. Validation and Evaluation: The model is validated and evaluated using
independent datasets, employing metrics such as accuracy, sensitivity, and specificity to assess its
performance. Fine-Tuning and Optimization: Fine-tuning of the model’s architecture and parameters
is performed to enhance its predictive capability and generalization. This comprehensive methodology
has proven effective in accurately identifying emotions from EEG signals, providing promising results
in the field of artificial intelligence applied to biometrics.

The table 4 presents a summary of various studies on feature extraction and biometric classifi-
cation techniques for biometric identification using electroencephalogram (EEG) signals. It outlines
the preprocessing methods, datasets used, feature extraction and selection techniques, classification
methods, and the accuracy achieved in each study. Commonly employed techniques include multivari-
ate variational mode decomposition (MVMD), Fourier-Bessel series expansion, convolutional neural
networks (CNN), and functional connectivity (FC) analysis. Classification methods such as K-nearest
neighbors (K-NN), support vector machines (SVM), and deep learning (DL) are frequently used, with
reported accuracy ranging from 75.8% to 99.9%, depending on the technique and dataset. These studies
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highlight the increasing effectiveness of feature extraction and classification methods in enhancing the
accuracy of biometric identification based on EEG signals, which is crucial for applications in security
and biometric systems.

Table 4. Feature Extraction and Classification Techniques for Biometric Identification

Cita Preproceso  Base de Extraccién y Clasificacion Exactitud
datos seleccién biométrica
(Kamaraju et Multivariate Base de Fourier- K-NN 93.4+7.0%
al., 2023) variational datos propia Bessel series
mode  de- (35 sujetos) expansion-
composition based (FBSE)
(MVMD) entropies
(Ortega- FieldTrip, Base de PCA, RBE-SVM, K- 99.9+1.39%
Rodriguez et bandpass datos propia Wilcoxon fold, Cross-
al., 2023) 4-40Hz, beta (13 personas) test, fast validation
frequency y PhysioNet Fourier
band 13-30 BCI (109  transform,
Hz personas) Power Spec-
trum  (PS),
Asymmetry
index
(M.  Beno- PREP The  BED PCA, Deep learn- 86.74%
mar, Steven pipeline, (Biometric Wilcoxon ing (DL)
Cao, Manoj notch filter, EEG Dataset) test, opti-
Vishwanath, standard- 21 sujetos mal spatial
Khuong Scaler, high filtering
Quoc Vo, pass filter
2022) 1Hz, low
pass filter
50Hz
(Tian et al., - https:/ /link.sprihgertconal chaphdnlif. 1007 /97$8.05%
2023) 981-99-0479-  connectivity = stream GCN
2. 294 (FO) (MSGCN)
(Kralikova et Notch filter, Base de 1D-CNN Cross 5-fold, 99%
al., 2022) Bandpass datos propia LDA, SVM,
filter, com- (21 sujetos) K-NN, DL

mon average
reference
(CAR)
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(Wibawa et Finite Im- Base de Power Spec- Naive Bayes, 97.7%
al., 2022) pulse  Re- datos propia tral Density Neural Net-
sponse (FIR), (43 sujetos) (PSD) work, SVM
Automatic
Artifact Re-
moval EOG
(AAR-EOG),
Artifact
Subspace Re-
construction
(ASR), and
Independent
Component
Analysis
(ICA)
(Hendrawan ICA, Butter- Base de Power K-NN, SVM  80%
etal.,2022)  worth filter = datos propia Spectral Den-
(8 sujetos) sity  (PSD)
from delta
(0.5-4Hz),
theta
(4-8Hz),
alpha
(8-14Hz),
beta
(14-30Hz),
gamma
(30-50Hz)
bands, LDA
(Lai et al, - PhysioBank ~ CNN CNN-ECOC- 98.49%
2022) database SVM
(109)
(Jjomon & Matlab edf- PhysioNet Power spec- Método Error rate of
Vinod, 2018) read, 7.5 sec- database tral, PSD, propuesto 0.016
ond window  (109) Mean Cor- por el autor
relation
Coefficient
(MCC)
(Waili et al, 2nd order Base de Daubechies Multilayer 75.8%
2019) Butterworth  datos propia (db8) Perceptron
filter (6 sujetos) wavelet, Neural
PSD Network
(MLPNN)
(Jijomon Matlab edf- PhysioNet Frequency-  Método EER of
Chettuthara  read database (16 weighted propuesto 0.0039
Monsy, 2020) sujetos) power por el autor

