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Article

Sixfold Discrete Symmetry of Fermion Fields as
Explanation for Dark Matter
Avi Nofech

1 Department of Mathematics and Statistics, MacEwan University, 10700 104 Ave NW, Edmonton, AB T5J 4S2, Canada;
anofech@gmail.com

Abstract: Using the Pauli algebra version of the Dirac equation we show the existence of its six
symmetric versions whose solutions are referred to as the six sectors of fermion fields. It is shown
that the sectors are distinct, by showing that if a field belongs to two sectors at once then its mass
must be zero. Also shown is the lack electromagnetic interaction between different sectors, since each
sector has its own unique matrix coupling the fermion field to the EM field. Altogether this predicts
the ratio of dark matter to ordinary matter of 5 to 1, which is close to the observed ratio of 5.2 to 1 [1].
In order to fully justify this prediction, the sixfold discrete symmetry must first of all be extended to
the electroweak sector. This article only deals with coupling of fermion fields to the electromagnetic
field. This paper essentially depends on the full equivalence of the Pauli algebra version of the Dirac
equation with its standard version, which is proven in (1). The sixfold symmetry can be seen in the
Pauli algebra version of the Dirac equation, but is harder to see in its standard version. It is shown that
the group of discrete symmetries of fermion fields is isomorphic to the group of automorphisms of the
first Pauli group G1.

Keywords: fermion fields, discrete symmetry, mass inversion

1. Introduction, Notation, and the Main Results
1.1. Introduction

The motivation for this article is the sixfold symmetry of fermion fields which is apparent in the
Pauli algebra formulation [2] of the Dirac equation but is hidden in its standard four-component form.
The solutions to the six symmetric versions of the Dirac equation form what is referred to as the six
sectors of fermion fields.

The discrete symmetries of fermion fields correspond to the automorphisms of the first Pauli
group G1, with inner automorphisms containing the charge conjugation and the mass inversion [2]
symmetries, and their composition. The outer automorphisms correspond to the parity symmetry
involution, direct product with the permutation group on three letters, obtained by permuting the
three spatial derivatives with three sigma matrices. (5).

We construct an operator that calculates the values of the electric and magnetic fields coupled to
the fermion field out of the fermion field spinor, with all quantities taking values in the Pauli algebra
of two by two complex matrices (2). The resulting second order wave equation has a coupling matrix
which is unique for each of the six versions, obtained by applying the outer automorphisms of the
Pauli algebra.

The six versions of the Dirac equation have the same scalar equations, which raises a question,
will their solutions be distinct? This question is answered positively in (6) by showing that if a field
belongs to two different sectors then its mass equals zero.

Another naturally arising question is, does there exist any electromagnetic transmission between
different sectors? It is answered in the negative in (2). For each of the six sectors, there is a different cou-
pling matrix connecting the electromagnetic field to the fermion field, thus precluding electromagnetic
signals between different sectors.
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The composition of the "bar" operation which inverts the sign of the vector component with the
"star" operation, which is the Hermitian conjugate, is an outer automorphism of the Pauli algebra.
Physically this "bar-star" automorphism corresponds to the parity symmetry.

It is essential to show that the Pauli algebra version of the Dirac equation taken together with its
bar-star image is fully equivalent to the standard Dirac equation taken together with its Hermitian
conjugate. This appears in (1).

1.2. Notation

All quantities considered here are elements of the Pauli algebra of complex 2 × 2 matrices, written
in the basis of Pauli matrices. Only lower indices are used and instead of upper and lower indices the
change of sign of the vector component is indicated by the bar. σ0 being identity is omitted.

Any element can be written as sum of its scalar component and its vector component. The "bar"
operation switches the sign of the vector component leaving the scalar component unchanged:

a = a0 + a = σ0a0 + σ1a1 + σ2a2 + σ3a3

ā = a0 − a = σ0a0 − σ1a1 − σ2a2 − σ3a3

The differential, where ∂α stands for ∂
∂xα

:

∂ = ∂0 + ∂ = σ0∂0 + σ1∂1 + σ2∂2 + σ3∂3

∂̄ = ∂0 − ∂ = σ0∂0 − σ1∂1 − σ2∂2 − σ3∂3

The EM four-potential in the interaction term:

A = A0 + A = σ0 A0 + σ1 A1 + σ2 A2 + σ3 A3

Ā = A0 − A = σ0 A0 − σ1 A1 − σ2 A2 − σ3 A3

and similarly for the conserved current J and its bar J̄.
The product of any element with its bar is the determinant:

aā = āa = det(a)I2

The composition of the differential with its bar is the D’Alembertian:

