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Abstract: Visual inspection detects manual assembly actions to improve quality. Existing methods mainly
analyze behaviors in single assembly scenarios using action recognition algorithms, but they cannot adapt to
dynamic product switching and varying station environments in manual assembly lines. This paper proposes
an adaptive assembly inspection method based on hand motion trajectories. By constructing an assembly
inspection model based on the "Component-Tool-Product” triplet, the YOLOv9 model is employed to capture
the spatiotemporal hand trajectory data stream. The assembly process is divided into a sequence of transitions
between different assembly regions based on the hand's trajectory. The system analyzes the real-time hand
trajectories using Dynamic Time Warping (DTW) and dwell time algorithms to obtain real-time assembly flow,
allowing for the detection of missed and misassembled components. Additionally, the frame difference method
is introduced to extract hand motion features, and an Attention Feature Fusion (AFF) module is used to
integrate multi-scale features with motion texture information, enhancing the performance of the object
detection model. Experimental results show that the proposed algorithm effectively reduces the false detection
rate, with an average detection accuracy of 96% for missed and misassembled behaviors. The improved
YOLOV9 model achieves an mAP@0.5 of 93.94%.

Keywords: assembly inspection; triplet; multi-feature fusion; YOLO; object detection

1. Introduction

In specific manufacturing sectors, particularly in the small appliance and small furniture
industries, manual assembly remains predominant due to the complex components and numerous
flexible connectors. The full implementation of automation still faces significant challenges[1]. These
industries typically feature characteristics such as small batch production, high customization, and
low profit margins, and continue to rely heavily on manual assembly during the production process,
making complete automation difficult to achieve[2]. This production model has several features: First,
production lines require a high degree of flexibility, with frequent product model changes, requiring
operators to quickly adapt to different assembly processes. Second, part selection and installation
heavily rely on manual operations. Workers often perform repetitive tasks under high intensity and
fast pace, leading to fatigue, which results in misassembly and missing components, thereby affecting
product performance and safety. This increases rework costs and even leads to safety accidents that
endanger life and property. Thus, the skill level of operators, adherence to proper procedures, and
accurate installation of parts become key factors influencing product quality[3]. However, traditional
manual quality control methods are no longer sufficient to meet the demands of modern production.
Therefore, developing an intelligent quality control system for manual assembly lines is particularly
important. This system should possess characteristics such as adaptability, real-time processing, and
non-invasiveness.

Currently, assembly inspection in manual assembly lines primarily depends on manual
inspection. However, with the development of machine vision technology, research that leverages its
advantages in image processing and pattern recognition is increasing, aiming to address quality
issues, reduce human errors, and enhance mistake-proofing capabilities[4]. Traditional vision-based
approaches[5-7] typically extract contour features of machine parts using image preprocessing
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techniques (such as filtering, edge detection, threshold segmentation, etc.), and then assess whether
the parts have defects through feature matching and analysis. The same approach can be applied to
missing part detection by evaluating the presence and correct positioning of components to assess
assembly quality[8,9]. However, these methods often face challenges when dealing with irregular or
flexible parts and require high demands on the shooting environment. Therefore, monitoring and
inspecting the entire assembly process to ensure quality from the source is a more effective
solution[10].

Wang Cheng et al. designed a data processing model based on spatiotemporal features using
information such as tools and hand keypoints in workshop assembly images, predicting process
categories and improving the EfficientNetV2 image classification network for workshop task
sequence recognition, achieving effective process flow identification[11]. Yang Y., Wang et al.
combined lightweight OpenPose with a self-attention model to integrate skeleton and workpiece
features, realizing assembly process detection[12]. Daxin Liu et al. proposed a multi-scale multi-
stream graph convolutional network (2MSGCN) for assembly action recognition, capturing operator
skeleton data using multi-view RGBD cameras, and optimizing with feature fusion and Ghost
modules to improve the accuracy and real-time performance of assembly action recognition[13]. Md.
Al-Amin proposed a personalized convolutional neural network system based on human skeletal
data, improving model adaptability through transfer learning and iterative enhancement,
significantly increasing action recognition accuracy using classifier fusion methods (WASC)[14].
Julian Koch introduced an action recognition method based on Methods-Time-Measurement (MTM),
detecting general action elements through skeleton data and using search algorithms to estimate
assembly progress, extending action recognition in variant assembly processes[15]. However, these
methods fall short when addressing the flexibility requirements of manual assembly production lines.
When production schemes and objects change, these models need to be retrained and debugged for
different setups, resulting in high training costs.

