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Article 
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Based on Improved YOLO and Hand Trajectory 

Shaoyi Zhou, Xiancheng Wang *, Zewen Liu, Yifan Jiang and Lang Huang 

College of Science and Technology, Ningbo University, Ningbo 315211, China 

* Correspondence: wangxiancheng@nbu.edu.cn 

Abstract: Visual inspection detects manual assembly actions to improve quality. Existing methods mainly 

analyze behaviors in single assembly scenarios using action recognition algorithms, but they cannot adapt to 

dynamic product switching and varying station environments in manual assembly lines. This paper proposes 

an adaptive assembly inspection method based on hand motion trajectories. By constructing an assembly 

inspection model based on the "Component-Tool-Product" triplet, the YOLOv9 model is employed to capture 

the spatiotemporal hand trajectory data stream. The assembly process is divided into a sequence of transitions 

between different assembly regions based on the hand's trajectory. The system analyzes the real-time hand 

trajectories using Dynamic Time Warping (DTW) and dwell time algorithms to obtain real-time assembly flow, 

allowing for the detection of missed and misassembled components. Additionally, the frame difference method 

is introduced to extract hand motion features, and an Attention Feature Fusion (AFF) module is used to 

integrate multi-scale features with motion texture information, enhancing the performance of the object 

detection model. Experimental results show that the proposed algorithm effectively reduces the false detection 

rate, with an average detection accuracy of 96% for missed and misassembled behaviors. The improved 

YOLOv9 model achieves an mAP@0.5 of 93.94%. 

Keywords: assembly inspection; triplet; multi-feature fusion; YOLO; object detection 

 

1. Introduction 

In specific manufacturing sectors, particularly in the small appliance and small furniture 

industries, manual assembly remains predominant due to the complex components and numerous 

flexible connectors. The full implementation of automation still faces significant challenges[1]. These 

industries typically feature characteristics such as small batch production, high customization, and 

low profit margins, and continue to rely heavily on manual assembly during the production process, 

making complete automation difficult to achieve[2]. This production model has several features: First, 

production lines require a high degree of flexibility, with frequent product model changes, requiring 

operators to quickly adapt to different assembly processes. Second, part selection and installation 

heavily rely on manual operations. Workers often perform repetitive tasks under high intensity and 

fast pace, leading to fatigue, which results in misassembly and missing components, thereby affecting 

product performance and safety. This increases rework costs and even leads to safety accidents that 

endanger life and property. Thus, the skill level of operators, adherence to proper procedures, and 

accurate installation of parts become key factors influencing product quality[3]. However, traditional 

manual quality control methods are no longer sufficient to meet the demands of modern production. 

Therefore, developing an intelligent quality control system for manual assembly lines is particularly 

important. This system should possess characteristics such as adaptability, real-time processing, and 

non-invasiveness. 

Currently, assembly inspection in manual assembly lines primarily depends on manual 

inspection. However, with the development of machine vision technology, research that leverages its 

advantages in image processing and pattern recognition is increasing, aiming to address quality 

issues, reduce human errors, and enhance mistake-proofing capabilities[4]. Traditional vision-based 

approaches[5–7] typically extract contour features of machine parts using image preprocessing 
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techniques (such as filtering, edge detection, threshold segmentation, etc.), and then assess whether 

the parts have defects through feature matching and analysis. The same approach can be applied to 

missing part detection by evaluating the presence and correct positioning of components to assess 

assembly quality[8,9]. However, these methods often face challenges when dealing with irregular or 

flexible parts and require high demands on the shooting environment. Therefore, monitoring and 

inspecting the entire assembly process to ensure quality from the source is a more effective 

solution[10]. 

Wang Cheng et al. designed a data processing model based on spatiotemporal features using 

information such as tools and hand keypoints in workshop assembly images, predicting process 

categories and improving the EfficientNetV2 image classification network for workshop task 

sequence recognition, achieving effective process flow identification[11]. Yang Y., Wang et al. 

combined lightweight OpenPose with a self-attention model to integrate skeleton and workpiece 

features, realizing assembly process detection[12]. Daxin Liu et al. proposed a multi-scale multi-

stream graph convolutional network (2MSGCN) for assembly action recognition, capturing operator 

skeleton data using multi-view RGBD cameras, and optimizing with feature fusion and Ghost 

modules to improve the accuracy and real-time performance of assembly action recognition[13]. Md. 

