Pre prints.org

Article Not peer-reviewed version

Optimal Synchronous/Asynchronous
Multi-Layered Design of Java
Applications

Mircea Gheoace and Citalin Tudose

Posted Date: 14 November 2024
doi: 10.20944/preprints202411.1039v1

Keywords: Java framework; MVC; WebFlux; JDBC; R2DBC; PostgreSQL; performance

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/3998526
https://sciprofiles.com/profile/3362756

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Optimal Synchronous/Asynchronous Multi-Layered
Design of Java Applications

Mircea Gheoace ! and Catilin Tudose 12*

! Faculty of Automatic Control and Computers, National University of Science and Technology
POLITEHNICA Bucharest, 060042 Bucharest, Romania

2 Luxoft Romania, 020335 Bucharest, Romania

* Correspondence: catalin.tudose@gmail.com

Abstract: This paper focused on the optimal design of multi-layered applications in Java, in the context of
database access. The existence of various alternatives, synchronous or asynchronous, that each layer may select
from, requires an analysis and the examination of the criteria that need to be considered for optimal
performance. Current Java frameworks dedicated to building the web layer include MVC (synchronous) and
WebFlux (asynchronous). We'll examine them in the context of interacting with multiple databases using either
a synchronous (JDBC) or an asynchronous (R2DBC) driver.

Keywords: java framework; MVC; WebFlux; JDBC; R2DBC; PostgreSQL; performance

1. Introduction

The launching of multiprocessor computers changed permanently the way we deal with
designing code. Moore’s Law predicted the doubling of processor frequency every 2 years [1], but
this projection cannot be sustained indefinitely. Consequently, the emphasis is on using the parallel
or concurrent power of processing, using multiprocessors. Solving multiple tasks simultaneously
represents concurrency [2,3]. The Java programming language [4,5] allowed from its beginnings
multiple threads, through the management of the Thread class [6]. This could be changed by a custom
implementation that overrides the run() function. Also, the composition principle can be used,
implying creating a customized class that implements Runnable [7], with instances of this class being
offered as arguments to the constructor of the Thread class. After the introduction of the
java.util.concurrent package, programmers could use classes that abstract the work with multiple
threads [8]. This offers the following data structures specific for working with threads: queues, lists,
and maps. Also, these classes offer factory methods for working with implementations of the
Executor class, such as ExecutorService and ScheduledExecutorService, or interfaces such as
ThreadFactory or Callable. Using this package, the step to asynchronous programming is done. Later,
the asynchronous programming migrated to reactive programming, based on the Flow class which
follows the Reactive Streams specifications [9].

In a world in which social media exploded, apps should find methods to use the resources more
efficiently. Consequently, a new approach to processing data was found. In the synchronous
approach, N tasks were executed by N threads. If one task is reading from the network or database,
the thread in use is blocked without doing anything useful. The need for a change was promoted by
many computer science engineers, to reduce the processing time.

A great part of processing moved to the Cloud, allowing the usage of performant machines by
any company [3]. However, when using Cloud providers [10] of services such as PaaS or laaS [11]
you must pay for every extra processor. How can we do more with fewer processors?

Given N tasks, each of them requires M seconds, from which half is necessary for processing
and half for retrieving data. There are also P processors. We consider wall time as the time shown by
a clock on the wall that passes between the moment when the processor starts solving the tasks and
the time shown by the same clock when the processor finishes its job. The wall time in a synchronous

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202411.1039.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

2

approach would be (|§| + 1) x M, if N is not a multiple of P, or % x M if N is a multiple of P. The

number of processors is fixed, and so is the time needed for the execution of a task. Using a
programming paradigm in which one thread is not blocked during data retrieval would be a great
improvement. The asynchronous approach does exactly that. Every thread solves multiple tasks so
that the processor is used more effectively. When a task is blocking the thread, the processor switches

to a new task. In the asynchronous paradigm, the wall time would be (|§| + 1) X % , if Nis not a

multiple of P, or % X % , if N is a multiple of P. That means the time would be almost twice as short

to achieve the same thing.

Asynchronous functions, compared to synchronous ones, are non-blocking. They are returning
a substitute for the answer immediately after they are called, such as Mono, finishing their work later.
The thread from which the asynchronous method was called can continue its work without waiting
for the entire processing to be done and instead uses the substitute offered by the method. This
approach has its drawbacks because sometimes it's harder to determine when the work is finished.
The fact that the function returned doesn’t mean that all calculations were done.

2. Objectives

The objectives of the current paper are to determine the optimal conditions to decide between
concurrent programming and asynchronous programming in a multi-layered design of a Java
application. The advantages and disadvantages of various types of programs will be analyzed. To
determine which approach is more performant and in which situation, a system that interacts with a
database that contains data from an electronic devices store will be used. Several types of queries will
be used to obtain a wider view and to show the behavior in different environments. An important
goal is to obtain concrete numeric values, which can measure the time necessary for every experiment
so that decisions can be made based on facts. The overall objective is to obtain a competent point of
view on what programming approach should be used (synchronous or asynchronous) and in which
situations when designing a multi-layered application using Java.

3. Related Work

Modern web applications face rapidly growing user demands and data volumes, increasing the
need for high concurrency. Ju, Yadav et. al investigate how asynchronous frameworks and database
connection pools improve web application performance in such environments [12]. Asynchronous
frameworks enable non-blocking request handling, freeing up thread resources and boosting
concurrency. Database connection pools reduce connection management overhead, easing database
load. By using Spring WebFlux and optimized connection pool configurations, this model achieves
lower response times, higher throughput, and improved stability, outperforming both synchronous
models and async setups lacking connection pooling. These findings offer practical guidance for
enhancing application performance.

