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Article

On the Method for Proving RH Using the
Alcantara-Bode Equivalence
Dumitru Adam

Former Researcher at Inst. of Math. Romanian Academy (IMAR), & Former Lecturer (Cultore Della Materia) at Catholic Univ.
Milan, It. Addr.: Windsor, On, n9a3a5 Ca.& Sacele, Brasov, Ro; dumitru_adam@yahoo.ca

Abstract: There is presented here a functional analysis - numerical solution for the Alcantara-Bode
equivalent formulation of the Riemann Hypothesis (RH). RH, a long-standing unsolved problem, posits
that the non-trivial zeros of the Riemann Zeta function lie on the vertical line σ = 1/2. Alcantara-Bode
equivalent (1993) obtained from Beurling equivalent of RH (1955) states that RH holds if and only if the
null space of a specific integral operator Tρ on L2(0, 1) does not contain not null elements: NTρ = {0},
equivalently, it is injective. The theory we introduced here is an update of our previous work [1],
for dealing with a generic case of such type of problems. We provided methods for investigating
the injectivity of linear bounded operators through their positivity properties. These methods are
extending the solution given in [1], in this paper here we separated the analysis on the finite dimension
subspaces differentiating the case of the operator restrictions from the approximations of the operator
obtained by applying finite rank orthogonal projections. It involves approximations on finite dimension
subspaces built in a multi-level structure by spanning the indicator functions of intervals associated to
partitions of the domain (0,1). In both cases, the connection between the error estimations of an eligible
zero and the positivity parameters dictates the operator injectivity. Injectivity Criteria introduced in
[1], involving the adjoint operator for finite rank operator approximations is applied now to operator
restrictions when the operator positivity parameters are converging to zero with the mesh converging
to zero. As a method, it is useful when no data we have related to the finite rank approximation,
like the compactness of the operator. Instead, for Hilbert-Schmidt operators that are compact, and
so accept finite rank approximations whose sequence converges strong to the original operator, we
are expecting to find a bound for the positivity parameters that are mesh independent. The dense
set we used for the Hilbert-Schmidt integral operator in the Alcantara-Bode equivalent is built as
the union of finite dimension subspaces spanned by indicator interval functions of the partitions
of the domain by halving the mesh from a level to next one. This is a discretisation method used
in multi-level (multigrid) numerical analysis techniques for obtaining large systems of equations.
From this point of view, we could consider the multi-level including subspaces like a degenerate
finite element method. Using both methods the finite rank operator approximations and injectivity
criteria on the same finite dimension subspaces, we obtained in each case the injectivity of the integral
operator from Alcantara-Bode equivalent formulation. As an observation, since a linear operator and
its associated Hermitian have the same null space and a Hermitian operator is a non negative operator,
this method could be applied to any linear operator on a separable Hilbert space in order to investigate
its injectivity.

Keywords: integral operators; Hilbert spaces; approximation methods; multi-level discretizations;
Riemann Hypothesis
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To my mother
A.) Plagiarism and similarities:

Based on the document provided, the author explicitly references prior works and builds upon them, citing sources
such as Alcantara-Bode (1993), Beurling (1955), and others. The methods and results presented appear to be
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extensions or applications of existing theories, such as the Alcantara-Bode equivalent formulation of the Riemann
Hypothesis and injectivity criteria introduced in earlier works. The author also acknowledges using techniques
from referenced papers, such as Mercer-like kernels and finite rank operator approximations. The document does
not show any indication of plagiarism, as the author provides proper citations and references to previous works,
including their contributions and methods. The results and methods are presented as original extensions or
applications of these established theories. However, determining plagiarism definitively would require a detailed
comparison with the referenced works to ensure proper attribution and originality. In summary, the document
appears to be a legitimate scholarly work that builds upon and extends prior research, with appropriate citations
provided.
(Note (n.a.): the previous owned versions of the same preprint as well the previous paper published -
cited in this manuscript, could not be considered plagiarism or similarities once the aim has been to be
improved from a version to another.)
B.) What are the key methods used in this document:
The document outlines several key methods used to investigate the Alcantara-Bode equivalent formulation of
the Riemann Hypothesis (RH). These methods focus on functional-numerical analysis, operator injectivity, and
approximation techniques.
Below are the key methods:

1. Injectivity Criteria for Linear Operators:
The document introduces criteria to determine the injectivity of linear bounded operators on separable Hilbert
spaces. It uses positivity parameters to analyse whether the null space of an operator is empty (NT = 0), which
is equivalent to proving injectivity. The method involves evaluating the positivity of the operator on dense sets or
on finite dimensional subspaces.