Al-Amin proposed a personalized convolutional neural network system based on human skeletal 

data, improving model adaptability through transfer learning and iterative enhancement, 

significantly increasing action recognition accuracy using classifier fusion methods (WASC)[14]. 

Julian Koch introduced an action recognition method based on Methods-Time-Measurement (MTM), 

detecting general action elements through skeleton data and using search algorithms to estimate 

assembly progress, extending action recognition in variant assembly processes[15]. However, these 

methods fall short when addressing the flexibility requirements of manual assembly production lines. 

When production schemes and objects change, these models need to be retrained and debugged for 

different setups, resulting in high training costs. 

In summary, current research and applications both domestically and internationally remain 

focused on single-scenario setups, which fail to meet the needs of complex and dynamic manual 

assembly lines. Therefore, this paper abstracts worker assembly behaviors into high-dimensional 

representations, using hand trajectories to describe transitions between different objects in the 

production process (e.g., components, tools, and assembly subjects). This ensures the proposed 

inspection method has high generality across different assembly workstations, objects, and steps, 

enabling effective monitoring of the assembly process through coarse-grained surveillance. 

The accuracy of assembly inspection in the above schemes mainly depends on the trajectory 

accuracy obtained through object detection algorithms. With the rapid development of computer 

vision technology, various efficient object detection algorithms have been developed and applied. 

Representative algorithms include Faster-RCNN[16], YOLO, and SSD[17], among which the YOLO 

(You Only Look Once) algorithm is known for its fast processing speed[18]. YOLO is an object 

detection system that makes predictions based on global image information. Since the release of its 

first version in 2015, YOLO has undergone several updates, with each version offering enhanced 

performance[19]. YOLOv9 is one of the latest object detection models in the YOLO series[20]. 

Compared to earlier versions, YOLOv9 introduces the concept of Programmable Gradient 

Information (PGI), generating reliable gradients through auxiliary reversible branches, which helps 

retain crucial deep features and prevents semantic loss caused by traditional multi-path feature 

integration[21]. 

For the YOLOv9 model, S. Yang et al. enhanced small object detection accuracy by adding small-

object detection heads, replacing Conv modules with DWConv, and using C3Ghost to replace the 

backbone module, achieving lightweight deployment[22]. R. An et al. improved the YOLOv9 model 

by introducing Ghost convolutions, enhancing perception ability and detection accuracy, and 

deploying the improved model in an intelligent city framework for real-time traffic monitoring[23]. 

Chun-Tse Chien applied YOLOv9 to fracture detection tasks, improving model performance by 

training on the GRAZPEDWRI-DX dataset and using data augmentation techniques[24]. Yongxin 

Chen et al. introduced an efficient multi-scale attention mechanism (EMA) for cross-spatial learning 
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and an improved Inner-SIoU bounding box regression loss function, significantly enhancing defect 

detection accuracy and convergence speed in substation equipment[25]. Jialin Zou et al. proposed an 

improved steel defect detection model, CK-NET, which optimizes feature extraction modules, 

incorporates deformable convolutions and self-attention mechanisms, and improves CBAM and PGI 

branches to significantly enhance feature extraction and fusion capabilities[26]. 