(FWP)
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4.2. Emotion recognition from EEG signals

Emotions are responses to events that are accompanied by physiological changes, which predis-
pose us to act. One characteristic of emotions is their high intensity over a short period of time, which
distinguishes them from feelings.

Emotion recognition is a field of study nowadays because, in many cases, it is challenging to
identify emotions in individuals, as people have developed methods to conceal their emotions. This
presents a serious problem, as certain emotions may be associated with illnesses. The identification of
emotions has been of great assistance, as its goal is to accurately recognize and identify emotions.

Emotion classification has been mentioned that there are 4 primary emotions, but according to
some authors such as Matsumoto and Ekman (2009) and Damasio (2000), there are 6 primary emotions.
In a preliminary study on emotions, it was found that the theory of these authors is correct, and the 6
primary emotions are: sadness, surprise, anger, fear, happiness, and contempt. [56](Carla et al., 2017).
Secondary emotions are combinations of primary emotions. Emotions can be represented graphically
using valence, arousal, and dominance, as shown in Figure 6.

Valence is the primary dimension on which the emotional experience is built. It represents the
motivational component of emotion (pleasantness vs. unpleasantness) and originates in separate
primary neurobiological structures. One activates the appetitive motivational system, and the other
activates the defensive motivational system (Le-Doux, 2000). This primacy of valence and the exis-
tence of separate structures have been observed not only in humans but also in primates and other
mammals through functional magnetic resonance imaging (fMRI).(Bradley, 2009; Dolin, Zborovskaya,
& Zamakhovev, 1965; Lang & Bradley, 2010).

Arousal is the dimension that reflects the energy expended during the emotion; it represents the
amount of sympathetic activation experienced during the emotional experience. Research has shown
that arousal is often dependent on valence, as the activation of either the appetitive or the defensive
motivational systems is accompanied by an increase in arousal. (Bradley, 2009; Bradley, Codispoti,
Cuthbert, & Lang, 2001).

Dominance is the most recent dimension, referring to the degree of control that a person perceives
over their emotional response. Its function is to interrupt or continue the behavioral response. This
dimension originates in more recent brain structures and is responsible for inhibition, delay, context
evaluation, and planning.(Vila et al., 2001).[57](Carlos Gantiva, 2016)

The interaction between emotions and EEG signals is critical in biometric identification, as emo-
tional states can cause variations in EEG signal patterns, which impacts the stability and reliability of
biometric systems based on EEG data. These variations can introduce noise and alter key characteristics
in the EEG signals, posing a challenge for achieving consistent accuracy.

The identification of emotions through physiological signals, particularly EEG, is a rapidly
advancing field that relies heavily on the use of specialized datasets. These datasets provide the
necessary data for training and evaluating machine learning models designed to recognize emotional
states from physiological responses. Various databases have been developed to capture the complexity
of emotional expression across different modalities, including EEG signals, facial expressions, and
peripheral physiological data. Notable datasets include the **DEAP** database, which contains
EEG and peripheral signals from 32 participants responding to music videos, and the *MAHNOB**
database, which includes EEG recordings and video data from 27 participants exposed to emotional
stimuli. The *SEED** database offers EEG data from 15 movie clips shown to 15 participants, while
the *LUMED-2** dataset combines EEG, facial expressions, and peripheral data from 13 participants
responding to audiovisual stimuli. Each of these datasets provides a unique combination of emotional
stimuli, physiological data, and demographic characteristics, making them valuable resources for the
development of emotion recognition systems.