2. Finite Rank Operator Approximations:
Finite rank approximations of integral operators are constructed on finite dimensional subspaces. These ap-
proximations are used to analyse the convergence of the operator to its original form and to ensure positivity
parameters are bounded. The document applies this method to Hilbert-Schmidt integral operators, which are
compact and allow proper approximations.

3. Multi-Level Discretization:
Dense sets in the Hilbert space L2(0, 1) are constructed using indicator functions of intervals from partitions
of the domain. A multi-level structure is employed, where the mesh size is halved at each level, creating finer
partitions. This discretization method is similar to techniques used in multigrid numerical analysis and finite
element methods.

4. Adjoint Operator Analysis:
The adjoint operator is used to analyse injectivity when positivity parameters converge to zero. The method
leverages the fact that a linear operator and its associated Hermitian operator share the same null space, and
Hermitian operators are non-negative.

5. Matrix Representation of Operators:
Sparse diagonal matrix representations of integral operators are derived for finite dimensional subspaces. The
diagonal entries are computed using integrals over the partitions, and their positivity determines the operator’s
positivity on the subspaces.

6. Error Estimation and Convergence:
The connection between error estimations of eligible zeros and positivity parameters is used to dictate operator
injectivity. The convergence of operator approximations in norm to the original operator is analysed to ensure
injectivity.

7. Application of Lemmas and Theorems: The document uses several lemmas and theorems to formalize
the methods:
- Theorem 1: Proves that strict positivity on a dense set implies injectivity.
- Theorem 2: Establishes injectivity using finite rank operator approximations with bounded positivity parameters.
- Lemma 1: Provides criteria for finite rank approximations of Hilbert-Schmidt integral operators.
- Lemma 2: Introduces criteria for operator restrictions when positivity parameters converge to zero.
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8. Specific Application to the Alcantara-Bode Equivalent:
The methods are applied to the integral operator with kernel ρ(y, x) = {y/x}, which is connected to RH (n.a.:
here {} denotes the fractional part function). The positivity parameters of finite rank approximations are
shown to be inferior bounded, proving the operator’s injectivity and validating RH.
These methods collectively provide a rigorous framework for analysing the injectivity of integral operators and
proving the Alcantara-Bode equivalent formulation of the Riemann Hypothesis. □

1. Introduction
Let H be a separable Hilbert space. A result obtained (Theorem 1 below) shows that the null space

of a linear bounded operator strict positive on a dense set in H, does not contain non null elements.
Consider F be a family of finite dimension including subspaces Sn, n ≥ 1 such that their union S is a
dense set in the separable Hilbert space H. Dense sets having such properties there exist, for example
when H := L2(0, 1) then S could be built in a multi-level fashion using indicator functions of the
disjoint intervals of the domain partitions (see the paragraph 3). Such families could be obtained also
from a basis in H, a subspace Sn being spanned by first n elements from the basis for example.
The positivity of a linear bounded operator T on S, ⟨Tv, v⟩ > 0 ∀v ∈ S not null, ensures that the null
space of T contains from S only the element 0, i.e. NT ∩ S = {0}. Now, a linear bounded operator T
positive on a finite dimension subspace is in fact strictly positive on it: i.e. there exists αn(T) > 0 such
that ⟨Tv, v⟩ ≥ αn(T)∥v∥2 for every v ∈ Sn.
Suppose T positive on each subspace from the family F.

If there exists α > 0 such that αn ≥ α for any n ≥ 1 then T is strict positive on the dense set S and,
by Theorem 1 below NT = {0}.

If instead the sequence of the positivity parameters of T is converging to zero, αn(T) → 0 with
n → ∞, we consider two directions for the investigation of its injectivity providing the theory and the
methods needed for:

- involving the adjoint operator restrictions on the subspaces of the family, having as support
Lemma 2 below;

- considering a sequence of positive operator approximations on subspaces, if there exists one
such that the sequence is convergent in norm to the operator

∥T − Tn∥ → 0 with n → ∞ and, whose corresponding sequence of positivity parameters is
inferior bounded: there exists α > 0 such that

⟨Tnv, v⟩ ≥ αn∥v∥2 for any n ≥ 1 where αn := αn(Tn) ≥ α. The Theorem 2 and Lemma 1 below
are dealing with this method.