In summary, current research and applications both domestically and internationally remain
focused on single-scenario setups, which fail to meet the needs of complex and dynamic manual
assembly lines. Therefore, this paper abstracts worker assembly behaviors into high-dimensional
representations, using hand trajectories to describe transitions between different objects in the
production process (e.g., components, tools, and assembly subjects). This ensures the proposed
inspection method has high generality across different assembly workstations, objects, and steps,
enabling effective monitoring of the assembly process through coarse-grained surveillance.

The accuracy of assembly inspection in the above schemes mainly depends on the trajectory
accuracy obtained through object detection algorithms. With the rapid development of computer
vision technology, various efficient object detection algorithms have been developed and applied.
Representative algorithms include Faster-RCNNJ[16], YOLO, and SSD[17], among which the YOLO
(You Only Look Once) algorithm is known for its fast processing speed[18]. YOLO is an object
detection system that makes predictions based on global image information. Since the release of its
first version in 2015, YOLO has undergone several updates, with each version offering enhanced
performance[19]. YOLOVY is one of the latest object detection models in the YOLO series[20].
Compared to earlier versions, YOLOV9 introduces the concept of Programmable Gradient
Information (PGI), generating reliable gradients through auxiliary reversible branches, which helps
retain crucial deep features and prevents semantic loss caused by traditional multi-path feature
integration[21].

For the YOLOvVY model, S. Yang et al. enhanced small object detection accuracy by adding small-
object detection heads, replacing Conv modules with DWConv, and using C3Ghost to replace the
backbone module, achieving lightweight deployment[22]. R. An et al. improved the YOLOv9 model
by introducing Ghost convolutions, enhancing perception ability and detection accuracy, and
deploying the improved model in an intelligent city framework for real-time traffic monitoring[23].
Chun-Tse Chien applied YOLOVY to fracture detection tasks, improving model performance by
training on the GRAZPEDWRI-DX dataset and using data augmentation techniques[24]. Yongxin
Chen et al. introduced an efficient multi-scale attention mechanism (EMA) for cross-spatial learning
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and an improved Inner-SloU bounding box regression loss function, significantly enhancing defect
detection accuracy and convergence speed in substation equipment[25]. Jialin Zou et al. proposed an
improved steel defect detection model, CK-NET, which optimizes feature extraction modules,
incorporates deformable convolutions and self-attention mechanisms, and improves CBAM and PGI
branches to significantly enhance feature extraction and fusion capabilities[26].

This paper focuses on the fixed camera and static background characteristics in assembly
inspection. To improve the accuracy of hand recognition in complex environments, this study
improves the YOLOvV9 model primarily in terms of computational accuracy: 1) Using frame
difference to extract spatial features of hand movements, generating differential images that are
combined with RGB images from the assembly process, forming a dual-channel input for the object
detection network; 2) Introducing an Attention Feature Fusion (AFF) module[27] to integrate spatial
hand motion features with high-level semantic features in the feature pyramid. These improvements
enhance the model's detection accuracy in complex assembly environments. The final network
structure is shown in Figure 1:
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Note: Conv is a convolution operation, Subsampled is a downsampling operation, SPPELAN is a
spatial pyramid pooling structure, Upsample is an upsampling operation, Diff-AFF is a differential
texture feature fusion module, RepNCSPELAN4 is a generalized efficient layer aggregation network,
and its combined CBlinear, CBFuse, and Contact modules implement multi-level auxiliary
information aggregation of all target object gradient information received by each feature pyramid of
the auxiliary reversible branch and pass it to the main branch for weight update.

Figure 1. Improved YOLOv9 model structure
2. Materials and Methods

2.1. Assembly Inspection Method Based on Hand Trajectory

To address the high-cost model training and debugging issues caused by frequent changes in
assembly processes, this study proposes an assembly behavior detection method based on hand
trajectories and changes in working regions. As shown in Figure 2, to cope with new assembly
processes, we propose an assembly behavior detection model based on the "Component-Tool-
Product" triplet, aiming to reduce the complexity of modeling new assembly processes. First, workers
divide the entire area into several semantic regions based on the structural features of the assembly
environment, including assembly zones, part zones, finished product zones, and tool zones, and store
the spatial location information of these regions. This division allows the worker's entire assembly
behavior to be pre-defined as hand trajectories and transition sequences between different regions,
effectively abstracting the essential characteristics of the assembly actions. Additionally, by imposing
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constraints on the sequence of regional transitions and the dwell time in each region, assembly
process detection can be achieved.
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Figure 2. The assembly behavior definition method of the "Component Tool Product” triplet.