In recent years also comparative studies have been done to determine the best choice for
developing modern web apps. Catrina compares the Spring WebFlux framework, representing
asynchronous programming, against Spring Boot MVC, which represents synchronous
programming [13]. Response times, performance metrics, and resource usage are analyzed while
varying the workload for the apps. In the end, this research shows that the app based on WebFlux
has a similar response time to the MVC one but lesser resource utilization.

Wrycislik and Ogorek compare synchronous and asynchronous frameworks as well as database
drivers (JDBC and R2DBC) [14]. This study uses both relational (Postgres) and non-relational
databases (MongoDB) and demonstrates that in some cases the synchronous approach might be
faster than the asynchronous one. The experimental stage for the Postgres reactive driver is deemed
to be the factor for the success of the synchronous applications.

Rao and Swamy examine the relevance of synchronous and asynchronous web applications [15].
For asynchronous versions, high scalability is presented as one of the main advantages over their

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

synchronous counterparts. Also, fewer threads and memory are used to obtain similar performance
in the async version.

Rankovski and Chorbev examine the impact of asynchronous I/O calls on web application
scalability, focusing on increasing request throughput and reducing response time [16]. Traditionally,
web development frameworks primarily used blocking I/O APIs, complicating asynchronous
implementation and maintenance. Recent advancements, such as improved asynchronous syntax in
.NET, aim to enhance developer experience and promote asynchronous programming. The .NET
platform shares a lot of similarities with the Java ecosystem and thus was chosen for related work for
synchronous versus asynchronous articles. The study evaluates these syntax improvements in .NET,
presenting and analyzing the resulting performance benefits.

4. Current Approaches

To create concurrent programs in a structured way, Bijlsma, Huizing, et al. designed an
investigation methodology [17]. Many books only provide a framework for syntax and examples.
The article provides a methodology broken down into steps small enough and clear enough to be
understood that provides a basis for understanding the concurrent way of working and its
applications.

This consists of 7 steps:

1. Structuring the domain problem without concurrency. In this stage, the process is created
sequentially, the focus being on the creation of a class structure necessary to solve the problem.

2. Analyzing the concurrency of the problem. It is determined which activities can be performed
concurrently, which activities cannot be performed concurrently, how many threads are needed
and for which activity.

3. Analyzing the conditions that lead to concurrent access to common data. To avoid inconsistent
states, it is necessary to create UML diagrams [18] to see if threads access common variables.
Access to them must be synchronized.

4. Analyzing conditions that lead to check-and-then-act concurrent access. Any situations where a
value is first read and then modified must be checked. After the value has been read, another
thread may have modified it, and thus the current thread may no longer be able to make changes
based on the latest information.

5. Reflect on the application. Analyzing the code and determining if improvements could be made.
Determines if classes are thread-safe.

6. Apply nested locks [19]. It checks if multiple locks are needed and implements them in a
deadlock-free manner.

7. Analyze and eliminate deadlock. This step is looking for situations where an F1 thread holds the
lock on a resource, let's call it A. It needs another resource to continue calculations, let's call it B.
This is owned by an F2 thread which in turn needs a resource A. Each one needs the resource
over which another thread has control, they cannot proceed further and the program hangs.

Kragl, Qadeer, and Henzinger provide means to apply operations that can help programmers
obtain the synchronous equivalent of an asynchronous program [20]. Synchronous programs provide
high predictability and can be easily traced because the effects of a function can be seen when it
returns a result. Asynchronous programs are hard to predict because of the calculations that can still
be done after the function returns a response. The solution offered is synchronization, as a rule for
checking asynchronous programs by absurdly assuming, demonstratively, that asynchronous
operations finish as if they were synchronous. It summarizes asynchronous computation by
synchronizing as an immediate atomic effect.

As we can see a shift in client-server systems [21,22] to an asynchronous approach, Zhang, Wang,
and Kanemasa conducted a test to see if the new approach lives up to expectations [23]. They
performed a series of micro and macro tests to be able to examine the behavior of the servers. The
conclusion was that asynchronous servers can perform worse than those based on working directly
with threads and remote procedure calls if certain factors are not considered. Two arguments have
been supported. The first one is that the approach of using a handler for each event can create many
context switches for the asynchronous server and consequently the performance is affected. The

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

second one is that workload and network conditions can negatively impact asynchronous servers but
not synchronous ones. The article proposes a hybrid approach that uses the advantages of each
approach.

High-performance internet servers have been studied intensively before. Many have concluded
that asynchronous ones are the most advantageous over those that use direct threads and remote
method calls. However, creating them is a challenge considering that the code generation and
debugging stage is difficult due to the execution control hidden from the developer. It has been
observed that sending a large amount of data from the server, due to the non-blocking nature of
asynchronous functions, leads to frequent unnecessary repeated input/output (I/O) calls. Because a
handler is created for each event, multiple intermediate events are created as well, and context
changes that could have been avoided. As an example of such systems, Tomcat [24] version 7
synchronous was compared with version 8 asynchronous. Other middleware such as Jetty [25],
GlassFish [26], and MongoDB Asynchronous Driver [27] were also compared [28]. For a 100KB
response message, an asynchronous server can cause a write-spin problem [29], due to the small size
of the TCP buffer, and the TCP wait-accept mechanism, wasting between 12% and 24% of central
processing unit (CPU) resources processing. By the wait-accept mechanism, we refer to the method
by which the TCP protocol verifies that the packets have reached their destination, a method that
represents the major difference from UDP. The thread writes until it fills the TCP buffer. Sending
messages over the Internet to the destination begins. Then the recipient must respond with ACK, a
message that the data has been received and the transmission can continue. As long as the data is
being sent and until the ACK message arrives, no data can be pushed into the buffer, but the thread
keeps trying to send, wasting resources.