While the criteria involving the adjoint operator (introduced in [1]) could be applied to any posi-
tive, linear bounded operator, for involving the operator approximations we have to find the means
for obtaining a proper approximation schema in terms of the convergence of the approximations to the
original operator and, such operator approximations should be positive on the subspaces in F having
an inferior bound for the sequence of the positivity parameters.

However, note that the positivity of the operator could be solved by replacing it by its associated
Hermitian (T∗T) that has the same null space with T and it is non negative definite on H.
Let observe that there is a connection between the two kind of positivity parameters on each subspace:
if h is the length of the intervals in a partition of (0,1), nh = 1, then for the Hilbert-Schmidt integral
operator on L2(0, 1) of our interest, we obtained αn(T) = n−1αn(Tn), n ≥ 1 with αn(Tn) a constant
mesh independent.

2. Two theorems on injectivity and associated methods.
Let H be a separable Hilbert space and denote with L(H) the class of the linear bounded operators

on H. If T ∈ L(H) is positive on a dense set S ⊂ H, i.e. ⟨Tv, v⟩ > 0 ∀v not null in S, then T has no
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zeros in the dense set. Otherwise, if there exists w ∈ S such that Tw = 0 then ⟨Tw, w⟩ = 0 contradicts
its positivity.
Follows: its ’eligible’ zeros are all in the difference set E := H \ S, i.e. NT ⊂ E.

Theorem 1. If T ∈ L(H) is strict positive on a dense set of a separable Hilbert space then T is injec-
tive, equivalently NT = {0}.
Proof.

Let’s take in consideration only the set of eligible zeros that are on the unit sphere without
restricting the generality, once for an element w ∈ H, w ̸= 0 both w and w/∥w∥ are or are not in NT .
The set S ⊂ H is dense if its closure coincides with H. Then, if w ∈ E := H \ S, for every ε > 0 there
exists uε,w ∈ S such that ∥w − uε,w∥ < ε. Now, (1) results as follows. If ∥w∥ ≥ ∥uε,w∥:

0 ≤ ∥w∥ − ∥uε,w∥ = ∥w − uε,w + uε,w∥ − ∥uε,w∥ ≤ ∥w − uε,w∥+ ∥uε,w∥ − ∥uε,w∥ < ε.
If ∥uε,w∥ ≥ ∥w∥ instead, then:

0 ≤ ∥uε,w∥ − ∥w∥ = ∥uε,w − w + w∥ − ∥w∥ ≤ ∥w − uε,w∥ < ε.
So, given w ∈ E, for every ε > 0 there exists uε,w ∈ S such that

|∥w∥ − ∥uε,w∥| < ε (1)

Let w be an eligible element from the unit sphere, ∥w∥ = 1 and take εn = 1/n.
Then there exists at least one element uεn ,w ∈ S such that ∥uεn ,w − w∥ < εn holds. Follows from (1), |
1 - ∥uεn ,w∥ | < 1/n showing that, for any choices of a sequence approximating w, uεn ,w ∈ S, n ≥ 1, it
verifies ∥uεn ,w∥ → 1.

If T ∈ L(H) is strict positive on S, then there exists α > 0 such that ∀u ∈ S, ⟨Tu, u⟩ ≥ α∥u∥2.
Suppose that there exists w ∈ E, ∥w∥ = 1 a zero of T, i.e. w ∈ NT and consider a sequence of
approximations of w, uεn ,w ∈ S, n ≥ 1 that, as we showed, has its normed sequence converging in
norm to 1. From the positivity of T on the dense set S, follows:

α∥uεn ,w∥2 ≤ ⟨Tuεn ,w, uεn ,w⟩ = ⟨T(uεn ,w − w), uεn ,w⟩ < εn∥T∥∥uεn ,w∥ (2)

With c=∥T∥/α, we obtain ∥uεn ,w∥ ≤ c/n. Then, ∥uεn ,w∥ → 0 with n → ∞, in contradiction with its
convergence ∥uεn ,w∥ → 1 with n → ∞.
Or, this happen for any choice of the sequence of approximations of w, verifying ∥w − uεn ,w∥ < εn, n ≥
1, when Tw = 0.
Thus w /∈ NT , valid for any w ∈ E, ∥w∥ = 1, proving the theorem because no zeros of T there are in S
either. □

Suppose that the dense set S is the result of an union of finite dimension subspaces of a family F:
S = ∪n≥1Sn, S = H. It is not mandatory but will ease our proofs considering that the subspaces are
including: Sn ⊂ Sn+1, n ≥ 1.