DEAP This database contains EEG signals and peripheral physiological signals from 32 partici-
pants. Each participant watched 40 musical videos (1-minute excerpts) that were rated for levels of
arousal, valence, liking, dominance, and familiarity. Among the 32 participants, 50% were female,
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aged between 19 and 37, while the male participants had a mean age of 26.9. Peripheral recordings
included EOG, 4 EMG signals (from the zygomatic major and trapezius muscles), GSR, BVP (blood
volume pressure), temperature, and respiration. Additionally, facial recordings were taken from 22
participants’ frontal faces. The signals were recorded from 32 channels at a sampling rate of 512Hz.
[58](Koelstra et al., 2012).

MAHNOB The database includes 27 participants, consisting of 11 males and 16 females. EEG
signal recordings were taken from 32 channels at a sampling rate of 256 Hz. Additionally, videos of
the participants’ faces and bodies were recorded using 6 cameras at 60 frames per second (fps), eye
gaze data was recorded at 60Hz, and audio was recorded at a sampling rate of 44.1 KHz.

During the recording, 20 videos were presented to the participants, and for each video, emotional
keywords, arousal, valence, dominance, and predictability were assessed using a rating scale ranging
from 1 to 9. [59] (M. Soleymani, J. Lichtenauer, 2012).

SEED This database consists of EEG signals from 7 men and 8 women, with an average age
between 23 and 27 years and a standard deviation of 2.37. For this database, 15 clips from Chinese
movies were selected as stimulus material to generate positive, negative, and neutral emotions. Each
experiment consists of 15 trials. The EEG signals are captured using a cap following the international
10-20 system for 62 channels. These signals are preprocessed and filtered at 200 Hz. The labels for
each signal correspond to (-1 for negative, 0 for neutral, and +1 for positive) emotions. [60](Wei-Long
Zheng, n.d.).

LUMED-2 The Loughborough University Multimodal Emotion Database-2 (LUMED-2) is a new
dataset of multimodal emotions containing simultaneous multimodal data from 13 participants (6
women and 7 men) while they were presented with audiovisual stimuli. The total duration of all
stimuli is 8 minutes and 50 seconds, consisting of short video clips selected from the web to provoke
specific emotions. After each session, participants were asked to label the clips with the emotional
states they experienced while watching them. Three different emotions resulted from the labeling:
"sad," "neutral," and "happy". The participants’ facial expressions were captured using a webcam at a
resolution of 640x480 and 30 frames per second (fps). EEG data from the participants were captured
using an 8-channel wireless EEG device called ENOBIO, with a temporal resolution of 500 Hz. The
EEG data were filtered for the frequency range [0, 75Hz], and baseline subtraction was applied for
each window. Regarding peripheral physiological data, an EMPATICA E4 wristband, powered by
Bluetooth, was used to record the participants’ GSR (Galvanic Skin Response).[61] (Erhan Ekmekcioglu,
2020).

The datasets described previously provide a solid foundation for research in emotion identifi-
cation, offering a wide variety of physiological signals and emotional stimuli to train and evaluate
classification models. These diverse datasets are essential for advancing emotion recognition systems,
as they represent real-world scenarios and a range of emotional expressions. Building on this, the
studies summarized in Table 5 further contribute to the field by showcasing different feature extraction
and classification techniques applied to EEG signals for emotion identification. By utilizing these
datasets, researchers employ various preprocessing methods, feature extraction techniques, and classi-
fication models to enhance the accuracy and robustness of emotion recognition systems. These efforts
highlight the critical role that both the choice of dataset and the methodological approaches play in the
development of reliable emotion detection systems using EEG signals.