Zhang, Wang, and Kanemasa conclude that a major improvement can be obtained by using the
asynchronous approach, but carefully calibrating the system for large response sizes and adverse
network conditions [23].

4. Proposed Projects

For the design of a multi-layered Java application, the technologies stack provides alternatives
at each level:

e JDBC (Java Database Connectivity) [30] is an API (application programming interface) used by
the Java programming language to specify the interaction between the program and the
database. The technology was introduced in the very early versions of Java and it is synchronous
(blocking) by nature. This means that, while executing I/O operations [31], a thread will be
blocked until data can be read, or the data is fully written.

e R2DBC (Reactive Relational Database Connectivity) [32] is a specification to access databases
through reactive drivers. R2DBC is a non-blocking AP], it can manage more connections using
fewer threads.

e MVC (Model-View-Controller) [33] is a design pattern to develop user interfaces, separating the
program into three interconnected elements: the model (the internal representation of the
information), the view (the way the information is presented to the user), and the controller (it
receives inputs and generates commands for the model or the view).

o WebFlux [34] is a parallel version of MVC provided by the Spring framework and supports fully
non-blocking reactive streams.

To investigate the two design approaches, the synchronous and the asynchronous one, we
created several projects, as follows:

e P_JDBC, to directly interact with a database from a Java program using a synchronous JDBC
driver and execute a series of CRUD (Create, Read, Update, and Delete) operations.

e P_R2BC, to directly interact with a database from a Java program using an asynchronous R2DBC
driver and execute a series of CRUD operations.

e P_JDBC_MVC, to create a web application to access the database through JDBC. It is fully
synchronous, being based only on synchronous libraries and a synchronous application server.

e P_JDBC_WebFlux, to create a web application using WebFlux accessing the database through
JDBC. It uses a synchronous database driver and an asynchronous web stack.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

e P_R2DBC_MVC, to create a web application to access the database through R2DBC. It uses an
asynchronous dataset driver and a synchronous web stack.

e P_R2DBC_WebFlux, to create a web application using WebFlux, accessing the database through
R2DBC. It is fully asynchronous, uses database and web asynchronous libraries, and runs on an
application server designed to be reactive.

All projects will be tested with a program that simulates a great number of concurrent users and
generates a fixed number of requests one after the other. The database schema that was used by all
projects consists of 5 tables (Figure 1).

R Customer_employee_supplier

\d_prod:n(10) 1d_ces:n(10) K CES I buyer

Name:vc(40)
« Einn{9) .
Type_ces:c(1)
Address:vc{100) | FK_CES_In_empioyee
Iban:ve(34)
Ssnic(g)

Prod_name:vc(50) FK_CES_P
1d_supplier:n(10} [customer_employee_supplier.id_ces] |
Availability:vc(20)

Category:ve(20)

Add_infove(100)

’
FK_P.C

T Invoice
Characteristic ltem
) o Nr:n{10)
\d_prod:n(10) [products] Invoice_nr:n{10) [invoice.nr] Invoice. date:d
\d_characteristic:n(10) Invoice_date:d [invoice] -

1d_item:n(10) K In._I Id_vendor:n(10) [customer_employee_supplier.id_ces]

Name:ve(50) : . Type:c(1)
Value:ve(150) Id_prod:n{10) [products] Value:n(9,2)
LiEsk) Vat:n(9.2)
Quantity:n(10)

S Id_employee:n(10] [customer_smployee_supplier.id_ces]
Unit_price:n(7.2) 1d_buyer:n(10) [customer_smployse_supplier.id_ces]

Figure 1. The database schema.

These tables have primary keys, not null, and foreign key constraints to maintain the data
consistency. Together, they represent all data that is needed by an IT Store:

e The Products table, with the columns: Id_prod (Primary Key), Prod_name, Id_supplier,
Availability, Category, Add_info.

e The Characteristic table is in a master-detail relationship with Products, with the columns:
Id_prod, Id_Characteristic, Name, and Value.

e The Customer_employee_supplier table contains information about clients, employees, and
suppliers. Every row is identified by a unique number, the primary key. One column is used to
determine the person type: 'c’ for client, ‘e’ for employee, and ‘s’ for supplier.

e The Invoice table contains information about the invoices. The primary key consists of two
columns: Nr and Invoice_date.

e The Item table, with a primary key formed by three columns: Invoice_nr, Invoice_date, and
Id_Item.

5. Experiments and Results Analysis

5.1. Database Connectivity

The first test analyzes the database connectivity with no concurrency and a small load. The
database used in this case is PostgreSQL [35], one of the most known and performant relational
databases [36]. The interaction of the program with the database is done by executing JUnit 5 tests
[37] and the Spring Data API [38].

As seen in Figure 2, we have two types of instructions: Create and Drop. The test for Create
contains 5 such statements. The Drop test also contains 5 statements. Each test contains ALTER
TABLE statements to add or remove foreign key constraints.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

60

50

40

30

Duration (ms)

20

10

CREATE DROP

Operation

W Asynchronous M Synchronous

Figure 2. The results of running the synchronous and asynchronous DDL statements.