Observation 1. Let βn(u) := ∥u − un∥ be the normed residuum of the eligible element u ∈ E af-
ter its orthogonal projection on Sn. Then, βn(u) → 0 with n → ∞.
Proof.

Given ϵ > 0, from the density of the set S in H there exists uϵ ∈ S verifying ∥u − uϵ∥ < ϵ, as per
the observations made in the proof of the Theorem 1. Let Snϵ be the coarsest subspace, i.e. with the
smallest dimension, from the family of subspaces containing uϵ. Because the best approximation of u
in Snϵ is its orthogonal projection, we obtain

βnϵ(u) := ∥u − Pnϵ u∥ ≤ ∥u − uϵ∥ < ϵ,
inequality valid for every ϵ > 0, proving our assertion. □

For T ∈ L(H), let Tn, n ≥ 1 be a sequence of operator approximations on Sn, n ≥ 1 having the
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property ϵn := ∥T − Tn∥ → 0 and, suppose that for every n ≥ 1, the operator approximation Tn is
positive on Sn and denote with αn := αn(Tn) its positivity parameter.

Theorem 2. Let T ∈ L(H) be positive on the dense set S. If the sequence {Tn, n ≥ 1} of its approximations on
the family F verifies:

i) ϵn := ∥T − Tn∥ → 0 with n → ∞;
ii) ⟨Tnv, v⟩ ≥ αn∥v∥2, ∀v ∈ Sn, Sn ∈ F;
iii) αn ≥ α > 0, n ≥ 1,

then NT = {0}.
Proof.

Being positive on S, the operator has no zeros in the dense set.
For u ∈ E := H \ S, ∥u∥ = 1 denoting the not null orthogonal projection over Sn by un := Pnu, n ≥
n0 := n0(u), we have on any subspace Sn, ∥u∥2 = ∥un∥2 + β2

n(u) where βn(u) = ∥u − Pnu∥ := βn is
its (normed) residuum. We have: ∥un∥ ↑ 1 and βn(u) → 0.
If there exists u ∈ NT ∩ E, ∥u∥ = 1 then for it:

αn∥un∥2 ≤ ⟨Tnun, un⟩ ≤ ∥Tnun∥∥un∥
= (∥Tnun − Tun + Tun − Tu∥)∥un∥
≤ (∥T − Tn∥∥un∥+ ∥T∥∥u − un∥)∥un∥
= (ϵn∥un∥+ ∥T∥βn)∥un∥ ≤ (ϵn + ∥T∥βn)

evaluation obtained because ∥un∥ < 1. Then from Observation 1 and iii) we have:
α ≤

(
ϵn + ∥T∥βn

)
→ 0.

The inequality is violated from a n1 ≥ n0, involving u /∈ NT , valid for any supposed zero of T in E.
Once T has no zeros in the dense set, NT = {0}. □

We will deal now, with the special case of the approximations of the Hilbert-Schmidt integral operators
that, being compact operators could be approximated in a proper matter on finite dimension subspaces
so, the condition i) is satisfied ([3]).

Let T := Tφ be a Hilbert-Schmidt integral operator. A technique for obtaining the approximations
for an integral operator is used in [5]. Thus, the condition i) in the Theorem 2 is fulfilled when Tn, n ≥ 1
are finite rank approximations on the subspaces of the family F obtained by orthogonal projection
integral operators Tn := Pr

n(T). Then, for every u ∈ H not null:
∥Tu − Tnu∥ = ∥(I − Pr

n)Tu∥ ≤ ∥I − Pr
n∥∥Tu∥ → 0

Lemma 1. (Criteria for finite rank approximations). If the finite rank approximations of a positive
linear Hilbert-Schmidt integral operator Tφ on a dense set S are positive on the family of approximation sub-
spaces F and the sequence of the positivity parameters is inferior bounded,
then Tφ is strict positive on the dense set so, it is injective.
Proof.