This paper focuses on the fixed camera and static background characteristics in assembly 

inspection. To improve the accuracy of hand recognition in complex environments, this study 

improves the YOLOv9 model primarily in terms of computational accuracy: 1) Using frame 

difference to extract spatial features of hand movements, generating differential images that are 

combined with RGB images from the assembly process, forming a dual-channel input for the object 

detection network; 2) Introducing an Attention Feature Fusion (AFF) module[27] to integrate spatial 

hand motion features with high-level semantic features in the feature pyramid. These improvements 

enhance the model's detection accuracy in complex assembly environments. The final network 

structure is shown in Figure 1: 

 

Note: Conv is a convolution operation, Subsampled is a downsampling operation, SPPELAN is a 

spatial pyramid pooling structure, Upsample is an upsampling operation, Diff-AFF is a differential 

texture feature fusion module, RepNCSPELAN4 is a generalized efficient layer aggregation network, 

and its combined CBlinear, CBFuse, and Contact modules implement multi-level auxiliary 

information aggregation of all target object gradient information received by each feature pyramid of 

the auxiliary reversible branch and pass it to the main branch for weight update. 

Figure 1. Improved YOLOv9 model structure 

2. Materials and Methods 

2.1. Assembly Inspection Method Based on Hand Trajectory 

To address the high-cost model training and debugging issues caused by frequent changes in 

assembly processes, this study proposes an assembly behavior detection method based on hand 

trajectories and changes in working regions. As shown in Figure 2, to cope with new assembly 

processes, we propose an assembly behavior detection model based on the "Component-Tool-

Product" triplet, aiming to reduce the complexity of modeling new assembly processes. First, workers 

divide the entire area into several semantic regions based on the structural features of the assembly 

environment, including assembly zones, part zones, finished product zones, and tool zones, and store 

the spatial location information of these regions. This division allows the worker's entire assembly 

behavior to be pre-defined as hand trajectories and transition sequences between different regions, 

effectively abstracting the essential characteristics of the assembly actions. Additionally, by imposing 
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constraints on the sequence of regional transitions and the dwell time in each region, assembly 

process detection can be achieved. 

 

Figure 2. The assembly behavior definition method of the "Component Tool Product" triplet. 

The complete hand-trajectory-based assembly detection scheme is shown in Figure 3. The 

scheme is divided into a pre-learning stage and a real-time detection stage. In the pre-learning stage, 

the operation space is first divided into different regions, and the spatial domain information of the 

operation space is obtained: ℛ = {��, ��, . . . , ��}. Then, several experienced workers demonstrate the 

standard assembly process. The system uses YOLOv9 to capture the spatiotemporal hand trajectory 

data stream of skilled workers during assembly, precisely locating their bounding boxes. By 

combining the saved location information of the work areas, the system can accurately determine the 

hand's region and obtain the standard process region transition sequence: � = [���, ���, . . . , ���]. 

Simultaneously, during each region transition, the system records the operation trajectory within 

each region, ��(�) = [��(�), ��(�)], to build a standard process trajectory database. 

 

Figure 3. Assembly inspection scheme and framework diagram based on hand trajectory. 
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In the real-time assembly detection stage, as the worker operates, the system continuously tracks 

the hand's trajectory and determines the region. The real-time obtained region transition sequence, 

�� = [���, ���, … , ���], is compared with the preset standard process. When the system detects that 

the hand's region transition sequence deviates from the standard assembly process (e.g., due to 

incorrect or missed operations), it alerts the worker via a signal light or other warning forms for self-

check. After the worker performs the self-check, the system feedback must be used to confirm the 

result, ensuring the integrity of the process and the accuracy of the operation, further reducing 

potential assembly defects. 

In tracking the hand trajectory and determining the region, the system employs two main 

methods to prevent misjudgment. First, it uses the dwell time of the hand in a specified region to 

make judgments, ensuring that only operations in which the hand stays in the region for a sufficient 

amount of time are considered valid. Second, by monitoring changes in the hand's acceleration, the 

system determines whether the trajectory pauses in a certain region. For example, if a worker's hand 

briefly enters the part zone without performing an actual operation, this strategy effectively prevents 

misjudgment. 

In addition to the judgments based on the region transition sequence and region dwell time, the 

system also applies the Dynamic Time Warping (DTW) algorithm in real-time to compare the 

captured real-time hand trajectory, ��(�) = [��(�), ��(�)] , with the standard process trajectory 

database. This comparison generates multiple scores, and by averaging these scores, a comprehensive 

score is obtained, which measures the worker's completion of actions in the current process. This 

score not only evaluates the worker's assembly accuracy but also further reduces the likelihood of 

misjudgment, improving the robustness and precision of the system. 