∂̄∂ = ∂∂̄ = □ =
(

∂2
0 − ∂2

1 − ∂2
2 − ∂2

3

)
I2

Inner and outer products:

a · b = a1b1 + a2b2 + a3b3 a ∧ b =

∣∣∣∣∣∣∣
iσ1 iσ2 iσ3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
An important outer product is the magnetic field B written in the basis of sigma matrices:

iB = ∂ ∧ A =

∣∣∣∣∣∣∣
iσ1 iσ2 iσ3

∂1 ∂2 ∂3

A1 A2 A3

∣∣∣∣∣∣∣
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A product of vectors is a sum of inner and outer products: ab = a · b + a ∧ b. A product also splits as
sum of scalar and vector components:

ab = a0b0 + a · b + a0b + b0a + a ∧ b

ba = b0a0 + b · a + b0a + a0b + b ∧ a

where the first two summands are the scalar component and the last three summands are the vector
component. From this we obtain the relation between the commutator and the outer product: [a, b] =
[a, b] = 2a ∧ b.

The bar-star automorphism of Pauli algebra is the composition of the bar operation with Her-
mitian conjugation, in either order (the "star" is also used for complex conjugation). It is an outer
automorphism since it changes the determinant. The bar-star automorphism fixes the subalgebra of
real quaternions and reverses the sign of the imaginary quaternions, so it acts like complex conjugation
on the Pauli algebra. The real quaternions have real scalar term and imaginary vector terms, vice versa
for imaginary quaternions:

x = x0 + x x̄∗ = x∗0 − x∗

The four-component spinor of the Dirac equation is written using letters rather than indices and is
completed with the second column as follows:

Ψ =


a
b
c
d

 −→


a b∗

b −a∗

c −d∗

d c∗

 =

iv

u


The lower square of the two-column matrix is an element u of the subalgebra of real quaternions H
and is unchanged by the bar-star automorphism. The upper square iv is a product of a real quaternion
with imaginary unit i and its sign is changed by the bar-star automorphism. Their sum is called the
Pauli algebra spinor:

u =

c −d∗

d c∗

 iv =

a b∗

b −a∗

 ψ = u + iv ψ̄∗ = u − iv

1.3. The Main Results

1. The second order wave equation coupling the fermion field to EM field:(
□+ m 2 − q 2 det A

)
ψ (iσ3) = q (∂̄Ā + A∂)ψ

where ψ is the Pauli algebra spinor, and iσ3 is the coupling matrix.
2. The six symmetric versions of the wave equation: they are obtained from the six different

representations of the Clifford algebra Cl1,2 into the algebra of matrices M2(C). Each of these
versions has its own coupling matrix that connects between the fermion field and the EM field.

3. The group of discrete symmetries of fermion fields: they correspond to the group of automor-
phisms of the first Pauli group G1, with inner automorphisms being the charge conjugation, the
mass inversion, and their composition, and the outer automorphisms being the parity symmetry
involution direct product with the group of permutations on three letters. (see 5)
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2. Proof of equivalence of the Pauli algebra version to the standard Dirac equation
Proposition 1. The standard Dirac equation taken together with its Hermitian conjugate is equivalent to the
Pauli algebra Dirac equation taken together with its bar-star image.

Proof. The original Dirac equation:
(
iγµDµ − m

)
Ψ = 0 is multiplied by −i and is rewritten in

two by two blocks with separate matrices for the differentials and for the EM interaction term. The
left column of the equation below are the four scalar equations of the standard Dirac equation and
the right column are the equations of the Hermitian conjugate Dirac equation, though they appear
in different order. The matrices σ3 appear because without them the right column would have the
opposite sign.  ∂0 ∂

−∂ −∂0


iv

u

+ i q

A0 −A

A −A0


iv

u

[σ3

]
+ i m

iv

u

[σ3

]
= 0 (1)

(It is useful at this point to rewrite the equation without blocks and check that the four equations in
the left column are those of the Dirac equation and the four equations in the right column are of its
Hermitian conjugate).