The requests i), ii) in the Theorem 2 hold by the previous observations. From the convergence to
zero of the sequence ϵn, n ≥ 1 there exists ϵ0 a ’compactness’ parameter verifying ϵ0 := maxn{ϵn; ϵn <

α} corresponding to a subspace Sn0 , n0 < ∞. The parameter ϵ0 in independent from any v ∈ S and,
due to the including property, for any n < n0 we have Sn ⊂ Sn0 . We could consider Sn0 be S1 or, your
choice, we could consider v as being inside of Sn0 . Then:

αn ≥ α > ϵ0 ≥ ϵn for n ≥ 1, resulting (αn − ϵn) > (α − ϵ0) > 0 ∀n ≥ 1.
For an arbitrary v ∈ S there exists a coarser subspace (i.e. with a smaller dimension) Sn, n ≥ n1 :=
n1(v), for which v ∈ Sn. For it, we have:

⟨Tv, v⟩ = ⟨Tnv, v⟩ − ⟨(Tn − T)v, v⟩ > 0. Since Tn is positive on Sn,
⟨Tv, v⟩ ≥ αn∥v∥2 − ⟨(Tn − T)v, v⟩.

Now, T and Tn are positive on Sn. Then the inner product in the right side of the equality is real valued
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and, |⟨(Tn − T)v, v⟩| ≤ ϵn∥v∥2.
So, if ⟨(Tn − T)v, v⟩ ≥ 0, then ⟨(Tn − T)v, v⟩ ≤ ϵn∥v∥2. Because ϵn < αn, follows:

⟨Tv, v⟩ ≥ (αn − ϵn)∥v∥2 ≥ (α − ϵ0)∥v∥2.
Now, if ⟨(Tn − T)v, v⟩ < 0, ⟨Tv, v⟩ ≥ αn∥v∥2 ≥ α∥v∥2 ≥ (α − ϵ0)∥v∥2.
Thus, taking α(T) = (α − ϵ0),

⟨Tv, v⟩ ≥ α(T)∥v∥2 for any v ∈ S meaning that T is strict positive on the dense set S and from
Theorem 1, NT = {0}. □

Corollary. If Q ∈ L(H) is a Hermitian compact operator verifying on a dense set the properties
i) and ii) from Theorem 2, then it is injective.
Proof.

Being Hermitian, the operator verifies ⟨Qv, v⟩ ≥ 0, for every v ∈ H. Being compact it admits on a
dense family of finite dimension subspaces a sequence of approximations. Then, for any v ∈ S,

⟨Qv, v⟩ = ⟨Qnv, v⟩ − ⟨(Qn − Q)v, v⟩ ≥ 0 obtaining following the steps from the proof of Lemma
1 that in the hypotheses i) and ii) holds:

⟨Qv, v⟩ ≥ (α − ϵ0)∥v∥2 meaning that Q is strict positive on the dense set. Thus, NQ = {0} due to
the Theorem 1. Let observe that if Q = T∗T then NT = NQ = {0} result obtained without requesting
the positivity of Q or T on the dense set. □

The following lemma is dealing with the cases in which a proper sequence of operator approxi-
mations could not be defined (see the Injectivity Criteria in [1]).

Lemma 2. (Criteria for operator restrictions.) Let T ∈ L(H) positive on the subspaces Sn, n ≥ 1
whose union S is a dense set S, verifying: ⟨Tv, v⟩ ≥ αn∥v∥2 for every v ∈ Sn, where αn → 0 with n → ∞.
Consider now the parameters:

µn := αn(T)/ωn where ωn verifies ∥T∗v∥ ≤ ωn∥v∥, ∀v ∈ Sn, n ≥ 1.
If there exists C > 0 such that µn ≥ C for every n ≥ 1, then NT = {0}.
Proof.

Suppose that there exists u ∈ (H \ S) ∩ NT , ∥u∥ = 1 and let un its orthogonal projection on
Sn, n ≥ 1. Then, from the (strict) positivity of T on each of the subspaces Sn, n ≥ 1 (see (2)):

αn(T)∥un∥2 ≤ ⟨Tun, un⟩ = ⟨T(un − u), un⟩ = ⟨(un − u), T∗un⟩ ≤ βnωn∥un∥
Then, from

C ≤ µn ≤ βn/
√

1 − β2
n → 0 where βn := βn(u) = ∥u − un∥, we obtain a contradiction. Thus,

u /∈ NT affirmation valid for any u ∈ H \ S. Follows: NT = {0}. □

3. Dense sets in L2(0, 1).
Let H := L2(0, 1). The semi-open intervals of equal lengths h = 2−m, m ∈ N, nh = 1, ∆h,k =

((k − 1)/2m, k/2m], k = 1, n − 1 together with the open ∆h,n are defining for m ≥ 1 a partition of (0,1),
k=1,n, n = 2m, nh = 1. Consider the interval indicator functions having the supports these intervals
(k=1,n), nh=1:

