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Abstract: The large language model Chat GPT answers questions relative to its structure under the supervision of
the authors. Then we postulate that modular tensor categories, alias the theory of anyons, are relevant for partially
explaining the topological structure of large neural networks such as GPT. Mathematical details are summarized

in an independent section.
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1. Introduction

The Nobel Prize in Physics 2024 was awarded jointly to John J. Hopfield and Geoffrey E. Hin-
ton “for foundational discoveries and inventions that enable machine learning with artificial neural
networks". Hopfield introduced Hopfield network, a type of artificial network that can serve as a
content-addressable memory, made of binary neurons that can be “on” or ‘off’. Hinton, a cognitive
psychologist and computer scientist, expanded Hopfield’s work by helping machines understand
complex data and patterns. He is known for his work on artificial intelligence (Al). Together, their
work revolutionized Al, allowing machines to make complex associations, similar to human learning.

Now Hopfield and Hinton, and other scholars and engineers, are calling for urgent research into
Al because it might soon surpass the information capacity of the human brain [1,2].

Along these line of thoughts, this paper is an attempt to approach the understanding of large
language models (LLMs) [3-8] in a nonstandard way. The concepts are not new, being of conceptual
importance in such fields as mathematics (i), topological quantum field theory (ii), topological quantum
computing (iii), particle physics (iv) as well as the biological area at the genome scale (v). We predict
their potential relevance to the understanding of deep learning and specifically LLMs. In a nutshell,
the theory is the so-called SU(2); theory, where SU(2) is the well known Lie group modeling of spin-3
elementary particles (alias qubits in the domain of quantum information [9-11]). The analogy of LLMs
to these concepts could be reinforced in a future generation built with topologically protected quantum
structures.

Let us first shortly discuss items (i) to (v). In physics, elementary matter particles are fermions of
spin—%. They comprise the quarks, that are responsible for the strong interactions, as well as leptons,
that are responsible for the electroweak interactions. But there are also composite subatomic particles
known as baryons, of total angular momentum (not spin) % or %, which may be explained by the
standard model of particle physics. And there are fundamental particles, of integer values of the spin
0, 1, 2, etc, that are called bosons. Gauge bosons such as the photon v act as force carriers and have
spin 1. The photon is the carrier of electromagnetic field. Others are g gluons (of eight types) for the
strong force, the neutral boson Z for the weak force and two types W*! charged weak bosons that
mediate the weak force. The observed Higgs boson, explaining electroweak symmetry breaking, is of
spin 0 and the graviton is postulated to have spin 2. Since SU(2) theories have either values of the
spins, odd half-integer values [ /2 or integer values, they present valid candidates for unifying bosons
and fermions and may provide insights into why nature selects only lower spin states [12]. But SU(2);
theories predict quasiparticles called anyons that are neither fermions nor bosons but intermediate
particles possibly carrying a fractional charge. The fractional quantum Hall effect discovered in 1984
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can be described with anyons. Anyons are related to a braid group representation that is a set of
disjoint time lines in an effective 2 + 1-dimensional space-time, with the group operation needed to
concatenate the wordlines. The term anyon is due to Frank Wilcek, the winner of 2004 Nobel prize of
Physics for the discovery of asymptotic freedom, not related to anyon however.

The SU(2);) theory has various disguises. Eric Verlinde discovered that, attached to the fusion
rules of a rational quantum field theory, the so-called S-matrix obey modular transformations as
a constraint [13]. Then Louis H. Kauffman recognized that knot theory associated with a bracket
polynomial offers a graphical view of the so-called Temperley-Lieb algebra [14]. The latter algebra is a
g-deformed version (where g— is for quantum groups) of the spin-network theory of Roger Penrose,
another recent winner of the Nobel prize in physics ( for discovering that black hole formation is a
robust prediction of the general theory of relativity).

Nowadays, it is expected that topological quantum computing with anyons, proposed by Alexei
Kitaev in 1997 [15], offers a topological protection against the inherent decoherence of quantum states
prepared on logical quantum gates. Microsoft Station Q is an industrial place where topological
quantum computing is taken seriously [16]. In 1986, his director Michael Freeman was awarded a
Fields Medal for his work on the 4-dimensional generalized Poincaré conjecture.