We now multiply the equation on the right by iσ3 and rewrite it as two equations in Pauli algebra,
and also switch the signs in the second equation:

∂0iv(iσ3) + ∂ u(iσ3)− q A0iv + q Au − m iv = 0

−∂0u(iσ3)− ∂ iv(iσ3) + q A0u − q Aiv − m u = 0

∂0u(iσ3) + ∂ iv(iσ3)− q A0u + q Aiv + m u = 0

Next add and subtract the two equations recalling that ψ = u + iv ψ̄∗ = u − iv:

∂0ψ (iσ3) + ∂ψ (iσ3)− q A0ψ + q Aψ + m ψ̄∗ = 0

∂0ψ̄∗(iσ3)− ∂ψ̄∗(iσ3)− q A0ψ̄∗ − q Aψ̄∗ + m ψ = 0

Combining we obtain the Dirac equation and its bar-star conjugate:

∂ ψ (iσ3)− q Āψ + m ψ̄∗ = 0 (2)

∂̄ψ̄∗(iσ3)− q A ψ̄∗ + m ψ = 0

These two equations are transformed one into the other by the bar-star automorphism, because ∂ and
A are real.

3. Second Order Wave Equation Coupling the Fermion and the EM Fields
3.1. Reciprocal expressions for the spinor and its bar-star image

The equations 2 allow to express ψ̄∗ in terms of ψ and vice versa express ψ in terms of ψ̄∗. Then
combine to obtain second order equations for both:

ψ̄∗ = − 1
m

(∂ ψ (iσ3)− q Ā ψ)

ψ = − 1
m

(
∂̄ ψ̄∗(iσ3)− q A ψ̄∗)
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Now plug in:

ψ =
1

m 2

(
∂̄ (∂ ψ (iσ3)− q Ā ψ) (iσ3)− q A (∂ ψ (iσ3)− q Ā ψ)

)
(3)

ψ̄∗ =
1

m 2

(
∂
(
∂̄ ψ̄∗(iσ3)− q A ψ̄∗)(iσ3)− q Ā

(
∂̄ ψ̄∗(iσ3)− q A ψ̄∗))

Simplify:

ψ =
1

m 2

(
−□ψ − q ∂̄Āψ(iσ3) − q A∂ ψ(iσ3) + q 2 det(A)ψ

)
ψ̄∗ =

1
m 2

(
−□ψ̄∗ − q ∂Aψ̄∗(iσ3)− q Ā∂̄ ψ̄∗(iσ3) + q 2 det(A) ψ̄∗

)
Rewriting we have: (

□+ m 2 − q 2 det A
)

ψ = − q
(
∂̄Ā + A∂

)
ψ (iσ3)(

□+ m 2 − q 2 det A
)

ψ̄∗ = − q
(
∂A + Ā∂̄

)
ψ̄∗(iσ3)

Multiplying on the right by iσ3 we have:

Proposition 2. Coupling of Fermion and EM Fields(
□+ m 2 − q 2 det A

)
ψ (iσ3) = q

(
∂̄Ā + A∂

)
ψ(

□+ m 2 − q 2 det A
)

ψ̄∗(iσ3) = q
(
∂A + Ā∂̄

)
ψ̄∗

Again, these two equations are transformed one into the other by the bar-star automorphism.
Taking into account the placement of brackets in 3, the right sides should be understood as(

□+ m 2 − q 2 det A
)

ψ (iσ3) = q ∂̄(Ā ψ ) + q A(∂ψ ) (4)(
□+ m 2 − q 2 det A

)
ψ̄∗(iσ3) = q ∂(Aψ̄∗) + q Ā(∂̄ψ̄∗)

4. The Pauli algebra Lagrangian
The purpose of this section is to rewrite the Lagrangian of quantum electrodynamics in Pauli

algebra form. Then the Lagrangian is rewritten in terms of Clifford algebra Cl1,2. Next we use the six
representations of the Clifford algebra Cl1,2 into the algebra of two by two complex matrices M2(C)
so as to construct six symmetric forms of the Dirac equation and the automorphisms that connect
between them.

The main difference between the standard QED Lagrangian [3], [4], [5] :

LQED = Ψ(iγµ∂µ − m)Ψ − qAµΨγµΨ − 1
4 FµνFµν

and the Pauli algebra Lagrangian used here is use of the multiplicative structure of the algebra.
The other difference is that unlike the usual recovering the equations of motion from the La-

grangian using the Euler-Lagrange equations, another procedure is used, namely equating to zero the
formal derivatives. This results in Pauli algebra Dirac equation [2], and to the inhomogeneous wave
equations.