The complete hand-trajectory-based assembly detection scheme is shown in Figure 3. The
scheme is divided into a pre-learning stage and a real-time detection stage. In the pre-learning stage,
the operation space is first divided into different regions, and the spatial domain information of the
operation space is obtained: R = {R;, R,,..., Ry}. Then, several experienced workers demonstrate the
standard assembly process. The system uses YOLOV9 to capture the spatiotemporal hand trajectory
data stream of skilled workers during assembly, precisely locating their bounding boxes. By
combining the saved location information of the work areas, the system can accurately determine the
hand's region and obtain the standard process region transition sequence: S = [Ryy, Ry, ..., Rsy]-
Simultaneously, during each region transition, the system records the operation trajectory within
each region, x,(t) = [xs(t), ¥s(t)], to build a standard process trajectory database.
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Figure 3. Assembly inspection scheme and framework diagram based on hand trajectory.
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In the real-time assembly detection stage, as the worker operates, the system continuously tracks
the hand's trajectory and determines the region. The real-time obtained region transition sequence,
Sy = [Ry1, Ry2, ..., Ry, is compared with the preset standard process. When the system detects that
the hand's region transition sequence deviates from the standard assembly process (e.g., due to
incorrect or missed operations), it alerts the worker via a signal light or other warning forms for self-
check. After the worker performs the self-check, the system feedback must be used to confirm the
result, ensuring the integrity of the process and the accuracy of the operation, further reducing
potential assembly defects.

In tracking the hand trajectory and determining the region, the system employs two main
methods to prevent misjudgment. First, it uses the dwell time of the hand in a specified region to
make judgments, ensuring that only operations in which the hand stays in the region for a sufficient
amount of time are considered valid. Second, by monitoring changes in the hand's acceleration, the
system determines whether the trajectory pauses in a certain region. For example, if a worker's hand
briefly enters the part zone without performing an actual operation, this strategy effectively prevents
misjudgment.

In addition to the judgments based on the region transition sequence and region dwell time, the
system also applies the Dynamic Time Warping (DTW) algorithm in real-time to compare the
captured real-time hand trajectory, Xx,(t) = [x,(t),y-(t)], with the standard process trajectory
database. This comparison generates multiple scores, and by averaging these scores, a comprehensive
score is obtained, which measures the worker's completion of actions in the current process. This
score not only evaluates the worker's assembly accuracy but also further reduces the likelihood of
misjudgment, improving the robustness and precision of the system.

Dynamic Time Warping (DTW) is a method used to measure the similarity between two time
series of different lengths[28]. Its primary function is to flexibly align trajectory points to assess the
similarity between two trajectories. In time series similarity measurement, simple point-to-point
similarity calculations are highly susceptible to shifts or misalignments in the sequences. The use of
DTW can prevent this issue. DTW employs dynamic programming to align and match two
sequences, even if they differ in length, thereby providing a similarity score for the trajectories. As
shown in Figure 4, two time series, 4 = {ay,a,, as;}and B = {by, by, -, by}, of different lengths are
matched, where the dashed lines between the series indicate the similar points. The DTW algorithm
calculates the similarity between the two time series based on the sum of the distances between these
similar points.

a
22 azi
823 524 425 826 7

b3
m\a\ i
‘\ .
[SE AN 4 ;

b8 blf‘;zu\/é
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Figure 4. Time warping of two time series.

In the similarity calculation, the similarity between A and B is calculated as shown in Equation

(1):

dij = \/(ai(xk) ~ b)) + (600~ b)) (1)

n
k=1
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Where d;; represents the total distance between the real-time trajectory and the standard
trajectory. Based on Equation (1), the DTW distance between the two trajectory sequences can be
derived, as shown in Equation (2):

n m
DTW(X,Y) = min Z dy; @)
i=1j=1

Here, n is the length of time series A, and m is the length of time series B. Using Equation (2),
the alignment distance between time series A and B can be calculated.