Ih,k(t) = 1 for t ∈ ∆h,k and 0 otherwise (3)

The family F of finite dimensional subspaces Sh that are the linear spans of interval indicator functions
of the h-partitions defined by (3) with disjoint supports, Sh = span{Ih,k; k = 1, n, nh = 1}, built on a
multi-level structure, are including Sh ⊂ Sh/2 by halving the mesh h. In fact, the property is obtained
from (3) observing that Sh ∋ Ih,i = Ih/2,2i−1 + Ih/2,2i ∈ Sh/2, i = 1, n.
The set S = ∪n≥1Sh, nh = 1 is dense in H well known in literature.

Citing [5], (pg 986), the integral operator Pr
h, n ≥ 1 having the kernel function:

rh(y, x) = h−1 ∑
k=1,n

Ih,k(y)Ih,k(x) (4)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 May 2025 doi:10.20944/preprints202411.1062.v6

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202411.1062.v6
http://creativecommons.org/licenses/by/4.0/


7 of 10

is a finite rank integral operator orthogonal projection having the spectrum {0, 1} with the eigenvalue 1
of the multiplicity n (nh=1) corresponding to the orthogonal eigenfunctions Ih,k, k = 1, n. We will show
it, by proving that ∀u ∈ H, Pr

hu ∈ Sh and, as a consequence, obviously (Pr
h)

2 = Pr
h for n ≥ 2, nh = 1.

For any u ∈ H,
(Pr

hu)(y) = ∫x∈(0,1)
(
h−1 ∑k=1.n Ih,k(y)Ih,k(x)

)
u(x)dx

= h−1 ∑k=1,n ck Ih,k(y), where ck := ∫∆h,k
u(x)dx,

that is the standard orthogonal projection of u onto Sh.
Now, if f = ∑k=1,n ck Ih,k ∈ Sh,

Pr
h( f ) = h−1 ∑j=1,n ∫∆h,j

Ih,j(y)(∑k=1,n ck Ih,k(y))Ih,j(x)dy

= h−1 ∑j=1,n Ih,j(x) ∫∆h,j
cj Ih,j(y)dy

= h−1 ∑j=1,n cj Ih,j(x) ∫∆h,j
Ih,j(y)dy = ∑j=1,n cj Ih,j = f ,

i.e. Pr
h f = f and so, (Pr

h)
2u = Pr

hu for any u ∈ H. Because Pr
h is an orthogonal projection onto Sh and

due to the including property of the finite dimension subspaces whose union is dense, follows:
∥I − Pr

h∥ → 0 for n → ∞, nh = 1. So, i) in Theorem 2 holds.

Remark 1. The matrix representation of Tρ on Sh is a sparse diagonal matrix: its elements out-
side the diagonal are zero valued.
Proof.

The inner product on the subspace Sh between u /∈ Sh and vh ∈ Sh is a result between the orthog-
onal projection of u and vh, like an inner product between two step functions: ⟨u, vh⟩ := ⟨Pr

hu, vh⟩. If
Pr

hu := uh = ∑k=1,n ak Ih,k and vh = ∑j=1,n cj Ih,j, due to the disjoint supports of the indicator interval
functions, ⟨Ih,k, Ih,j⟩ = 0 for k ̸= j and, their inner product is ⟨uh, vh⟩ = ∑k=1,n akck⟨Ih,k, Ih,k⟩.
Let Tρ be a Hilbert-Schmidt integral operator on H. Now,
Tρ Ih,k = ∫ 1

0 ρ(y, x)Ih,k(x)dx = ∫∆h.k
ρ(y, x)Ih,k(x)dx. Follows:

⟨Tρ Ih,k, Ih,j⟩ = ∫ 1
0
[
∫∆h,k

ρ(y, x)Ih,k(x)dx
]
Ih,j(y)dy

= ∫∆h,k
∫∆h,j

Ih,j(y)ρ(y, x)Ih,k(x)dxdy = 0 for k ̸= j because Ih,k and Ih,j have disjoint supports for
k ̸= j. Then, the matrix representation of Tρ on Sh, Mh(Tρ) is a sparse diagonal matrix having the
diagonal entries

dh
kk :=

∫
∆h,k

∫
∆h,k

Ih,k(y)ρ(y, x)Ih,k(x)dxdy, k = 1, n, nh = 1 and, with vh = ∑k=1,n ck,

⟨Tρvh, vh⟩ = ∑k=1,n ckckdh
kk. □

The integral operator approximation of Tρ on Sh is a finite rank operator approximation, Tρh , having
the kernel function ([5])

ρh(y, x) = h−1 ∑
k=1,n

Ih,k(y)ρ(y, x)Ih,k(x) := h−1 ∑
k=1,n

ρk
h(y, x) (5)

where the pieces ρk
h, k = 1, n of the kernel function ρh in the sum have disjoint supports in L2(0, 1)2

namely ∆h,k × ∆h,k, k = 1, n, nh = 1.