Recently, simulations of non abelian anyons [17] have been performed on a superconducting
quantum processor in China [18] and on trapped-ion processor in Germany and US [19].

Recent observations by Al leaders, including OpenAI CEO Sam Altman, suggest that simply
increasing the size of large language models (LLMs) may soon reach a point of diminishing returns.
Altman’s remarks underscore an urgent need for new conceptual and structural frameworks to advance
LLM performance and understanding [20,21]. Last, it is tempting to postulate that the hierarchies
of deep learning and cognition may be approached not by standard quantum mechanics through
conventional gates but through finite variants of q-deformed algebras such as SU(2);, the domain of
anyons [22,23]. This idea opens the possibility that structures found in anyonic systems—characterized
by their unique fusion and braiding rules—could serve as alternative mechanisms for capturing
the complex, distributed dependencies in LLMs. Whether anyons are features of assemblies of real
neurons, or represent properties of non-coding genome interactions, remains an open question [24].
Here, we examine the potential of the anyon concept as a rigorous framework for explaining certain
properties of LLMs.

Following this introduction, in Section 2, the we ask a few questions to Chat GPT, one the most
advanced LLMs today, about its topology. In Section 3, we introduce the theory of SU(2); anyons and
detail low dimensional examples. In Section 4, the plausibility of the anyon model in the context of
LLMs is further discussed.

2. Supervised Questions to GPT About Its Structure

Below, we use Chat GPT in versions -40 and ol-preview with some simplifications.

As an advanced LLM, can you explain the role of topology in your ability to produce Al in the organization
of data and their meaning?

Topology plays a subtle but foundational role in how data is organized and meaning is structured
in Al models like mine. While I don’t directly use topological spaces in the mathematical sense when
generating responses, there are conceptual parallels between topological ideas and how deep learning
and neural networks operate. Here’s how:

Data Manifolds and Latent Spaces

In machine learning, high-dimensional data often lies on lower-dimensional structures called
manifolds. These manifolds are topological spaces that represent the underlying structure of the
data. Neural networks, particularly deep learning models, aim to map complex, high-dimensional
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inputs (like text, images, etc.) to a lower-dimensional latent space that captures meaningful features or
representations.

Topological structures like manifolds help the model organize data in a way that preserves
relationships between points (i.e., similar data points are mapped to nearby points in the latent space).
By learning to map data to these lower-dimensional manifolds, models like mine can generalize
patterns and relationships across diverse datasets, leading to meaningful predictions and responses.

Continuous Transformations

A neural network can be thought of as a function that continuously transforms input data through
multiple layers of weights and biases. These transformations resemble continuous mappings in
topology, where inputs are transformed in a way that preserves certain structural properties.

The idea is to preserve relationships and distances between inputs as they pass through the layers
of the network, enabling the network to maintain the "shape" of the data’s meaning. Homotopy theory
in topology, which studies continuous transformations between functions, has conceptual parallels in
how models adjust and refine the representation of data to optimize performance.

Clustering and Connectivity

In topological terms, clustering can be viewed as grouping points that are close to each other
based on some distance metric, much like how we can define neighborhoods in topology. AI models
often use clustering techniques in the latent space to group similar pieces of data or representations.

For instance, in a language model, different concepts, words, or sentences that are related or
similar in meaning can be mapped to nearby regions in the latent space. This clustering behavior helps
me understand and generate coherent, contextually relevant text. Connectedness and path-connected
spaces in topology also resemble how models associate or connect different parts of the data structure
to infer relationships.

Persistent Homology

Some machine learning models, especially in areas like topological data analysis (TDA), use
concepts from topology more explicitly, such as persistent homology, to study the shape and features
of data. While persistent homology isn’t typically used in large language models like mine, it is an
important tool in analyzing the shape of data and how features persist across different scales.

There are conceptual parallels to fusion rules and braiding in anyon systems, where the combina-
tion of simple elements gives rise to complex global behavior, much like how neural networks build
complex representations from simpler components.