To evaluate how well a worker’s current action matches the standard process, the system
compares the real-time hand trajectory with each trajectory in the standard process trajectory library
using DTW. Each standard trajectory in the library represents a correct assembly procedures pattern.
By calculating the DTW distance between the real-time trajectory and each standard trajectory, the
system generates a set of similarity scores. Let the real-time hand trajectory be sequence A, and the
standard trajectory library contain k standard trajectories {By, B,, -, B} After performing the DTW
comparison between each standard trajectory and the real-time trajectory, a similarity score is
generated:

Score; = 100 — p X DTW (4, B))*? 3)

After normalization, the DTW distance is converted into a floating-point number between 0 and
1, where p and f are parameters that determine the mapping relationship between the DTW
distance and the score. In this study, p is set to 92.4 and f is set to 0.97. Score; represents the
similarity score between the i standard trajectory and the real-time trajectory; the higher the score,
the more similar the two trajectories are. The final composite score is the average of all the similarity
scores. This composite score is used to evaluate how well the worker’s current operation matches the
standard process. the higher the score, the more closely the worker’s actions align with the standard
process requirements.

2.2. Improved Dual-Channel Spatial Feature Fusion Network

In the entire approach, the key to ensuring detection accuracy lies in the precision and
completeness of trajectory acquisition, which is directly dependent on the performance of the hand
detection algorithm. Given the characteristics of fixed cameras and static backgrounds in assembly
detection, this study designs a Hand Motion Sensing Module (HMSM) and a Differential-Attentional
Feature Fusion Module (Diff-AFF) in the feature fusion network of YOLOV9, based on the traditional
feature pyramid. These modules combine the RGB assembly images with the foreground images of
hand movements, forming a dual-channel input for the YOLOv9 detection network. As shown in
Figure 5, the process begins by using the Hand Motion Sensing Module to process the input images,
filtering out background information and generating texture images with spatial features of hand
movements (DiffVein images). These images are then combined with the feature maps from the
backbone network to form the dual-channel input for the spatial sensing module. Next, the Diff-
Attentional Feature Fusion Module merges shallow spatial features from the backbone network with
motion spatial features from the texture images, thereby capturing global spatial information. This
global spatial information is further combined with the deep semantic features, enhancing the
model's accuracy in detecting hand movements in complex assembly environments.
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Figure 5. Improved dual-channel feature fusion network.

2.2.1. Palm Detection Based on Spatial Feature Fusion

The assembly process of workers in the workshop is shown in Figure 6. In the sequence of
images, due to the interaction between the hand and tools, the pixels in the hand region undergo
motion changes. Therefore, using pixel-based temporal differencing and the frame difference
method, the texture information of the hand movement region can be extracted.

Figure 6. Frame images before and after the assembly process.

The frame difference method is calculated as follows: first, the pixel values of the corresponding
RGB images in consecutive frames are subtracted to obtain a difference image. For two RGB images
I; and [;;, taken from frame i and frame i + 1, the RGB difference image I ;¢ s obtained using
Equation (4):

Laigr =1 lipq — I | 4)

Next, the difference image is converted into a grayscale image I', removing the color
information while preserving the texture, as shown in Figure 6(a). Then, a threshold segmentation
method is used to separate the foreground and background in the grayscale image, filtering out
background pixels. Threshold segmentation marks regions with pixel values greater than the
threshold as foreground and those with values lower than the threshold as background, enhancing
the contrast between the foreground and background. In this paper, the Otsu method, which is based
on adaptive thresholding, is employed to segment the grayscale image I’, and the result is shown in
Figure 7.
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(a) Before the Otsu threshold (b) After the Otsu threshold
Figure 7. Effects before and after threshold segmentation.

The Otsu method searches for the threshold g, that maximizes inter-class variance within the

grayscale value range g € [0,255]. The expressions for the threshold function § and the inter-class

2

variance o“ are as follows:

255, I, > g
8(Iyy) = ; 5
(1) { 0, I, <g (5)
0%(9) = Y1 (my — me)? + b, (mz — M)’ ©)

In these equations, m; and m, represent the mean grayscale values of the foreground and
background pixels, respectively, and m; is the global mean of the pixel values. ¥; and ¥,
represent the probabilities of foreground and background pixels, respectively, when segmented by
the threshold g. The probability distribution of a pixel with grayscale value i is p; = %, where n; is
the number of pixels with grayscale value i in the image, and N is the total number of pixels in the
image. When the threshold is set to g, the probabilities of the image being divided into foreground
and background are 37, P; and Z?jgu P;. respectively, and the mean grayscale values of the
foreground and background are given by:

_i=k+1 _i=k+1
T T Ty,

Using the threshold function § to filter out background information, the segmented texture
image I; is obtained and used as the dual-channel input for the object detection network, as shown
in fig 6(b). The dense pixel areas in the image highlight the hand's movement trajectory. Region
segmentation based on the frame difference method can effectively suppress background noise,

providing spatial regions of interest for the detection network and guiding the accurate localization
of occluded hands.