The table 5 presents a collection of studies focused on feature extraction and classification tech-
niques for emotion identification using EEG signals. It provides an overview of the preprocessing
methods, feature extraction and selection techniques, and emotion classification methods employed
in each study. The preprocessing steps include a variety of filtering techniques such as Laplacian
surface filtering, Butterworth filters, and Blind Source Separation, as well as more advanced methods
like EEGLAB and Artifact Subspace Reconstruction (ASR). For feature extraction, approaches such as
Wavelet Transform, Principal Component Analysis (PCA), Higher Order Spectral Analysis (HOSA),
and Entropy-based methods are frequently used. The classification methods vary, with techniques
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like Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), K-Nearest Neighbor (K-
NN), Quadratic Discriminant Analysis (QDA), and Fuzzy Cognitive Maps (FCM) being commonly
applied. The reported methods show promising accuracy in identifying emotional states from EEG
signals, highlighting the effectiveness of various preprocessing, feature extraction, and classification
combinations for emotion recognition.

4.3. Emotion-Aware Biometric Identification

The electroencephalogram (EEG) is a signal that captures information about brain activity. EEG
signals are non-stationary, meaning they change over time and are influenced by factors such as human
emotions, thoughts, and activities [62]. Emotion-Aware Biometric Identification is an emerging and
relatively unexplored area that seeks to enhance biometric identification systems by incorporating
emotional states e.g. in [63] ECG signals were applied to biometric identification and emotion identifi-
cation. While traditional biometric systems focus solely on stable physiological signals, recent studies
have investigated how emotions can influence these signals, particularly EEG data, to improve the
robustness of identification methods.

Some approaches in this field have utilized datasets that include conditions such as driving
fatigue and various emotional states, as well as artificially induced brain responses like rapid serial
visual presentation (RSVP). However, while these datasets involve conditions of fatigue and emotions,
these factors are not specifically analyzed for their impact on biometric identification. For example,
[64] presents a convolutional neural network model, GSLT-CNN, which directly processes raw EEG
data without requiring feature engineering. This model was evaluated on a dataset of 157 subjects
across four experiments. In contrast, [65] focuses on using olfactory stimuli, such as specific aromas,
to evoke emotional responses that affect brainwave patterns, thereby uncovering unique aspects of
individual identity.

Other research efforts have leveraged emotion-specific datasets, designed to capture variations in
emotional states, for biometric identification purposes. These datasets enable researchers to identify
distinct neural responses associated with emotions, providing valuable insights into how emotional
context can be integrated into biometric systems [66][67]. Although still in its early stages, emotion-
aware biometric identification has the potential to create adaptive, resilient systems that account for
the dynamic nature of human emotions.

This area of research has been somewhat controversial. Zhang et al. [68] investigated the use
of emotional EEG for identification purposes and found that emotion did not affect identification
accuracy when using 12-second EEG segments. However, as mentioned by Wang et al. [66], the
robustness of this method across different emotional states was not verified.

The current study opts to use the SEED dataset, a publicly available emotional EEG dataset, to
reduce the influence of different content on brain activity by having subjects watch extended video
clips. It is believed that only during video viewing can an individual’s underlying characteristics and
rhythms be effectively observed.

5. Conclusions and Future Work

EEG-based biometric identification and emotion recognition face multiple challenges that impact
their effectiveness and practical application. For biometric identification, a primary difficulty lies
in the high variability of EEG features across sessions for the same individual, which complicates
consistent identification [69]. Additional challenges include limitations related to the number of
channels and temporal windows used, as well as the risk of overfitting in deep learning models
[32]. The complex data collection and computational requirements inherent in multi-channel EEG
setups further complicate the deployment of these systems [70]. Moreover, identifying robust features
from non-stationary EEG signals that are sufficiently discriminatory remains a significant hurdle [71],
along with fundamental concerns around privacy, user-friendliness, and authentication standards
[72]. Similarly, EEG-based emotion recognition encounters unique obstacles, particularly due to the


https://doi.org/10.20944/preprints202411.1264.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 November 2024

d0i:10.20944/preprints202411.1264.v1

16 of 20

Table 5. Feature Extraction and Classification Techniques for Emotion Identification