Dynamic Time Warping (DTW) is a method used to measure the similarity between two time 

series of different lengths[28]. Its primary function is to flexibly align trajectory points to assess the 

similarity between two trajectories. In time series similarity measurement, simple point-to-point 

similarity calculations are highly susceptible to shifts or misalignments in the sequences. The use of 

DTW can prevent this issue. DTW employs dynamic programming to align and match two 

sequences, even if they differ in length, thereby providing a similarity score for the trajectories. As 

shown in Figure 4, two time series, � = {��, ��,⋅⋅⋅, ���}and � = {��, ��,⋅⋅⋅, ���}, of different lengths are 

matched, where the dashed lines between the series indicate the similar points. The DTW algorithm 

calculates the similarity between the two time series based on the sum of the distances between these 

similar points. 

 

Figure 4. Time warping of two time series. 

In the similarity calculation, the similarity between A and B is calculated as shown in Equation 

(1): 

��� = �  

�

���

����(��) − ��(��)�
�

+ ���(��) − ��(��)�
�

 (1)
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Where  ��� represents the total distance between the real-time trajectory and the standard 

trajectory. Based on Equation (1), the DTW distance between the two trajectory sequences can be 

derived, as shown in Equation (2): 

���(�, �) = ��� �  

�

� � �

�  

�

� � �

���  (2)

Here, n is the length of time series A, and m is the length of time series B. Using Equation (2), 

the alignment distance between time series A and B can be calculated. 

To evaluate how well a worker’s current action matches the standard process, the system 

compares the real-time hand trajectory with each trajectory in the standard process trajectory library 

using DTW. Each standard trajectory in the library represents a correct assembly procedures pattern. 

By calculating the DTW distance between the real-time trajectory and each standard trajectory, the 

system generates a set of similarity scores. Let the real-time hand trajectory be sequence A, and the 

standard trajectory library contain � standard trajectories {��, ��, ⋯ , ��} After performing the DTW 

comparison between each standard trajectory and the real-time trajectory, a similarity score is 

generated: 

������ = 100 − � × ���(�, ��)�  (3)

After normalization, the DTW distance is converted into a floating-point number between 0 and 

1, where  � and �  are parameters that determine the mapping relationship between the DTW 

distance and the score. In this study, � is set to 92.4 and �  is set to 0.97. ������  represents the 

similarity score between the i standard trajectory and the real-time trajectory; the higher the score, 

the more similar the two trajectories are. The final composite score is the average of all the similarity 

scores. This composite score is used to evaluate how well the worker’s current operation matches the 

standard process. the higher the score, the more closely the worker’s actions align with the standard 

process requirements. 

2.2. Improved Dual-Channel Spatial Feature Fusion Network 

In the entire approach, the key to ensuring detection accuracy lies in the precision and 

completeness of trajectory acquisition, which is directly dependent on the performance of the hand 

detection algorithm. Given the characteristics of fixed cameras and static backgrounds in assembly 

detection, this study designs a Hand Motion Sensing Module (HMSM) and a Differential-Attentional 

Feature Fusion Module (Diff-AFF) in the feature fusion network of YOLOv9, based on the traditional 

feature pyramid. These modules combine the RGB assembly images with the foreground images of 

hand movements, forming a dual-channel input for the YOLOv9 detection network. As shown in 

Figure 5, the process begins by using the Hand Motion Sensing Module to process the input images, 

filtering out background information and generating texture images with spatial features of hand 

movements (DiffVein images). These images are then combined with the feature maps from the 

backbone network to form the dual-channel input for the spatial sensing module. Next, the Diff-

Attentional Feature Fusion Module merges shallow spatial features from the backbone network with 

motion spatial features from the texture images, thereby capturing global spatial information. This 

global spatial information is further combined with the deep semantic features, enhancing the 

model's accuracy in detecting hand movements in complex assembly environments. 
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Figure 5. Improved dual-channel feature fusion network. 