@)

2.2.2. AFF-Attention Feature Fusion Module

To enhance the model's spatial perception of detection targets, this paper introduces the AFF
(Attention Feature Fusion) module, which integrates the spatial information from texture images
with the semantic features in the feature pyramid. The goal of feature fusion is to combine features
from different layers or branches to fully exploit various image characteristics, achieving more robust
and accurate target recognition. Although feature fusion is often implemented through summation
or concatenation operations, these methods may not fully capture the interrelations between features.

The MS-CAM (Multi-Scale Channel Attention Module) extracts channel attention weights
through two different scale branches: one branch uses Global Average Pooling to capture global
feature attention, while the other uses point-wise convolution to extract local feature attention.
During the fusion process, MS-CAM effectively combines the spatial features of hand movement with
high-level semantic features, thus improving detection accuracy. The computational process of the
MS-CAM module is as follows:
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LX) = B (PWConv2 (5 (B(PWConY, (x))))) (8)

Here, PWConv represents point-wise convolution, where L(X) retains the same shape as the
input features to preserve the detail information in low-level features. Given the global channel
context g(X) and the local channel context L(X), the refined features X' obtained through MS-CAM
can be expressed as:

X'=XQ®MX) =X® o(LX) @ X)) )

In this equation, M(X) represents the attention weights generated by MS-CAM, ¢ denotes the
activation function, @ indicates element-wise addition, and @ represents element-wise
multiplication. Furthermore, when using MS-CAM to represent the AFF (Attention Feature Fusion),
the formula is as follows:

Z=MEXUY)®X+(1-MXUY) QY (10)

In this equation, Z ERC™H™W represents the fused features, and W denotes the initial feature
integration. By introducing the MS-CAM module, the fusion of texture and semantic features is
significantly improved, enhancing the ability to localize target areas and optimizing the performance
of the object detection network. A schematic diagram of the AFF is shown in the Figure 8.
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Figure 8. AFF - Attention Feature Fusion Module.

3. Results

To verify the accuracy of the proposed assembly detection solution in real production
environments and its adaptability to different workstation assembly procedures, this study
constructed an experimental dataset based on the assembly procedures collected from the partner
companies, Ningbo Qixi Electric Co., Ltd. and Ningbo HOKO Electric Co., Ltd. The dataset covers
video data from 10 assembly workstations, including three types of assembly outcomes: correct
assembly, incorrect assembly, and missing assembly. A key factor affecting the proposed solution is
the accuracy of hand detection in complex assembly environments. To validate the effectiveness of
the background removal method based on the improved YOLOV9 object detection algorithm, 2000
pairs of images (including detection frames and background frames) were extracted from the videos
and split into a training set and validation set in a 7:3 ratio for further analysis and evaluation of hand
detection performance.

The experiments were conducted in a server-side environment with the configurations shown
in Table 1. Both the original and improved models were trained for 150 epochs, with a batch size set
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to 32. The Stochastic Gradient Descent (SGD) optimization algorithm was used, with an initial
learning rate of 0.01, momentum set to 0.9, and a weight decay factor of 0.0005. During the training
process, various data augmentation techniques were applied, such as random scaling and cropping,
random rotation and flipping, random brightness adjustment, and mosaic image augmentation, to
enhance the model's generalization capability.

Table 1. Experimental environment.

Class Environmental Class Environmental
CPU i7-12700 2.10 GHz CUDA Version CUDA11.2
GPU GeForce RTX 4070 DL Framework Pytorch
RAM 32 GB Runtime Linux
System Ubantu 20.04.6 Script Python3. 9

The evaluation metrics for model performance include Precision (P), Recall (R), Mean Average
Precision (MAP), Floating Point Operations (FLOPs), and Frames Per Second (FPS)[29]. The
calculation formulas for these metrics are as follows:

TP
_ 11
P=TpiFp ()
TP
_ 12
R=Tr¥rn (12)
n
1
MAP = HZ AP, (13)
i=1

In the formulas, TP represents true positives, FP represents false positives, and FN represents
false negatives. The model accuracy is evaluated using Average Precision (AP), Mean Average
Precision (MAP), Precision (P), and Recall (R). The real-time performance of the model is assessed
through the number of frames detected per second (Frame/s or FPS).