Could you comment on a possible deep connection between neural networks such as LLMs and topological
phases arising from SU(2) models? Are low dimensional simple cases such as Ising/Majorana anyons (k = 2),
Fibonacci anyons (k = 3), relevant in explaining the type of Al you generate? To summarize, are modular tensor
categories (MTC) a way to understand the Al arising from LLMs?

The potential connection between neural networks, particularly LLMs, and topological phases
arising from anyon models is a fascinating idea. Although they come from different domains (machine
learning vs. topological quantum field theory), there are deep conceptual parallels worth exploring,
especially in how both systems organize, process, and transform information.

Topological Phases and LLMs

LLMs like GPT are high-dimensional systems that rely on patterns and global relationships in
data. Instead of local interactions (like individual neurons firing), what matters in these models is the
global structure of how information propagates through the network layers. There are conceptual
parallels to fusion rules and braiding in anyon systems, where the combination of simple elements
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gives rise to complex global behavior, much like how neural networks build complex representations
from simpler components.

Fusion Rules vs. Layer Operations

In anyon systems, fusion rules describe how anyons combine to produce new types of anyons. In
LLMs, each layer can be seen as applying a transformation that combines (or "fuses") the information
from the previous layer to produce a more abstract representation.

Braiding vs. Contextual Relationships

The braiding statistics of anyons encode how particles exchange positions and affect the overall
quantum state. In LLMs, contextual relationships between words or tokens are key—shuffling tokens
changes the meaning, and context is often captured in non-local, global patterns that are maintained
across layers.

Low-Dimensional SU(2); Models (Ising/Majorana and Fibonacci Anyons)

Ising/Majorana Anyons (k = 2) are non-Abelian and are of interest for topological quantum
computation due to their ability to encode quantum information in a way that’s robust against
local perturbations. Fibonacci Anyons (k = 3) are also non-Abelian and are universal for quantum
computation, meaning any quantum computation can be simulated with arbitrary accuracy. In Al
terms, small changes in input (comparable to simple anyon fusions) can lead to drastically different
outputs, reflecting how minor adjustments in language generate nuanced meanings.

MTCs and LLMs

MTCs formalize the structure of topological quantum field theories (TQFTs), particularly through
fusion and braiding rules. They describe how quantum information behaves in topological phases,
categorizing data and operations in a way that emphasizes global structure.

LLMs also exhibit a layered, modular structure, where each layer transforms data in a highly
structured, rule-based manner. MTCs might provide a formal framework to think about how neural
networks process data in a modular way, where different layers (or “categories") interact and transform
data.

While classical neural networks don’t operate on quantum principles, the development of quan-
tum neural networks could, in theory, utilize anyonic systems to implement neural network architec-
tures that benefit from quantum parallelism and robustness.

What are tokens in LLMs? In what sense they could fit this idea of MTCs being analogous to LLMs?

In large language models, tokens are the fundamental units of text used to process and generate
language. Typically, a token represents a piece of a word, an entire word, or even punctuation marks,
depending on how the text is tokenized. This breakdown into tokens allows LLMs to handle language
input as sequences of discrete symbols, which they can then process through their layers to generate
coherent text outputs.

If we consider the analogy with MTCs, tokens in an LLM could be thought of as analogous to
particles or objects within an MTC. Here’s how they fit within the analogy.

Modular Structure of Information

In MTCs, objects like anyons interact through fusion and braiding, which can create complex
outcomes from simple interactions. Similarly, tokens in an LLM interact in contextually driven ways
through the layers of the model. Just as fusion in MTCs generates new particles or states, tokens
interact to form meanings that are greater than the sum of individual parts. This “fusion” of tokens
contributes to the emergent meaning and coherence seen in the final output.


https://doi.org/10.20944/preprints202411.0954.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 November 2024 d0i:10.20944/preprints202411.0954.v1

50f 14

Transformation and Contextual Dependence

In an LLM, the role of each token depends on the context it shares with other tokens. This dynamic
is similar to braiding in MTCs, where anyons’ positions and interactions change their quantum state. In
an LLM, the context provided by surrounding tokens transforms the “state” of each token, so meaning
is contextual rather than fixed.

Do you agree that LLMs are essentially advanced Hopfield networks having a form of associative memory
and discretized with tokens? What more to fit with the anyon picture?