Figure 3 shows the duration of 4 experiments, each experiment being done as only one customer
is using the database at a time, as follows:

e The first experiment executes 4 simple queries.

e The second experiment calls 4 complex queries.

e The third experiment executes 3 updates.

e The last experiment deletes all data from the database.

The synchronous approach is faster, the difference between the average durations being up to
almost 50 milliseconds.

900
800
700
600

500
400
300
200 I I
100
0 — I mm BN

Simple Queries Complex Queries Update Delete

Time (ms)

Operation type

B Synchronous ® Asynchronous

Figure 3. The results of running the synchronous and asynchronous DML statements.

Figure 4 presents the results of 5 INSERT tests, from inserting into one table up to inserting into
5 tables. Also, in this case, the average duration is lower for the synchronous approach, the difference
between the approaches starting from 111 milliseconds in the first test and reaching 336 milliseconds
in the last test.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

7000.00

6000.00

5000.00

4000.00

3000.00

2000.00

1000.00 I
0.00 —— .

insert 1 table insert 2 tables insert 3 tables insert 4 tables insert 5 tables

Time (ms)

Operation type

B Asynchronous M Synchronous

Figure 4. Asynchronous and synchronous INSERT operations results.

5.2. REST Seruvices

We'll move on to addressing both the database and the web connectivity. The projects created
for the experiments use either synchronous or asynchronous drivers for interacting with the database
and web clients.

Simple Queries

Testing the REST API [39] starts with simple queries:

1. Retrieve customers, doing a simple filtering operation on Customer_Employee_SupplierTable
based on the type_ces field.

2. Retrieve all characteristics of a certain product.

3. Obtain the invoice with the greatest value, by applying an aggregate function on the Invoice
table.

4. Retrieve the items that are sold between certain dates. This is a little bit more complex, using a
join between the Invoice and the Item tables and filtering using date-related functions.

One goal is to generate realistic scenarios. Consequently, using JMeter [40], 400 users are
simulated (every user is represented by a thread), each of them executing the current query 10 times.
All users are simultaneously sending requests, each user sends the next request after receiving the
answer for the previous one. The throughput is measured in requests per second. Each of the four
tests is repeated 10 times, and the average of the 10 throughputs is displayed. The results of these
tests are displayed in Figures 5-10, with the throughput displayed in requests per second processed
by the Java REST APL Using JDBC, WebFlux has a smaller throughput than MVC (Figure 5). As JDBC
is a synchronous driver, it works better with a synchronous Java framework.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

2500

, mm 1

Queryl Query2 Query3 Query4

= = N
o (O3] o
o o o
o o o

Throughput (requests/second)

Query

W JDBC+WebFlux ®JDBC+MVC

Figure 5. JDBC WebFlux vs. JDBC MVC simple queries results.

Using R2DBC, WebFlux has a higher throughput than MVC when executing Que-ry3, though a

smaller throughput when executing Query2. The results for Query1 and Query4 are comparable and
do not show a clear winner (Figure 6).

1600
1400

1200
1000
800
600
400
-]

Queryl Query2 Query3 Query4
Query

Throughput (requests/second)

B R2dbc+WebFlux ® R2dbc+MVC

Figure 6. R2DBC WebFlux vs. R2ZDBC MVC simple query results.

WebFlux JDBC has a higher throughput than WebFlux R2DBC in all cases except Query 2, as
shown in Figure 7. This can be explained as the endpoint that uses Query 2 returns a list of
Characteristic Java objects as a JSON file.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

©
c
o
(8]
(]
v
~~
(%]
)
(%]
)]
=)
o
(O]
fus
-
>
[oX
=
oo
>
o
fus
e
[

2000

1500

1000

500
;M ™
Queryl Query2 Query3 Query4

Query

B JDBC+WebFlux m R2dbc+WebFlux

Figure 7. JDBC WebFlux vs R2DBC WebFlux simple queries results.

R2DBC MVC has a smaller throughput than JDBC MVC in all cases, as shown in Figure 8.

2500

©

& 2000

(8]

[I]

<L 1500

2

3 1000

>

o

£ 500

5 9 [=
Q.

'gn Queryl Query2 Query3 Query4
o

= Query

'_

HJDBC+MVC mR2dbc+MVC

Figure 8. JDBC MVC vs. R2ZDBC MVC simple query results.

Finally, we compare the pure synchronous vs. the pure asynchronous alternative, including both
the driver and the web frameworks. As shown in Figure 9, the synchronous version (JDBC MVC)
always has a higher throughput than the asynchronous one (R2DBC WebFlux).

__ 2500

©

c

S 2000

]

)

>

% 1500

4]

]

(%]

g 1000

-

a

= 500

%

I— | L

<

= Queryl Query2 Query3 Query4
Query

H R2dbc+WebFlux ®mJDBC+MVC

Figure 9. Synchronous (JDBC MVC) vs asynchronous (R2DBC WebFlux) simple queries results.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

10

Complex Queries

To provide significant results, we’ll move now to analyzing the execution of complex queries, in
the context of similar combinations of synchronous/asynchronous layers of the application.

The tests from Figure 10 were run simulating 400 concurrent users and each query was executed
10 times by every single user. The average of these 10 executions is shown in the graphic.