3.1. Improved YOLO Results Analysis

To validate the performance of the improved algorithm, this study compares the inference speed
and mAP metrics of traditional Faster R-CNN, YOLOv5s[30], YOLOvS8s, YOLOv9s, and the proposed
improved algorithm.

As shown in Table 2, the proposed YOLOv9s+Diff+AFF model demonstrated the highest
accuracy in the assembly detection task, achieving an mAP@0.5 of 93.94%, which is an improvement
of 10.02%, 9.62%, 5.99%, and 4.07% over Faster-RCNN, YOLOv5s, YOLOv8s, and YOLOVYs,
respectively. Although the YOLOv9s+Diff+AFF model had a slightly lower frame rate (69.6 frames
per second), its FLOPs were only 29.6B, and the model size was 16.43MB, indicating that it still
maintains certain advantages in terms of computational cost and storage requirements. In
comparison, YOLOv9s performed better in terms of lightweight design and recognition speed, but
the improvements brought by the frame difference method and AFF module in the
YOLOV9s+Diff+AFF model significantly enhanced detection accuracy in static background assembly
scenarios. This makes it especially suitable for industrial assembly settings where high accuracy is
required. Considering the characteristics of the workstation environment, the model achieves a good
balance between real-time performance and detection accuracy.
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Table 2. Comparisons between this model and the mainstream models.

Model mAP@0.5% Frame/s FLOPs(B) Size/MB
Faster-RCNN 83.92 13.11 226.4 108.7
YOLOv5s 84.32 74.9 24.6 15.30
YOLOv8s 87.95 94.9 28.6 21.61
YOLOv9s 89.87 96.78 26.7 14.69
Ours 93.94 69.6 29.6 16.43

To validate the effectiveness of the two proposed improvement strategies and their performance
in hand recognition in complex assembly environments, ablation experiments were conducted on the
improved YOLOV9 dual-channel model, as shown in Table 3.

Table 3. Comparison of main module ablation experiments.

Model Precision/% Recall/% mAP@0.5% Frame/s
YOLOv9s 87.81 86.64 89.87 96.78
YOLOvV9s+Diff 89.1 87.2 91.56 85.5
YOLOv9s+Diff+AFF 92.42 88.97 93.94 69.6

o B

Precision
Lo ]
(4 3 ]
1

YOLOwSs

YOLOvSs + Dhft
YOLOwSs + DAfT + AFF
mAPE0. 5%

0.0 T i
0.0 0.5 1.0
Recall

Figure 9. Comparison Curve of Precision Recall Improved Module

According to the latest experimental data presented in the table, ablation experiments
demonstrated the hand recognition performance of the two proposed strategies in complex assembly
environments. Compared to the baseline YOLOv9s model, YOLOv9s+Diff, which introduces the
frame difference method to extract difference images in static backgrounds, showed improvements
in both detection accuracy and recall rate. The mAP@0.5 increased from 89.87% to 91.56%, recall rate
rose to 87.2%, and precision reached 89.1%, with the frame rate remaining at 85.5 frames per second,
indicating that this strategy effectively leverages the static background characteristics to enhance
hand position detection performance.

Building upon this, with the further introduction of the AFF module, the YOLOv9s+Diff+AFF
model achieved an mAP@0.5 of 93.94%, precision improved to 92.42%, and recall rate increased to
88.97%. Although the frame rate dropped to 69.6 frames per second, the model's ability to detect
multi-scale and dynamic targets was significantly enhanced. This indicates that the dual
improvement strategy —combining difference images and the AFF module—further optimized the
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model's detection accuracy and robustness in complex assembly environments, achieving a good
balance between detection performance and real-time capabilities. The detection effects before and
after the improvements are shown in Figure 10. By introducing motion information from consecutive
images, the improved model captures pixel changes between frames, enhancing its ability to localize
the hand in global space and reducing the impact of factors such as ambient lighting, hand-object
occlusion, and similar background colors. It effectively resolves the issue of the network losing local
key information when the hand touches the target, thereby significantly improving detection
accuracy.

Figure 10. Detecting results before and after dual channel improvement.