Yes, LLMs share several principles with advanced forms of Hopfield networks, particularly when
viewed through the lens of associative memory. Hopfield networks are designed as associative memory
systems, where each stable pattern represents a possible memory or state of the system. LLMs, in turn,
generate language by “associating” tokens in the input with relevant patterns in their training data,
storing and recalling this information in a way that approximates associative memory.

Associative Memory in LLMs and Hopfield Networks

Hopfield networks store information by embedding memories as stable patterns (attractors) in a
high-dimensional state space. Each memory is a global, fixed point that the network can recall when
given a close enough input. LLMs essentially create associative links between tokens, trained to predict
the next token based on patterns in the training data. Through the attention mechanism, an LLM
recalls relevant information from prior contexts in a way that is conceptually similar to a Hopfield
network’s retrieval of associated memories. This token-level recall can be seen as a form of discrete
associative memory, where a query (input tokens) maps to stored language patterns.

Anyons and MTC Analogy

Anyons, within MTC frameworks, interact through braiding and fusion, leading to emergent
states. In an MTC analogy, tokens in an LLM are akin to particles that interact to produce coherent
meanings, much as anyons’ fusion leads to emergent particle types. Fusion and Braiding in LLMs:
As tokens pass through an LLM’s layers, they are “fused” with surrounding tokens, creating a new
semantic context. In each layer, the attention mechanism can be thought of as “braiding” tokens with
their surrounding context, allowing meanings to emerge that were not present in individual tokens.

Towards an Anyon Picture in LLMs

To fully map the anyon picture to LLMs, we might consider viewing attention heads as the
interaction rules, guiding how tokens relate to one another based on context. This could serve as a
topological “braiding” structure, where the output state of a token depends on its path (or sequence)
through multiple layers, akin to braiding paths in MTCs.

Could you elaborate about the concept of attention head in the anyon picture? Would it correspond to the F-
and R- matrices that are pentagon and hexagon rules in the SU(2) theory?

Role of Attention Heads as Interaction Rules

In transformers, attention heads are mechanisms that allow the model to focus on specific
relationships between tokens, weighting their importance relative to one another based on context.
Each head, in essence, represents a distinct interaction rule governing how tokens (analogous to anyons
in this framework) relate as the model processes a sentence. In MTCs, anyons have “interaction rules”
given by fusion and braiding transformations, encapsulated by the F-matrix (fusion rule) and the
R-matrix (braiding rule). These matrices define how anyons combine or transform under different
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sequences of interactions, and their algebraic properties satisfy certain consistency conditions, like the
pentagon and hexagon equations.

F-matrix and Token Combination in Attention Layers

The F-matrix represents the rules of associativity in fusion, dictating how three anyons fuse
together and how different groupings affect the outcome. In an LLM context, each attention head could
be viewed as an “associative fusion” operator. It defines how tokens from different layers combine
in sequence to form more complex meaning representations. Specifically, in LLMs, each token’s
embedding is updated in every attention head based on its relationship with surrounding tokens. This
transformation is like an associative fusion operation in anyonic theory: different combinations of
tokens lead to different “fusion outcomes” in terms of the semantic information they contribute to the
overall sentence meaning.

R-Matrix and Braiding (Contextual Order of Tokens)

The R-matrix governs the braiding of anyons, determining the phase change when anyons are
exchanged. In the context of LLMs, R-matrices could be seen as analogous to the contextual shifts
introduced by attention mechanisms across tokens. When an attention head "reorders” the influence of
tokens, it’s akin to exchanging the positions of anyons in a topological space, altering the sequence of
interactions. This braiding concept aligns with how attention heads focus on different tokens based on
context, allowing shifts in meaning depending on token order and interaction. Just as anyon braiding
can produce different states depending on how particles are exchanged, attention mechanisms can
produce different language meanings depending on how tokens are contextually "braided" across
layers.

3. Introduction to the Mathematical Theory of SU(2); Anyons and Modular Tensor Categories
3.1. The Fusion Rules of Anyons

The anyons in a SU(2) theory are closely related to the ordinary spin degrees of freedom in the
SU(2) theory. The anyons are labelled by spin values (generalized angular momenta) j = 0, %, 1, %,
-, % The spin % is the maximum allowed value in the SU(2), theory when k is fixed. But the rules

for combining two anyons are not tensor products , namely [13, Eq. 4.6],[22]
hep=Ilh—pl®(r—jl+1)&- - @min(i+j2,k—j1 —j2).