2000
1800
1600
1400

1200

1000

800

600

400

200 III III III
0 —_—

Complex Q1 Complex Q2 Complex Q3 Complex Q4
Query

Throughput (requests/second)

W synchronous M asynchronous

Figure 10. Direct complex query execution in the context of concurrent access.

The executed queries do the following:

1. Retrieve the sales and costs for every month and year. Date and time functions are used at the
database level to extract the month and year from the invoice_date field of the Invoice table. The
query includes two subqueries, one for sales and one for costs, that are joined on their month
and year fields. This can be used to determine what months are greater for sales and what years
have brought a greater profit.

2. Calculate the profit for each month. A date function is used for extracting month and year. The
query includes two subqueries and calculates the profit as the difference between sales and costs.
This query determines the best months for the company.

3. Find the product with the greatest profit for each category. The query computes the profit for
every product, the result is then filtered with a correlated subquery that retrieves the maximum
profit for the current category.

4. Find the profit for each category. The query includes two subqueries, one calculating the sales
and the other the costs for each category. The difference between the two values gets the profit
for each category.

The pure synchronous approach performs better. JDBC makes the main difference, as both
projects that use it are much faster than those that do not. The projects that use R2ZDBC have a lower
throughput, using MVC or WebFlux with R2DBC does not make such a difference, the executed
queries returned just a few data.

Connecting to the database through JDBC (a synchronous database driver, blocking) will favor
choosing to also connect to the Internet synchronously (through the MVC framework), as shown in
Figure 11.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

11
2500

2000

= 1000
50
0

Query 1 Query 2 Query 3 Query 4
Query

equests/second
=
o
o
o

Throughtput
o

m JDBC+WebFlux mJDBC+MVC

Figure 11. JDBC WebFlux vs. JDBC MVC complex queries results.

Connecting to the database through a reactive driver mainly favors the usage of a reactive
framework for connections to the Web, as shown in Figure 12.

1400
E
s 1200
(9]
Q
£ 1000
2
3 800
>
g
— 600
a
< 400
[
>
2 200
<
|_
0
Query 1 Query 2 Query 3 Query 4
Queries

B R2dbc+WebFlux ® R2dbc+MVC

Figure 12. R2DBC WebFlux vs. R2DBC MVC complex queries results.

Comparing the two hybrid approaches, JDBC WebFlux performs better than R2DBC MVC, as
demonstrated in Figure 13.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

12

__ 1600

2 1400

3

o 1200

)

"% 1000

i

o 800

>

g 600

= 400

a

= 200

%" 0

E Query 1 Query 2 Query 3 Query 4

Queries

W JDBC+WebFlux mR2dbc+MVC

Figure 13. JDBC WebFlux vs. R2DBC MVC (synchronous mixed with asynchronous).

The synchronous approach has significantly higher throughput than the asynchronous, reactive
approach, as shown in Figure 14.
2500

2000

1500

1000

50 I
0

Query 1 Query 2 Query 3 Query 4
Queries

Throughput (requests/second)
o

B R2dbc+WebFlux ® JDBC+MVC

Figure 14. Pure synchronous (JDBC MVC) vs. pure asynchronous (R2DBC WebFlux) throughput.

Response Size

One important aspect to study is if the size of the response can impact the performance. The
results summarized in Figure 15 show that, independently of the size of the response, the JDBC MVC
(fully synchronous) version is always faster than the R2DBC WebFlux (fully asynchronous) one.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

13

Load impact

0.07
0.06
0.05
0.04
0.03
0.02
0.01 l .

0

100MB 200MB 300MB 400MB

W R2DBC+WebFlux ®JDBC+MVC

Figure 15. Pure synchronous (JDBC MVC) vs. pure asynchronous (R2DBC WebFlux) load impact.

The Oy axis displays the throughput, in requests addressed per second, while the Ox axis
displays the size of the answer. The tests implied no concurrent users, only the load was taken into
account. 100MB (613202 products) were returned for the first experiment from Figure 15 for
P_R2DBC_WebFlux. Using both REST APIs, the same number of products were requested. The
difference was generated because the asynchronous P_R2DBC_WebFlux project does not use JPA,
while the synchronous P_JDBC_MVC project uses it. The test was repeatedly executed 10 times,
displaying the average in the graphic.

Multithreading Impact

Figure 17 displays on the Oy axis the throughput (in requests addressed per second), while the
Ox axis displays the number of concurrent users. While the fully synchronous version is still faster
than the fully asynchronous one, it is not scaling out. With 200 concurrent users, the asynchronous
solution still works, while the synchronous one is blocked and can no longer respond to the requests.
The concurrency was tested with a quite large answer, 10MB for P_R2DBC_WebFlux and a little bit
over 20MB for P_JDBC_MVC.

Multithreading impact

__35

2 3

]

o 2.5

)

g 2

i

315

o

o 1

45’ 0-5 I

Q

< 0

g 50 user 80 users 200 users
= Concurrent users

W R2DBC+WebFlux ®JDBC+MVC

Figure 17. Throughput by concurrency in synchronous/asynchronous applications.

5.3. MVC vs. WebFlux (no database)

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

14

To analyze the results of using asynchronous web frameworks versus synchronous ones, the
user interacts with an endpoint that does not extract data from a database. Data is small, less than 1
KB, and it is hardcoded in the Java program so that the test focuses only on the WebFlux or MVC
frameworks. Figure 18 shows that the asynchronous approach has a higher throughput, regardless
of the concurrency level.