2.2.1. Palm Detection Based on Spatial Feature Fusion 

The assembly process of workers in the workshop is shown in Figure 6. In the sequence of 

images, due to the interaction between the hand and tools, the pixels in the hand region undergo 

motion changes. Therefore, using pixel-based temporal differencing and the frame difference 

method, the texture information of the hand movement region can be extracted. 

 

Figure 6. Frame images before and after the assembly process. 

The frame difference method is calculated as follows: first, the pixel values of the corresponding 

RGB images in consecutive frames are subtracted to obtain a difference image. For two RGB images 

��  and ���� taken from frame i and frame � + 1, the RGB difference image �����  s obtained using 

Equation (4): 

����� =∣ ���� − �� ∣ (4)

Next, the difference image is converted into a grayscale image �� , removing the color 

information while preserving the texture, as shown in Figure 6(a). Then, a threshold segmentation 

method is used to separate the foreground and background in the grayscale image, filtering out 

background pixels. Threshold segmentation marks regions with pixel values greater than the 

threshold as foreground and those with values lower than the threshold as background, enhancing 

the contrast between the foreground and background. In this paper, the Otsu method, which is based 

on adaptive thresholding, is employed to segment the grayscale image ��, and the result is shown in 

Figure 7. 
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(a) Before the Otsu threshold      (b) After the Otsu threshold 

Figure 7. Effects before and after threshold segmentation. 

The Otsu method searches for the threshold g� that maximizes inter-class variance within the 

grayscale value range g ∈ [0,255]. The expressions for the threshold function � and the inter-class 

variance �� are as follows: 

����,�
� � = �

255, ��,�
� > g�

0, ��,�
� ≤ g�

 (5)

��(�) = ��(�� − ��)� + ��(�� − ��)� (6)

In these equations, ��  and ��  represent the mean grayscale values of the foreground and 

background pixels, respectively, and ��  is the global mean of the pixel values. ��  and �� 

represent the probabilities of foreground and background pixels, respectively, when segmented by 

the threshold g. The probability distribution of a pixel with grayscale value i is �� =
��

�
, where �� is 

the number of pixels with grayscale value i in the image, and N is the total number of pixels in the 

image. When the threshold is set to g, the probabilities of the image being divided into foreground 

and background are  ∑  
�
��� ��  and  ∑  ���

����� �� . respectively, and the mean grayscale values of the 

foreground and background are given by: 

�� =
� = � + 1

��

, �� =
� = � + 1

��

 (7)

Using the threshold function � to filter out background information, the segmented texture 

image �� is obtained and used as the dual-channel input for the object detection network, as shown 

in fig 6(b). The dense pixel areas in the image highlight the hand's movement trajectory. Region 

segmentation based on the frame difference method can effectively suppress background noise, 

providing spatial regions of interest for the detection network and guiding the accurate localization 

of occluded hands. 

2.2.2. AFF-Attention Feature Fusion Module 

To enhance the model's spatial perception of detection targets, this paper introduces the AFF 

(Attention Feature Fusion) module, which integrates the spatial information from texture images 

with the semantic features in the feature pyramid. The goal of feature fusion is to combine features 

from different layers or branches to fully exploit various image characteristics, achieving more robust 

and accurate target recognition. Although feature fusion is often implemented through summation 

or concatenation operations, these methods may not fully capture the interrelations between features. 

The MS-CAM (Multi-Scale Channel Attention Module) extracts channel attention weights 

through two different scale branches: one branch uses Global Average Pooling to capture global 

feature attention, while the other uses point-wise convolution to extract local feature attention. 