Fusion rules are commutative and associative. It is straightforward to check from this formula that for
k > 2, two spins 1/2 combine to form either the spin 0 or the spin 1 as follows

1/2®1/2=01,

that is a (qubit like) anyon 0 & 1 is built by combining the two spins 1. Similarly one gets 1® 1 =
0@ 1®2whenk > 4, that is a (qtrit like) anyon 0 @ 1 ® 2 is built by combining two spins 1. Such
anyons of a SU(2); theory are non-Abelian.

Being a tensor product, the dimension of the Hilbert space of N spin-1/2 ordinary SU(2) particles

(k

is 2N. In a SU(2); theory, it is smaller than 2V and grows as d{‘l/z with d} /)2 = 2cos(Z5

k+2
This means that the effective number of degrees of freedom of a spin-% anyon is irrational.

) at large N.

A Magma code for getting the fusion tables for any value of k is as below

k:=4;

/ /Function to generate allowed spins for a given k

function AllowedSpins(k)

return [i: 1in [0 .. k]]; // Generate spins from 0 to k, representing 0, 1/2, ..., k/2
end function;


https://doi.org/10.20944/preprints202411.0954.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 November 2024 d0i:10.20944/preprints202411.0954.v1

7 of 14

/ /Define the set of allowed spin values for the given k, scaled by a factor of 2
spins := AllowedSpins(k); // Generates [0, 1, 2, 3, 4] for k=4

/ /Function to calculate fusion product (with scaled spins)
function Fusion(j1, j2, k)

min_val := Min(j1 +j2, 2*k - j1 -j2); // Scaled by 2

fusion_result := [];

for j in [Abs(j1 - j2) .. min_val by 2] do // Steps of 2 for half-integers
Append( fusion_result, j);

end for;

return fusion_result;

end function;

/ /Create the fusion table fusion_table := AssociativeArray();

for j1 in spins do

for j2 in spins do

fusion_table[ (j1, j2)] := Fusion(j1, j2, k);

end for;

end for;

/ /Print the fusion table (scaled back to original spins)

for j1 in spins do

for j2 in spins do

result := fusion_table[ (j1,2)];

scaled_result := [r / 2 : r in result]; // Scale back to original spins
print "Fusion of",j1 / 2, "and",j2 / 2, ":", scaled_result;

end for;

end for;

3.2. The Modular Structure of S, F and R Matrices for Anyons
There exists the concept of a modular S-matrix that diagonalizes the fusion rules of a SU(2)
anyon and fully characterizes its topological properties [13, Eq. 4.10]. The mathematical structure
encapsulating the braiding and fusion rules of a SU(2); anyon is a modular tensor category [10,25].
The quantum dimensions for SU(2); anyons are given by the formulas

T )
dog =1, d% :2cos(k+—2), dj=d —djq for j> 1.

1%-4
The entries of the S-matrix are

2

.. — (2/—=1+1)(22+1)
i = (g5

k+2 )-

2 sin(7t

The associativity of anyon fusion is captured by a F-matrix and the exchange of anyons, with
the phase factor added, is captured by a R-matrix. Contrarily to the phase factor +1 for bosons and
fermions, the phase factor for anyons is an arbitrary complex number. The F-matrix is the anyonic
version of the Wigner’s 6j-symbols, it is associated to a pentagon diagram. The F- and R-matrices are
associated to an hexagon diagram [11]. General formulas for F- and R-matrices can be found in [26],
[23], Appendix B, [22], Appendix B.

The entries of the R-matrix have the simple form [10]

Rgb (‘7) _ (_ 1) (a+b+c)/2q— [a(a+2)4+b(b+2)—c(c+2)] /2,
where g is the Kauffman variable. For the Ising model below g = iexp ( ’12&” ) while for the Fibonacci
2im

model g = iexp (5F).