__1000.00
g 900.00
g 800.00
& 700.00
a”DJ 600.00
g 500.00
= 400.00
2 300.00
-y

%0 200.00
£ 100.00
= 0.00

400 users 800 users 1200 users 1600 users
Concurrent users

B WebFlux ®MVC

Figure 18. MVC vs. WebFlux (no database).

5.4. Resources Usage

VisualVM [41] was used for analyzing the thread usage. The test simulates 200 users sending
the same request, successively. The answer is of average size, there are 10,000 requested products. As
displayed in Figure 19 and Figure 20, for the interaction between the clients and the project, the fully
synchronous approach (JDBC MVC) uses 223 threads, while the fully asynchronous approach
(R2DBC WebFlux) uses only 8 threads. The machine used for testing has 4 physical cores and 8 virtual
ones, the fully asynchronous approach uses exactly 8 threads. So, the reactive approach uses the
resources much more efficiently than the synchronous one.

Threads Threads visualization

Live threads: 223 Thread Dump
Daeman threads: 219

Timeline
Show: Live Threads = | Timeline: &, & &

HName 2830 172835 17:2840 172845 17:2850 17:2855 Running Total
8 hitp-nio-B080-exec-4
8 hitp-nio-B080-exec-5
@ hitp-nio-B08D-exec-6

49634 ms (48.4%) 102500 ms A
44523 ms (3.4%) 102500 ms
47542 ms (46.4%) 102500 ms
43557 ms 102.500 ms.
NEN ms | %) 102.500 ms
39438 ms (365%) 102.500 ms

102500ms (100% 102500 ms
AT3ms (457%) 91380 ms
49566ms (542% 91380 ms
ATTIOms (522% 91380 ms
52613ms (576% 91380ms
43893 ms 48 91380 ms.

(44,3%) 91380 ms.

47714 ms 2%) 91330 ms.

45418 ms (197%) 91380 ms

49058 ms (7% 91360 ms

799 ms (416% 91380 ms

38563 ms 91360 ms

42541 ms (466%) 91380 ms

44774 ms 91.380 ms

49805 ms (54.5%) 91380 ms.

47732 ms (52.2%) 91380 ms.

9615 ms (3.4%) 91380 ms

48771 ms (534%) 91380 ms

51790 ms (567%) 91380 ms ¥

B http-nio-B080-exec-100
8 hitp-nio-B080-exec-101
8 htip-nio-8080-exec-102
@ hitp-nio-B080-exec-103
B http-nio-B080-exec- 104
B http-nio-B080-exec-105
B http-nio-B080-exec-106
8 http-nio-B080-exec-107
8 hitp-nio-B080-exec-108
B hitp-nio-B080-exec-109
@ hitp-nio-B080-exec-11

8 hitp-nio-B080-exec-110

8 hitp-nio-B080-exec-112
8 hitp-nio-B080-exec-113
B http-nio-B080-exec-114
B hitp-nio-B080-exec-115
8 http-nio-B080-exec-116

&
]
E|

B Running @ Sleeping = Wait B8 Park £ Monitor

Figure 19. Resources usage for the fully synchronous approach.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

15

Threads [Threads visualization

Live threads: 26 Thread Dump
Daemon threads: 24

Timeline
v [Selected Threads + eline: & & &
Selected Name 182645 18:26:50 18:26:55 182700 182705 18:27:10 Running Total

B reactor-http-nio-1 49267 ms 48267 ms
B reactor-http-nio-2 49267 ms 49267 ms
B reactor-hitp-nio-3 49267 ms 48267 ms
B reactor-hitp-nio-4 7m

HITITITI?I?I?ITI

< >

g @ Sieeping st Epk Svonicr
Figure 20. Resources usage for the fully asynchronous approach.

For the synchronous approach, in Figure 19, some of the time of each thread is marked as red,
representing the blocking state. Figure 20, representing the usage of the resources for the
asynchronous approach, displays only the green color for each thread, representing the running, non-
blocking state. However, as the asynchronous approach uses a smaller number of threads, a higher
context-switching is also necessary. Unless the number of users is high enough and the size of the
answer is large, the synchronous project will outperform the asynchronous one.

6. Conclusions and Future Work

Both synchronous and asynchronous approaches offer distinct advantages and limitations. In
the experiments, factors such as system load, concurrency, and the complexity or simplicity of the
database queries were evaluated to assess performance. Additionally, the analysis included a
separate examination of the libraries used for database connectivity in contrast to those used for web
handling. This separation allowed for a clearer comparison of each approach’s impact on application
performance and scalability.

When factoring in both web handling and database connectivity while adjusting the load, the
synchronous approach shows faster results in single-threaded scenarios with no concurrency.
However, theoretically, the asynchronous method should excel in handling larger data volumes and
higher concurrency levels due to its non-blocking nature.

As the concurrency increases, the synchronous approach still offers better performance until a
certain level is achieved. When that level is reached, the synchronous project is blocked and can no
longer respond to requests, while the asynchronous one is still running. That means the asynchronous
approach is more scalable.

The complexity of the queries does not influence the outcome. The complexity comprises the
number of tables being joined, the aggregate functions used, the conditions imposed at the group
level, and so on. The synchronous approach is the fastest in almost every case.

Comparing JDBC with R2DBC, it is obvious that, at a smaller concurrency, up to 200 users and
a response size under 10MB, the synchronous approach is much faster. The throughput is almost
double for the projects that use the synchronous driver, regardless of the web library that is used.