During the fusion process, MS-CAM effectively combines the spatial features of hand movement with 

high-level semantic features, thus improving detection accuracy. The computational process of the 

MS-CAM module is as follows: 
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L(X) = � �PWCo�v� �� �B�PWCo�v�(�)���� (8)

Here, PWConv represents point-wise convolution, where L(X) retains the same shape as the 

input features to preserve the detail information in low-level features. Given the global channel 

context g(X) and the local channel context L(X) , the refined features �� obtained through MS-CAM 

can be expressed as: 

X� = X ⊗ M(X) = X ⊗ ��L(X) ⊕ g(X)� (9)

In this equation, M(X) represents the attention weights generated by MS-CAM, � denotes the 

activation function, ⊕  indicates element-wise addition, and ⊗ represents element-wise 

multiplication. Furthermore, when using MS-CAM to represent the AFF (Attention Feature Fusion), 

the formula is as follows:  

Z = M(X ⊎ Y) ⊗ X + �1 − M(X ⊎ Y)� ⊗ Y (10)

In this equation, Z∈RC×H×W represents the fused features, and ⊎ denotes the initial feature 

integration. By introducing the MS-CAM module, the fusion of texture and semantic features is 

significantly improved, enhancing the ability to localize target areas and optimizing the performance 

of the object detection network. A schematic diagram of the AFF is shown in the Figure 8. 

 

Figure 8. AFF - Attention Feature Fusion Module. 

3. Results 

To verify the accuracy of the proposed assembly detection solution in real production 

environments and its adaptability to different workstation assembly procedures, this study 

constructed an experimental dataset based on the assembly procedures collected from the partner 

companies, Ningbo Qixi Electric Co., Ltd. and Ningbo HOKO Electric Co., Ltd. The dataset covers 

video data from 10 assembly workstations, including three types of assembly outcomes: correct 

assembly, incorrect assembly, and missing assembly. A key factor affecting the proposed solution is 

the accuracy of hand detection in complex assembly environments. To validate the effectiveness of 

the background removal method based on the improved YOLOv9 object detection algorithm, 2000 

pairs of images (including detection frames and background frames) were extracted from the videos 

and split into a training set and validation set in a 7:3 ratio for further analysis and evaluation of hand 

detection performance. 

The experiments were conducted in a server-side environment with the configurations shown 

in Table 1. Both the original and improved models were trained for 150 epochs, with a batch size set 
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to 32. The Stochastic Gradient Descent (SGD) optimization algorithm was used, with an initial 

learning rate of 0.01, momentum set to 0.9, and a weight decay factor of 0.0005. During the training 

process, various data augmentation techniques were applied, such as random scaling and cropping, 

random rotation and flipping, random brightness adjustment, and mosaic image augmentation, to 

enhance the model's generalization capability. 

Table 1. Experimental environment. 

Class Environmental Class Environmental 

CPU i7-12700  2.10 GHz CUDA Version CUDA 11. 2 

GPU GeForce RTX 4070 DL Framework Pytorch 

RAM 32 GB Runtime Linux 

System Ubantu 20.04.6 Script Python3. 9 

The evaluation metrics for model performance include Precision (P), Recall (R), Mean Average 

Precision (MAP), Floating Point Operations (FLOPs), and Frames Per Second (FPS)[29]. The 

calculation formulas for these metrics are as follows: 

� =
��

�� + ��
 (11)

� =
��

�� + ��
 (12)

��� =
1

�
�  

�

���

��� (13)

In the formulas, TP represents true positives, FP represents false positives, and FN represents 

false negatives. The model accuracy is evaluated using Average Precision (AP), Mean Average 

Precision (MAP), Precision (P), and Recall (R). The real-time performance of the model is assessed 

through the number of frames detected per second (Frame/s or FPS). 

3.1. Improved YOLO Results Analysis 

To validate the performance of the improved algorithm, this study compares the inference speed 

and mAP metrics of traditional Faster R-CNN, YOLOv5s[30], YOLOv8s, YOLOv9s, and the proposed 

improved algorithm. 