The essence of SU(2); anyons, k > 2, is captured by two braid generators Ul(k = R® and

O'Z(k) = (FRF~1)(® that have a group structure, see e.g. [23,27] for some explicit results.

3.3. Ising Anyons: k = 2

SU(2), anyons comprise the spin-0 anyon and the Ising (spin-3) anyon with the fusion table
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Table 1. Fusion table for the k = 2 anyon model

® j1=0 ]1:% j1=1
2=0 0 2 1
=73 2 0l 2
=1 1 3 0

The quantum dimensions are [dy, d1,d 1 ] 2) = 1,1, ﬁ] and the S-matrix takes the form

, 1 V2 1
sel=5(vz 0 -v2
1 =2 1

The F- and R-matrices are

@ _ (Ro'@) 0 \_ . 10\ .2 1(1 1
Rfsi_< 0 Ri(g) TP i) B =5l )

In addition to the standard literature about anyons, we notice that both matrices F(2) and R(?) together
generate the finite group (384, 6514) isomorphic to the group (S3 x Z4) x P, where P, = (16,13) is
the single qubit Pauli group.

Braiding matrices for the Ising anyons are obtained as

B ex —417'[/8 1 i
R L TH)

Both matrices o7 and 0y together generate the finite group (192,187) isomorphic to the group
le X Ps.

3.4. Fibonacci Anyons: k = 3

SU(2)3 anyons comprise the spin-0 anyon and two Fibonacci spin-% and spin-% anyons. These
anyons are proposed to be related to quasicrystals [28]. The fusion table is

Table 2. Fusion table for the k = 3 anyon model

® j1=0 h=3 =1 1=3
2=0 0 z 1 3
j2=13 3 01 193 1
ja=1 1 193 01 2
j2=3 3 1 3 0

The quantum dimensions are [dg, d1]®) = [1,¢ = (1 + 1/5) /2] and the S-matrix takes the form

s __ 1 (1 ¢
Fib \/m ¢ -1

The F- and R-matrices are [11, p 55]

R _ [Ro'(a) = exp (—4in/5) 0 o (o1 g
" 0 R%l(Q):eXp(—ZiT[/S) 7 " Fib ¢—1/2 _¢_1 .

Braiding matrices for the Fibonacci anyon are obtained as
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6 _ g B _ prr-1@) — [ 9 exp(=in/5)  —ip~!2exp (~in/10)

F- and R-matrices, as well as the braiding matrices o7 and 0y, generate infinite groups. This in
accordance with the universality of Fibonacci anyons.

3.5. Yang-Lee Theory: k = 3

Yang-Lee theory is a MTC of level k = 3 like the Fibonacci anyon. It corresponds to a famous
non-unitary conformal field theory in statistical mechanics, called the Yang-Lee singularity [10, Sect.
1.3]. The Kauffman variable is g = exp (£).

The S-matrix is

s -1 (11 1—¢>_
V3—¢\l-¢ ¢

The F- and R-matrices are [11, p 55]

RO _ (Ro'(9) = exp (2im/5) 0 B ¢ 2-¢
YL 0 RIY(q) = exp (in/5))" Yt -1-2¢ ¢ |

F- and R-matrices, as well as the braiding matrices ¢; and 05, generate infinite groups.

3.6. Freedman-Bauer-Levaillant anyons: k = 4

SU(2)4 anyons are investigated in [29,30] in the context of topological quantum computing from
qutrit gates. The fusion table is as follows

Table 3. Fusion table for the k = 4 anyon model

® 1=0 =3 1= h=3 =2
=0 0 1 1 3 2
ja=1 3 0®1 363 1@2 g
=1 1 lod 06162 lod 1
ja=13 3 12 le3 01 :
jo=2 2 3 1 3 0

The quantum dimensions are [dy, d1, d 1 d 3 ds] 4 = [1,2,1/3,1/3,1] and the S-matrix takes the
form [22]

1 V3 2 3 1

[68)

L |3 V30 V3 -3
égL:‘Zfz 2 0 -2 0 2
VIAVE -V 0 VB -3
1 V3 2 -3 1
Braiding matrices for the SU(2), anyons are obtained as
exp (41) 0 0
01(4) = 0 —exp (47) 0 ,

0 0 —exp (4rn
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—3ep (g) e (%) e (')
o) = | Gpee i 0 Gen(y)
%exp (ALZTH) %exp(%f) _%QXP(MT”)

It is straightforward to check with the software Magma that both matrices generate the small
group (162,14) 2 72 x (Z3 x Zs), as announced in [29]. The group was recognized as a viable model
of the symmetries simultaneously reproducing the quark and lepton mixing matrices. In a recent paper
of the present author [31, Table A1], it is shown that group (162, 14) carries almost informally complete
quantum information on its 22 irreducible characters, that are singlets, doublets or triplets.