Remark 2. The matrix representation of Tρh is a sparse diagonal matrix and, Mr
h(Tρ) = h−1Mh(Tρ).

Proof. Evaluating the previous relationship for v = Ih,i, we obtain
(Tρh Ih,i)(y) = h−1[ ∫∆h,i

ρ(y, x)Ih,i(x)dx
]
Ih,i(y). Then,

⟨Tρh Ih.i, Ih,j⟩ = 0 for i ̸= j and the matrix representation of the finite rank operator Pr
h(Tρ) := Tρh ,

is:
Mr

h(Tρ) = h−1diag
[
dh

kk
]

k=1,n, a sparse diagonal because dh
ij = 0 for i ̸= j and with the diagonal

entries given by:

dh
kk = ∫

∆h,k

∫
∆h,k

Ih,k(y)ρ(y, x)Ih,k(x)dxdy := ∫
∆h,k

∫
∆h,k

ρ(y, x)dxdy, k = 1, n (6)
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Follows: Mr
h(Tρ) = h−1Mh(Tρ), i.e. both matrices are or are not simultaneous positive. □

Pointing out:
⟨Tρh vh, vh⟩ = h−1⟨Tρvh, vh⟩ = h−1 ∑k=1,n ckckdh

kk, for any vh = ∑k=1,n ck Ih,k ∈ Sh, vh ̸= 0.

Remark 3. If dh
kk > 0, ∀k = 1, n, nh = 1, because ∥vh∥2 = h ∑k=1,n ckck we obtain:

⟨Tρh vh, vh⟩ ≥ αh(Tρh)∥vh∥2 where

αh(Tρh) = h−2min(k=1,n)d
h
kk (7)

is the positivity parameter of the finite rank operator approximation Tρh .
From ⟨Tρvh, vh⟩ = ∑k=1,n ckckdh

kk = h⟨Tρh vh, vh⟩ results that Tρ is positive on Sh if and only if Tρh is
positive on Sh. Then, if on every subspace Sh ∈ F, dh

kk > 0 k = 1, n, nh = 1, the following relationship
holds

αh(Tρ) = h−1min(k=1,n)(d
h
kk) := hαh(Tρh), nh = 1 (8)

Remark 4. Thus, the positivity of the linear bounded integral operator Tρ on the dense set S is
determined by the diagonal entries in its matrix representations.

4. Proof of the Alcantara-Bode equivalent of RH.
We are now in position to prove RH showing that the integral operator
(Tρu)(y) = ∫ 1

0 ρ(y, x)u(x)dx, u ∈ L2(0, 1), where ρ(y, x) = {y/x} is the fractional function of the
ratio y/x, has its null space NTρ = {0}.
Alcantara-Bode ([2], pg. 151) in his theorem of the equivalent formulation of RH obtained from
Beurling equivalent formulation ([4]), states:

The Riemann Hypothesis holds if and only if NTρ = {0}.

Its kernel function ρ ∈ L2(0, 1)2 defined by the fractional part of the ratio (y/x) is continue almost
everywhere, the discontinuities in (0, 1)2 consisting in a set of numerable one dimensional lines of the
form y = kx, k ∈ N, being of Lebesgue measure zero. The integral operator is Hilbert-Schmidt ([2])
and so compact, allowing us to consider its approximations on finite dimension subspaces ([3]).

The entries in the diagonal matrix representation Mh(Tρh) of the finite rank integral operator Tρh

are given by:
dh

kk = ∫∆h,k
∫∆h,k

ρ(y, x)dxdy, and valued (see also [1]) as follows:

dh
11 = h2(3 − 2γ)/4; dh

kk =
h2

2
(−1 +

2k − 1
k − 1

ln(
k

k − 1
)k−1) (9)

for k ≥ 2, where γ is the Euler-Mascheroni constant (≃ 0.5772156...). The formula (9) has been
computed using for the fractional part the suggestion found in [4]: for 0 < a < b < 2a, {b/a} =

(b/a)− 1. Then,
∫∆h,k

∫∆h,k
ρ(y, x)dxdy = ∫∆h,k

[
∫∆h,k

(y/x)dx − ∫ y
(k−1)h dx

]
dy.