As shown in Table 2, the proposed YOLOv9s+Diff+AFF model demonstrated the highest 

accuracy in the assembly detection task, achieving an mAP@0.5 of 93.94%, which is an improvement 

of 10.02%, 9.62%, 5.99%, and 4.07% over Faster-RCNN, YOLOv5s, YOLOv8s, and YOLOv9s, 

respectively. Although the YOLOv9s+Diff+AFF model had a slightly lower frame rate (69.6 frames 

per second), its FLOPs were only 29.6B, and the model size was 16.43MB, indicating that it still 

maintains certain advantages in terms of computational cost and storage requirements. In 

comparison, YOLOv9s performed better in terms of lightweight design and recognition speed, but 

the improvements brought by the frame difference method and AFF module in the 

YOLOv9s+Diff+AFF model significantly enhanced detection accuracy in static background assembly 

scenarios. This makes it especially suitable for industrial assembly settings where high accuracy is 

required. Considering the characteristics of the workstation environment, the model achieves a good 

balance between real-time performance and detection accuracy. 
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Table 2. Comparisons between this model and the mainstream models. 

Model mAP@0.5% Frame/s FLOPs(B) Size/MB 

Faster-RCNN 83.92 13.11 226.4 108.7 

YOLOv5s 84.32 74.9 24.6 15.30  

YOLOv8s 87.95 94.9 28.6 21.61 

YOLOv9s 89.87 96.78 26.7 14.69 

Ours 93.94 69.6 29.6 16.43 

To validate the effectiveness of the two proposed improvement strategies and their performance 

in hand recognition in complex assembly environments, ablation experiments were conducted on the 

improved YOLOv9 dual-channel model, as shown in Table 3. 

Table 3. Comparison of main module ablation experiments. 

Model Precision/% Recall/% mAP@0.5% Frame/s 

YOLOv9s 87.81 86.64 89.87 96.78 

YOLOv9s+Diff 89.1 87.2 91.56 85.5 

YOLOv9s+Diff+AFF 92.42 88.97 93.94 69.6 

 

Figure 9. Comparison Curve of Precision Recall Improved Module 

According to the latest experimental data presented in the table, ablation experiments 

demonstrated the hand recognition performance of the two proposed strategies in complex assembly 

environments. Compared to the baseline YOLOv9s model, YOLOv9s+Diff, which introduces the 

frame difference method to extract difference images in static backgrounds, showed improvements 

in both detection accuracy and recall rate. The mAP@0.5 increased from 89.87% to 91.56%, recall rate 

rose to 87.2%, and precision reached 89.1%, with the frame rate remaining at 85.5 frames per second, 

indicating that this strategy effectively leverages the static background characteristics to enhance 

hand position detection performance. 

Building upon this, with the further introduction of the AFF module, the YOLOv9s+Diff+AFF 

model achieved an mAP@0.5 of 93.94%, precision improved to 92.42%, and recall rate increased to 

88.97%. Although the frame rate dropped to 69.6 frames per second, the model's ability to detect 

multi-scale and dynamic targets was significantly enhanced. This indicates that the dual 

improvement strategy—combining difference images and the AFF module—further optimized the 
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model's detection accuracy and robustness in complex assembly environments, achieving a good 

balance between detection performance and real-time capabilities. The detection effects before and 

after the improvements are shown in Figure 10. By introducing motion information from consecutive 

images, the improved model captures pixel changes between frames, enhancing its ability to localize 

the hand in global space and reducing the impact of factors such as ambient lighting, hand-object 

occlusion, and similar background colors. It effectively resolves the issue of the network losing local 

key information when the hand touches the target, thereby significantly improving detection 

accuracy. 

 

Figure 10. Detecting results before and after dual channel improvement. 

3.2. Assembly Test Results Analysis 

To validate the feasibility of the assembly detection method based on palm trajectories, we 

designed and conducted a series of experiments covering various complex assembly workstation 

conditions, including single-step and multi-step assemblies, as well as large and small part 

assemblies. The experiments involved eight different scenarios, each simulating typical assembly 

tasks from real production lines to test the system's compatibility and robustness in handling 

different worker operation habits and assembly methods. The system captures and analyzes palm 

trajectories in real time to detect the conformity of the assembly sequence with the standard process 

model and to identify missing or incorrect assemblies. To further assess the system's performance, 

we intentionally introduced missing and incorrect assembly events to simulate typical errors in actual 

operations, aiming to evaluate the system’s detection accuracy and sensitivity to various errors across 

different assembly scenarios. As shown in Table 4 and Table 5, the experiments used fixed cameras 

for filming and the improved YOLOv9s network for real-time detection, thereby verifying the 

system's actual performance in assembly scenarios. 