Autores Afio Preproceso Extraccién y selec- Clasificacion de emo-
ciéon ciones
Murugappan, 2010 Filtro de superficie Transformada Linear Discriminant
Nagarajan Ra- Laplaceano wavelet, Fuzzy C Analysis (LDA) y K
machandran Means (FCM) vy Nearest Neighbor (K-
Fuzzy K-Means NN)
(FKM)
You-Yun Lee, 2014 FFT, EEGLAB Correlacion, Coheren- Analisis de discrimi-
Shulan Hsich cia y sincronizacién nante cuadratico
de fase
Daniela  Ta- 2015 Filtro wavelet PCA SVM
covielloa,
Andrea Petrac-
cab
Nitin Kumar, 2015 Blind source separa- HOSA (Higher order LS-SVM,  Artificial
Kaushikee tion, Filtro de paso de  Spectral Analysis) Neural Networks
Khaund banda 4.0-45.0 Hz (ANN)
Nitin Kumar, 2016 Filtro Butterworth Andlisis Biespectral SVM
Kaushikee con HOSA
Khaund
G. Mejia, A. 2016 Filtros Butterworth Transformada Quadratic  discrimi-
Goémez wavelet estacionaria nant analysis (QDA)
Yong Zhang, 2016 Algoritmo basado en  Entropia de muestras, SVM
Xiaomin Ji Anadlisis Independi- Entropia Cuadratica,
ente de Componentes  Distribucién de En-
tropia
Beatriz Garcia 2016 Algoritmo  basado Entropia de muestras, SVM
en Analisis de Entropfa Cuadratica,
Componentes Inde- Distribucién de En-
pendientes tropia
Yasar Das- 2017 EEGLAB, MARA, Valor de bloqueo SVM
demir, Esen AAR de fase (PLV) con
Yildirim ANOVA para medir
significancia
Moon Inder 2017 Filtro de superficie Transformada SVM Polinomial
Singh, Man- Laplaceano wavelet
deep Singh
Baharch 2018 Filtro Butterworth y  Algoritmos ACA, SA, SVM
Nakisa, Mo- Notch GA, SPO
hammad
Naim Rastgoo
Jia Wen Li, 2023 DWT, EMD Smoothed pseudo- K-NN, SVM, LDA y
Xiangyu Zeng, Wigner-Ville distribu- LR
Huiming tion (RSPWVD)
Zhao
Georgia SO- 2023 Finite Impulse Re- Power Spectral Den- Naive Bayes (NB), K-
VATZIDI, sponse, Artefact  sity (PSD) NN, SVM, Fuzzy Cog-
Dimitris K. Subspace Reconstruc- nitive Map (FCM)
IAKOVIDIS tion (ASR)
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variability of EEG signals between individuals, which challenges model generalization across unseen
subjects [73]. Issues in data processing, generalizability, and the integration of these models into
human-computer interaction frameworks present further difficulties [74]. The neural complexity of
emotions and individual differences add another layer of complexity to emotion recognition models
[75]. Furthermore, the use of single features, redundant signals, and the high number of channels
required for effective recognition limit the accuracy and portability of these systems [76,77]. The feature
redundancy and computational demands complicate implementation in wearable devices, underscor-
ing the need for efficient, channel-optimized solutions [78]. In this context, Emotion-Aware Biometric
Identification emerges as an innovative yet challenging approach, aiming to integrate emotional states
into biometric systems to enhance robustness and adaptability. By incorporating emotion recognition,
these systems could potentially achieve more accurate and personalized identification, especially in
dynamic environments. However, achieving reliable emotion-aware biometric identification requires
addressing additional challenges, such as emotional variability across sessions and individual differ-
ences in emotional expression. Future research should focus on optimizing feature selection methods
to manage both the non-stationary nature of EEG signals and the influence of transient emotional states.
Developing lightweight, high-performance models capable of integrating biometric and emotional
data could open new avenues for secure, adaptive authentication systems, particularly in applications
where user engagement and real-time adaptability are critical.
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