Comparing the MVC with WebFlux, using a list of data that is small and hard-coded so that the
database connectivity does not interfere, it is obvious that the asynchronous response is faster. A
higher concurrency offers an advantage to WebFlux. MVC uses one thread per connection, while
WebFlux uses the same number of threads as the number of logical processors of the machine that
the project is running on.

https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

16

It is worth noticing that MVC uses as server Tomcat version 10 which has non-blocking behavior
[42,43]. The synchronous version is thus run on top of an application server that supports
asynchronous sending of files or data. So for applications made with the latest Spring Boot, it is not
possible to make a completely synchronous version, which in itself tells a lot about how important
asynchronous programming has become.

The MVC framework in Spring, particularly when deployed with Tomcat 10, benefits from the
server's non-blocking, asynchronous capabilities. This setup allows applications to perform tasks
without needing to pause the main execution thread, which is particularly advantageous when
handling high-concurrency scenarios. Tomcat 10 supports non-blocking I/O (NIO) for better
scalability, allowing it to manage numerous connections.

With Spring Boot's focus on modern reactive programming, synchronous-only applications
become increasingly incompatible with its architecture. The Spring WebFlux framework, introduced
as a complement to MVC, is entirely non-blocking, and its integration encourages asynchronous
patterns across the entire framework. This approach enables Spring Boot applications to handle larger
numbers of requests with lower latency and more efficient resource usage, highlighting the shift
towards asynchronous programming as a standard for scalable web development.

These features mean that newer applications built on Spring Boot and Tomcat 10 will inherently
adopt asynchronous behaviors, as even MVC’s synchronous processing now leverages asynchronous
I/O under the hood, making fully synchronous designs less feasible or efficient. This trend reflects
the broader industry shift, where asynchronous design patterns are increasingly prioritized for
performance in high-demand applications.

An asynchronous approach offers better scalability for applications that interact with relational
databases and serve hundreds of users simultaneously, as it allows for efficient resource management
under heavy loads. However, when an application serves only a small number of clients, a
synchronous approach can be nearly twice as fast, as it avoids the overhead of managing
asynchronous tasks, leading to simpler, more direct processing paths.

In the future, we could adopt a software development methodology [44], such as Scrum or
Kanban, to enable more thorough testing of the synchronous and asynchronous approaches. This
strategy would also support faster, more efficient development cycles, leading to improved versions
of the web applications.

Author Contributions: Conceptualization, M.G. and C.T.; formal analysis, M.G. and C.T.; investigation, M.G.
and C.T.; methodology, M.G. and C.T.; software, M.G. and C.T.; supervision, C.T.; validation, M.G. and C.T.;
writing—original draft, M.G.; writing—review and editing, C.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
Informed Consent Statement: Not Applicable.

Data Availability Statement: Data available in publicly accessible repository. The data presented in this study
are openly available on GitHub at https://github.com/7Mircea/AsyncVsSync.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Waldrop, M.M. More than Moore, Nature, 2016, 530, 7589, 144+.

2. Goetz, B. Java Concurrency In Practice; Pearson India, 2016.

3. Abhinav P. Y,; Bhat A,; Joseph C. T.; Chandrasekaran K., Concurrency Analysis of Go and Java, in 5th
International Conference on Computing, Communication and Security (ICCCS), Patna, India, 2020.

4. Arnold, K; Gosling, J.; Holmes, D. The Java Programming Language, 4th ed.; Addison-Wesley Professional:
Glenview, IL, USA, 2005.

5. Sierra, K; Bates, B.; Gee, T. Head First Java: A Brain-Friendly Guide, 3rd ed.; O’Reilly Media: Sebastopol, CA,
USA, 2022.

6. Oracle Thread - Available online:
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Thread.html.

https://github.com/7Mircea/AsyncVsSync
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Thread.html
https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

17

7. Oracle Runnable - Available online:
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Runnable.html.

8. Oracle java.util.concurrent, - Available online:

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/package-summary.html.

9. Oracle Flow - Available online:

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/Flow.html.

10. Marinescu, D.C. Cloud Infrastructure; Cloud Computing: Theory and Practice, 2013, 67-98.

11. Kibe, S.; Watanabe, S.; Kunishima, K.; Adachi, R.; Yamagiwa, M.; Uehara, M., PaaS on IaaS, 2013 IEEE 27th
International Conference on Advanced Information Networking and Applications (AINA), 2013, 362-367

12. Ju, L; Yadav, A,; Khan, A.; Sah, A. P.; Yadav, D. Using Asynchronous Frameworks and Database
Connection Pools to Enhance Web Application Performance in High-Concurrency Environments 2024 8th
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Kirtipur, Nepal,
2024, 742-747, 10.1109/I-SMAC61858.2024.10714639.

13. Catrina A.V. A Comparative Analysis of Spring MVC and Spring WebFlux in Modern Web Development,
2023, Available online:
https://www.theseus.fi/bitstream/handle/10024/812448/Catrina_Alexandru.pdf?sequence=2

14. Wycislik, L.; Ogorek, L. Issues on Performance of Reactive Programming in the Java Ecosystem with
Persistent Data Sources. In: Gruca, A., Czachorski, T., Deorowicz, S., Harezlak, K., Piotrowska, A. (eds)
Man-Machine Interactions 6. ICMMI 2019. Advances in Intelligent Systems and Computing, 1061. Springer,
Cham. https://doi.org/10.1007/978-3-030-31964-9_24

15. Rao, R.; Swamy, S R. Review on Spring Boot and Spring Webflux for Reactive Web Development.
International Research Journal of Engineering and Technology, 2020, 07, 04

16. Rankovski, G.; Chorbev, I. Improving Scalability of Web Applications by Utilizing Asynchronous I/O, ICT
Innovations 2016. Advances in Intelligent Systems and Computing, 2016, 665. Springer, Cham.
https://doi.org/10.1007/978-3-319-68855-8_21

17. Bijlsma, A.; Huizing, C.; Kuiper, R.; Passier, H.; Pootjes, H.; Smetsers, J., A Structured Design Methodology
for Concurrent Programming, in CSERC "17, Helsinki, Finland, 2017.