Table 4. Experimental Scenarios and Detection Performance Metrics. 

  

Number of  

Assembly 

 personnel 

Assembly 

Object Type 

Participant 

Type 

Missing  

Detection  

Accuracy (%) 

Incorrect 

 Detection  

Accuracy (%) 

1 Single Large Skilled 98 97 

2 Single Small Skilled 97 95 

3 Multi Large Skilled 96 95 

4 Multi Small Skilled 95 94 

5 Single Large Novice 99 98 

6 Single Small Novice 97 96 

7 Multi Large Novice 96 95 

8 Multi Small Novice 94 93 
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Table 5. Comparison of the effects of model improvements. 

Model Version Missing Accuracy (%) Incorrect Accuracy (%) 

YOLOv9s 90 91 

ours 97 95 

The experimental results show that the improved assembly detection system demonstrated 

excellent accuracy and real-time performance across different workstations. In detecting missing and 

incorrect assemblies, as well as assembly timing, the system achieved a high recognition rate in both 

small and large part assembly, as well as in single-step and multi-step scenarios. Specifically, the 

system's average detection accuracy for missing and incorrect assemblies across all workstations 

reached 96%, indicating high sensitivity to different types of errors. Moreover, the system exhibited 

strong cross-scenario adaptability, performing well in varying worker operation habits and 

environmental changes. This indicates that the system possesses good robustness and generalization 

capability, making it suitable for complex and variable assembly environments on production 

lines.Compared to the unmodified YOLOv9 model, the system optimized with the frame difference 

method and AFF module showed significant improvements in detecting hand positions and 

assembly procedures, with the average recognition rate increasing from 91% to 96%. Additionally, 

the system maintained a high response speed in fast-paced production lines, ensuring real-time 

feedback on assembly anomalies in practical applications. These experimental results validate the 

practicality and reliability of the palm trajectory-based assembly detection solution in industrial 

production. 

4. Conclusions 

This paper addresses the challenges of flexibility and complexity in manual assembly lines by 

proposing an adaptive assembly detection method based on hand movement trajectories and 

introducing innovative improvements to the YOLOv9 model, aimed at overcoming the limitations of 

traditional assembly detection methods. First, in terms of the assembly detection approach, this paper 

pre-defines assembly regions and transforms workers' hand trajectories into high-level abstractions 

of the assembly process, building a standard procedure model based on the assembly procedures of 

skilled workers. During the detection phase, the Dynamic Time Warping (DTW) algorithm is 

employed to perform real-time trajectory comparisons, effectively detecting missing and incorrect 

assembly actions.  

Second, in terms of the hand detection algorithm, considering the fixed camera and static 

background characteristics, this paper extracts hand motion texture information using the frame 

difference method and introduces the Attention Feature Fusion (AFF) module to fuse multi-scale 

features with the difference images, thereby enhancing the target detection performance. The 

experimental results show that the improved YOLOv9s+Diff+AFF model achieves an mAP@0.5 of 

93.94%, demonstrating significant improvements over traditional object detection algorithms such as 

Faster-RCNN, YOLOv5s, and YOLOv8s. Although the frame rate slightly decreased to 69.6 frames 

per second, it still meets the real-time detection requirements of assembly lines. The assembly 

detection system exhibited high detection accuracy and good generalization capability across various 

complex workstations and worker operations, achieving an average detection accuracy of 96%, 

validating the practical value of the proposed method. 

Future research could further explore additional information contained in the trajectories to 

achieve more fine-grained assembly procedure detection, enhance the understanding of workers' 

assembly procedures, and enable more precise monitoring of the assembly process and error warning 

systems, further improving the intelligence level of manual assembly lines. 
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