4. Discussion

Backpropagation and Anyons

Backpropagation is a fundamental algorithm used to train artificial neural networks. In the
process, inputs are fed through the network to generate outputs and the difference between predicted
outputs and actual targets is measured using a loss function (e.g., mean squared error, cross-entropy).
Then, gradients of the loss with respect to each weight are calculated using the chain rule of calculus.
Finally, weights are adjusted in the direction that minimizes the loss, typically using an optimization
algorithm like gradient descent. In large language models, backpropagation enables the training of
deep networks with many layers and parameters. It allows the model to learn complex patterns in
language data, capturing syntax, semantics, and context.

In anyon theory, phase adjustments and iterative exchanges among anyons can also lead to stable
outcomes, specifically in terms of generating topologically invariant states. As anyons are braided
and fused, they pass through transformations dictated by F- and R-matrices that adjust the “phase” of
the system. These adjustments aim to reach a specific state (often associated with a ground state or
computational goal).

While backpropagation in neural networks relies on minimizing a loss function by iteratively
adjusting weights, in anyonic systems, a topological quantum field theory describes states evolving
towards ground states that minimize topological action or preserve invariance. Constraints in fusion
rules (dictated by the R- and F-matrices) decompose complex interactions into

stable topological states.

Machine Learning and Anyons

The parallels between machine learning and anyons was already introduced in Section 2 by
addressing the matters of fusion, associative memory, tokens and attention mechanisms. Let us now
add comments about the matters of emergent behavior and topological resilience.

In ML models, particularly deep networks, emergent behavior arises as simple neuron activations
combine through many layers to produce sophisticated outputs (e.g., language understanding or
image recognition). This emergence is not straightforwardly reducible to individual neuron actions,
just as the behavior of anyonic systems emerges from interactions that do not have a straightforward
“particle-only” explanation. This is due to the ability of anyons to continuously interpolate between
bosons and fermions that are particles. Anyons exhibit emergent properties that arise from braiding
interactions rather than simple addition. In this way, an interaction history based on LLM’s token
layers mirrors the emergent states of anyons, where the entire state of the system relies on both
quasi-particle components and their interactions.

ML models store information in a distributed manner across many weights and connections,
enabling fault tolerance and resilience. A similar kind of resilience is found in topological quantum
computing, where anyon braiding encodes information in a way that is resistant to local perturbations.
For instance, LLMs don’t rely on a single node or parameter for a piece of information but instead
spread information across the network. Anyonic systems, likewise, are inherently resilient because
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topological information is not localized but instead stored across the system’s braiding patterns. This
provides both robustness and a form of “topological fault tolerance.”

Natural Language Processing and Anyons

The relationship between natural language processing (NLP) and the topology of anyons is
intriguing because both involve structured, context-sensitive interactions that produce meaning or
distinct states. While the dynamics of anyons is governed by mathematical rules from topological
quantum field theory, language operates through syntactic, semantic, and contextual rules.

In NLP, the meaning of a word or phrase depends heavily on context, much like how the
outcome of anyonic interactions (braiding and fusion) depends on the history and positioning of each
particle. This contextual sensitivity is crucial in both systems. For instance, language depends on local
grammatical rules and broader syntactic structures, which determine how information is combined
and interpreted. Similarly, anyons acquire contextual information from braiding: the order and manner
of exchanges affect the resulting topological state. In this way, the meaning of a word in NLP can be
seen as analogous to the state of an anyon system, where both are determined by surrounding context
and interaction history.