3.2. Assembly Test Results Analysis

To validate the feasibility of the assembly detection method based on palm trajectories, we
designed and conducted a series of experiments covering various complex assembly workstation
conditions, including single-step and multi-step assemblies, as well as large and small part
assemblies. The experiments involved eight different scenarios, each simulating typical assembly
tasks from real production lines to test the system's compatibility and robustness in handling
different worker operation habits and assembly methods. The system captures and analyzes palm
trajectories in real time to detect the conformity of the assembly sequence with the standard process
model and to identify missing or incorrect assemblies. To further assess the system's performance,
we intentionally introduced missing and incorrect assembly events to simulate typical errors in actual
operations, aiming to evaluate the system’s detection accuracy and sensitivity to various errors across
different assembly scenarios. As shown in Table 4 and Table 5, the experiments used fixed cameras
for filming and the improved YOLOvV9s network for real-time detection, thereby verifying the
system's actual performance in assembly scenarios.

Table 4. Experimental Scenarios and Detection Performance Metrics.

Number of . Missing Incorrect
Assembly Participant . .

Assembly Obiect Tvpe Tvpe Detection Detection
personnel ) P i Accuracy (%)  Accuracy (%)

1 Single Large Skilled 98 97

2 Single Small Skilled 97 95

3 Multi Large Skilled 96 95

4 Multi Small Skilled 95 94

5 Single Large Novice 99 98

6 Single Small Novice 97 96

7 Multi Large Novice 96 95

8 Multi Small Novice 94 93
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Table 5. Comparison of the effects of model improvements.

Model Version Missing Accuracy (%) Incorrect Accuracy (%)
YOLOv9s 90 91
ours 97 95

The experimental results show that the improved assembly detection system demonstrated
excellent accuracy and real-time performance across different workstations. In detecting missing and
incorrect assemblies, as well as assembly timing, the system achieved a high recognition rate in both
small and large part assembly, as well as in single-step and multi-step scenarios. Specifically, the
system's average detection accuracy for missing and incorrect assemblies across all workstations
reached 96%, indicating high sensitivity to different types of errors. Moreover, the system exhibited
strong cross-scenario adaptability, performing well in varying worker operation habits and
environmental changes. This indicates that the system possesses good robustness and generalization
capability, making it suitable for complex and variable assembly environments on production
lines.Compared to the unmodified YOLOvV9 model, the system optimized with the frame difference
method and AFF module showed significant improvements in detecting hand positions and
assembly procedures, with the average recognition rate increasing from 91% to 96%. Additionally,
the system maintained a high response speed in fast-paced production lines, ensuring real-time
feedback on assembly anomalies in practical applications. These experimental results validate the
practicality and reliability of the palm trajectory-based assembly detection solution in industrial
production.

4. Conclusions

This paper addresses the challenges of flexibility and complexity in manual assembly lines by
proposing an adaptive assembly detection method based on hand movement trajectories and
introducing innovative improvements to the YOLOv9 model, aimed at overcoming the limitations of
traditional assembly detection methods. First, in terms of the assembly detection approach, this paper
pre-defines assembly regions and transforms workers' hand trajectories into high-level abstractions
of the assembly process, building a standard procedure model based on the assembly procedures of
skilled workers. During the detection phase, the Dynamic Time Warping (DTW) algorithm is
employed to perform real-time trajectory comparisons, effectively detecting missing and incorrect
assembly actions.

Second, in terms of the hand detection algorithm, considering the fixed camera and static
background characteristics, this paper extracts hand motion texture information using the frame
difference method and introduces the Attention Feature Fusion (AFF) module to fuse multi-scale
features with the difference images, thereby enhancing the target detection performance. The
experimental results show that the improved YOLOv9s+Diff+AFF model achieves an mAP@0.5 of
93.94%, demonstrating significant improvements over traditional object detection algorithms such as
Faster-RCNN, YOLOV5s, and YOLOvSs. Although the frame rate slightly decreased to 69.6 frames
per second, it still meets the real-time detection requirements of assembly lines. The assembly
detection system exhibited high detection accuracy and good generalization capability across various
complex workstations and worker operations, achieving an average detection accuracy of 96%,
validating the practical value of the proposed method.

Future research could further explore additional information contained in the trajectories to
achieve more fine-grained assembly procedure detection, enhance the understanding of workers'
assembly procedures, and enable more precise monitoring of the assembly process and error warning
systems, further improving the intelligence level of manual assembly lines.
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