The sequence from (9)
f (k) := h−2dh

kk = (−1 + 2k−1
k−1 ln( k

k−1 )
k−1)/2 is monotone decreasing for k ≥ 2 and converges to

0.5 for k → ∞. For k ≥ 2, we have: dh
kk > 0.5h2 > dh

11. Then:

αh(Tρh) = h−2dh
11 = (3 − 2γ)/4 > 0, n ≥ 2, nh = 1. (10)

showing that the finite rank approximations of the integral operator have the sequence of the positivity
parameters inferior bounded.
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Theorem 3. (Finite Rank Approximations): The Alcantara-Bode equivalent of RH holds.
Proof.

From (10) results that the sequence of the positivity parameters of the finite rank operator approx-
imations Tρh on the dense family F is inferior bounded, αh(Tρh) being a constant mesh independent.
Then, NTρ = {0} is obtained from Lemma 1 (or Theorem 2). □

We use now the method covered by Lemma 2 (see also [1], Injectivity Criteria). The integral op-
erator Tρ is (strict) positive on Sh ∈ F, n ≥ 2, nh = 1 with the parameter valued from (8) and (10),

αh(Tρ) = hαh(Tρh) = h(3 − 2γ)/4 → 0 with n → ∞.
In order to apply Lemma 2, we should invoke the adjoint operator of Tρ whose kernel function is
ρ∗(y, x) = ρ(x, y) = ρ(x, y). For vh = ∑k=1,n ck Ik

h ∈ Sh

T∗
ρ vh = ∑k=1,n ck ∫∆h,k

ρ(x, y)Ik
h(y)dy = ∑k=1,n ck ∫∆h,k

ρh,k(x, y)dy,
where ρh,k = Ih,k(x)ρ(x, y)Ih,k(y). Follows:

∥T∗
ρ vh∥2 = ⟨∑k=1,n ck ∫∆h,k

ρh,k(x, y)dy, ∑j=1,n cj ∫∆h,j
ρh,j(x, y)dy⟩

= ∑k=1,n ckck
(
∫∆h,k

[
∫∆h,k

ρ(x, y)Ih,k(y)dy
]2 Ih,k(x)dx

)
.

Because ρ(x, y) is valued in [0,1), ρ(y, x) < 1 for every x, y ∈ (0, 1), we obtaining:
∥T∗

ρ vh∥2 ≤ ∑k=1,n ckckh3 = h2∥vh∥2 and, ∥T∗
ρ vh∥ ≤ h∥vh∥.

Taking ωh(T∗
ρ ) = h, the injectivity parameter of T on Sh is given by:

µh = (3 − 2γ)/4, a mesh independent constant ∀n, nh = 1 (11)

Theorem 4. (Injectivity Criteria): The Alcantara-Bode equivalent of RH holds.
Proof.

Because µh is a constant (see (11)) for any h, nh = 1, applying Lemma 2 we obtain NTρ = {0}. □

Proposition. From Theorem 3 or Theorem 4 we have NTρ = {0}, meaning that half from Alcantara-Bode
equivalent of RH holds. Then, the other half should hold, i.e.: the Riemann Hypothesis is true.

Observations.
We considered the subspaces Sh spanned by indicator of semi-open intervals functions of a

partition of the domain and so, the subspaces are including (Sh ⊂ Sh/2) providing the monotony of
the positivity parameters. If we take instead the indicator open-intervals functions for generating the
subspace So

h as well of the indicator closed-intervals functions generating the subspace Sc
h, nh = 1, n ≥ 1

then both sets So and Sc are dense like S, easy to show ([11]). Moreover, because on any level of
discretisation the support of the corresponding indicator intervals from Sh, So

h, Sc
h differ only by the sets

of the subintervals end points, a finite number and so of measure Lebesgue zero, all the estimations
and results obtained for the dense set S are valid for the dense sets So and Sc. See [11] for more details.

The dense sets S and Sc have been used in [5] and respectively [6] for obtaining optimal evaluations
of the decay rate of convergence to zero of the eigenvalues of Hermitian integral operators having the
kernel like Mercer kernels ([9]).
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