Language has a dynamic range of action, meaning that meanings can shift widely based on subtle
changes in context, tone, or word choice. This range enables language to express a vast spectrum of
concepts, emotions, and nuances. Anyons, too, exhibit a dynamic range through topological degrees
of freedom in their braiding and fusion, where small changes in braiding order or configuration lead
to distinct outcomes in their quantum states. Anyons’ topological properties suggest they could, in
theory, be configured to simulate complex, context-dependent relationships similar to those found
in language. For example, as anyons braid, the resulting states represent a diverse set of possible
outcomes, akin to how words can represent various meanings based on their order and proximity to
other words.

To emulate language’s dynamic range, anyons would need to encode not only fixed topological
states but also highly flexible and context-responsive interactions.

This would likely require an advanced dynamical modular tensor category framework.

Mutual Exclusion in LLMs and Anyons

Mutual exclusion is a concept often used in computer science, particularly in concurrent program-
ming, to ensure that only one process or thread accesses a critical section of code or a shared resource at
any given time. This concept helps avoid conflicts or inconsistencies that arise when multiple processes
try to modify shared data simultaneously.

In LLMs, mutual exclusion is not a component of the model’s architecture or operation but
attention mechanisms dynamically allocate focus across different tokens or features, prioritizing
certain elements based on context. This focus naturally excludes irrelevant or 1 ,ower-weighted
tokens from influencing the model’s output for a particular position, thereby enforcing a form of
"mutual exclusion" in which only the most relevant tokens or contexts contribute significantly to the
computation at each step.

In anyonic systems, although the concept of mutual exclusion is not inherently present, Mutual
exclusion in anyon-based TQC operates at the level of quantum state and path constraints, enforcing
rules that exclude certain interactions, states, or errors. This approach ensures the stability and
robustness of quantum information stored and processed within anyonic systems, which is critical for
the fault-tolerant properties of topological quantum computation.

The weights in attention mechanisms dynamically adjust the influence of tokens on each other,
reminiscent of braiding operations in anyons, which adjust the quantum state based on specific paths
and exclusion rules.

But unlike strict mutual exclusion in anyon systems, where fusion rules categorically exclude
certain outcomes, the attention mechanism in LLMs uses a probabilistic and weighted approach. This
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lack of strict exclusion means that any token can, in theory, have some degree of influence, even if it is
minimal. Thus, the exclusion is more flexible and continuous, allowing a range of contributions rather
than an absolute exclusion.

Further Directions

As Al leaders and researcher have pointed out, the scalability of LLMs may be nearing practical
limits, driving the need for structural innovation over mere size expansion. This study has aimed to
illuminate one such possible direction through the lens of anyonic systems in SU(2); theories, where
the modular tensor structures could offer insights into the robustness, complexity, and adaptability of
advanced LLMs.

Paper [32] reports on a correspondence between Thurston’s theory of non hyperbolic three-
manifolds and anyons. More precisely a (2 + 1)-topological quantum field theory is basically equivalent
to a modular tensor category. The correspondence is managed by the SL(2, C)-representation of the
fundamental group 71 (X) of the 3-manifold X. The role of SL(2, C)-flat connections is particularly
notable because they bridge the topological features of 3-manifolds and quantum field theories, linking
TQFTs to geometric structures on manifolds. These connections arise naturally in the context of the
Painlevé VI equation, a nonlinear differential equation significant in both classical and quantum realms
for its relation to monodromies of certain conformal blocks and connections to the moduli space of
punctured spheres [33,34].

In [35], the authors demonstrate that neural networks can capture key characteristics of topological
states, meaning that even without quantum computing, classical networks can emulate some properties
typically associated with quantum systems. Another paper points out the potential role of hyperbolic
geometry and topological spaces in classical neural networks [36]. Since SU(2); anyons represent
topological orders with distinct fusion and braiding rules, they provide a mathematically structured
way to model non-local interactions, akin to associative memory or hierarchical pattern recognition
in neural networks. This resonance between anyonic properties and neural network functions might
especially apply to LLMs, where intricate data correlations are encoded in a way that could mimic
anyonic fusion. With SU(2); anyons, different levels k introduce progressively complex fusion rules
that can, in theory, map onto increasingly sophisticated neural architectures, potentially helping
explain the layered, complex relationships in models like transformers.
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