18. Fowler, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language; Addison-Wesley
Professional; 3rd edition, 2003.

19. Lee, J.; Fekete, A., Multi-granularity Locking for Nested Transactions, ACTA INFORMATICA, 1996, 33, 2,
131-152.

20. Kragl, B,; Qadeer, S.; Henzinger, T. A., Synchronizing the Asynchronous, in 29th International Conference on
Concurrency Theory (CONCUR 2018), 2018, 118, 21:1-21:17.

21. Smith, P.N.; Guengerich, S.L., Client/Server Computing (Professional Reference Series); SAMS, 1994.

22. Saternos, C. Client-Server Web Apps with JavaScript and Java: Rich, Scalable, and RESTful; O'Reilly Media,
2014.

23. Zhang, S.; Wang, Q.; Kanemasa, Y. Improving Asynchronous Invocation Performance in Client-server
Systems, in International Conference on Distributed Computing Systems, 2018.

24. Tomcat Documentation - Available online: https://tomcat.apache.org/.

25. Jetty Documentation - Available online: https://jetty.org/index.html.

26. Glassfish Documentation — Available online: https://glassfish.org/.

27. Bradshaw, S.; Brazil, E.; Chodorow, K., MongoDB: The Definitive Guide: Powerful and Scalable Data Storage,
O'Reilly Media; 3rd edition, 2019.

28. Khalilipour, A.; Challenger, M. Invocations, an Event-based Approach on Automatic Synchronous-to-
Asynchronous Transformation of Web Service, in 9th International Conference on Computer and Knowledge
Engineering (ICCKE 2019), 2019.

29. Zhang, S.G.; Wang, Q.Y.; Kanemasa, Y.; Shan, H.S; Hu, L.T. The Impact of Event Processing Flow on
Asynchronous Server Efficiency, IEEE Transactions on Parallel and Distributed Systems, 2020, 31, 3, 565-579.

30. Bales, D. JDBC Pocket Reference, O'Reilly Media, 2003.

31. Harold, E.R. Java I/O: Tips and Techniques for Putting I/O to Work, O'Reilly Media; 2nd edition, 2006.

32. Hedgpeth, R. R2DBC Revealed: Reactive Relational Database Connectivity for Java and JVM Programmers,
Apress; 1st edition, 2021.

33. Chain, R. Mastering Spring MVC: From Novice to Expert Independently published, 2023.

34. Millie, K. Reactive programming with Spring WebFlux, Independently published, 2024.

35. Ferrari, L.; Pirozzi, E., Learn PostgreSQL: Use, manage and build secure and scalable databases with
PostgreSQL 16, 2nd Edition; Packt Publishing; 2023.

36. Bonteanu, A.M.; Tudose, C. Performance Analysis and Improvement for CRUD Operations in Relational
Databases from Java Programs Using JPA, Hibernate, Spring Data JPA, Applied Sciences — Basel, 2024, 14, 7,
2743,

37. Tudose, C. JUnit in Action; Manning: New York, NY, USA, 2020.

38. Tudose, C. Java Persistence with Spring Data and Hibernate; Manning: New York, NY, USA, 2023.

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/package-summary.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/Flow.html
https://www.theseus.fi/bitstream/handle/10024/812448/Catrina_Alexandru.pdf?sequence=2
https://doi.org/10.1007/978-3-030-31964-9_24
https://doi.org/10.1007/978-3-319-68855-8_21
https://tomcat.apache.org/
https://jetty.org/index.html
https://glassfish.org/
https://doi.org/10.20944/preprints202411.1039.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 November 2024 d0i:10.20944/preprints202411.1039.v1

18

39. Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures, PhD Thesis,
2000.

40. JMeter Documentation - Available online: https://jmeter.apache.org/.

41. VisualVM Documentation - Available online: https://visualvm.github.io/.

42. Tomcat 10 changelog. Available online: https://tomcat.apache.org/tomcat-10.1-
doc/changelog html#Tomcat_10.1.31_(schultz)

43. Advanced IO and Tomcat. Available online: https://tomcat.apache.org/tomcat-10.1-doc/aio.html

44. Anghel, LI; Calin, R.S.; Nedelea, M.L.; Stanica, I.C.; Tudose, C.; Boiangiu, C.A. Software development
methodologies: A comparative analysis. UPB Sci. Bull. 2022, 83, 45-58.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://jmeter.apache.org/
https://visualvm.github.io/
https://tomcat.apache.org/tomcat-10.1-doc/changelog.html#Tomcat_10.1.31_(schultz)
https://tomcat.apache.org/tomcat-10.1-doc/changelog.html#Tomcat_10.1.31_(schultz)
https://tomcat.apache.org/tomcat-10.1-doc/aio.html
https://doi.org/10.20944/preprints202411.1039.v1