Here is the Pauli algebra version of the QED Lagrangian:

L = ψ∗∂ ψ(iσ3)− qψ∗ Ā ψ + mψ∗ψ̄∗ +
(

∂A
)

∂A +

+ ψ ∂ ψ̄∗(iσ3)− qψA ψ̄∗ + m ψ ψ +
(

∂̄Ā
)

∂̄Ā
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The Lagrangian is intentionally written in two lines because these lines are transformed one into the
other by the bar-star automorphism of the Pauli algebra (see [2]).

The Lagrangian can also be written in terms of the conserved current J:

L = ψ∗ ∂ ψ(iσ3)− 1
2 (Ā J + J̄ A) + mψ∗ψ̄∗ + Ā□ A

+ ψ ∂ ψ̄∗(iσ3)− 1
2 (A J̄ + J Ā) + m ψ ψ + A□ Ā

The reason for this is that ∂̄∂A = ∂∂̄A = □ A and also (see 7)

qψ∗ Ā ψ + qψA ψ̄∗ = 1
2 (Ā J + A J̄ + J̄ A + J Ā)

Recovering the equations of motion is done by equating to zero the formal derivatives of the Lagrangian
with respect to ψ∗, ψ, Ā, A:

∂L

∂ψ∗ = 0
∂L

∂ ψ
= 0

∂L

∂Ā
= 0

∂L

∂A
= 0

This results in four equations

∂ ψ (iσ3)− qĀ ψ + mψ̄∗ = 0 (5)

∂ ψ̄∗(iσ3)− qA ψ̄∗ + m ψ = 0

−J + □ A = 0

− J̄ + □ Ā = 0

The first two equations are the Pauli algebra Dirac equation [2], and the last two are the inhomogeneous
wave equations [6].

The sign of the d’Alembertian used here is the opposite of the sign in [6].
The differential, the four-potential and the four-current are elements of the Pauli algebra M2(C)

split into scalar and vector parts as follows:

∂ = ∂µσµ = ∂0 + ∂ ∂̄ = ∂0 − ∂

A = Aµσµ = A0 + A Ā = A0 − A

J = Jµσµ = J0 + J J̄ = J0 − J

If u ∈ H then u∗ = ū, ū∗ = u. For iv the opposite holds (iv)∗ = −iv̄.
For any ψ ∈ M2(C) ψ̄ψ = det(ψ)I2

Both compositions of the differential and its bar are the d’Alembertian: ∂∂̄ = ∂̄∂ = □ . Hence:

(∂A)∂A = Ā∂̄∂A = Ā□ A

(∂̄Ā)∂̄Ā = A∂∂̄Ā = A□ Ā

The Lagrangian is rewritten separating the elements into their scalar and vector parts. This will be
used when writing the representation independent form of the Lagrangian.

L = ψ∗ (∂0 + ∂)ψ(iσ3) + mψ∗ψ̄∗ + ψ (∂0 − ∂) ψ̄∗(iσ3) + m ψ ψ

− 1
2 [(A0 − A) (J0 + J) + (J0 − J) (A0 + A)] + (A0 − A)□ (A0 + A)

− 1
2 [(A0 + A) (J0 − J) + (J0 + J) (A0 − A)] + (A0 + A)□ (A0 − A)
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Taking into account that

ψ∗ = ū − iv̄ ψ̄ = ū + iv̄ ψ̄∗ = u − iv ψ = u + iv

and the expressions for the current 8 which imply:

J0 = q(ūu + v̄v)σ0 J = Jkσk = iq(ūσkv − v̄σku)σk

the Lagrangian is rewritten in quaternionic functions u and v as follows:

1
2 L = (ū∂0u + v̄∂0v)(iσ3)− (ū∂v − v̄∂u)σ3 − (6)

−qA0(ūu + v̄v) + iqAk(ūσkv − v̄σku) +

+A0 □ A0 − A□ A + m(ūu − v̄v)

Equating to zero the derivatives
∂L

∂ū
= 0

∂L

∂v̄
= 0

results in equations

∂0u(iσ3)− ∂vσ3 − qA0u + iqAv + mu = 0

∂0v(iσ3) + ∂uσ3 − qA0v − iqAu − mv = 0

which are equivalent to the first two equations of 5, which are the Pauli algebra Dirac equations. This
can be checked by multiplying the second equation by i and then adding and subtracting with the first
equation.

In order to have a representation-independent form of the Lagrangian, the quaternionic functions,
the real u and the imaginary iv, need to be written in terms of sigma matrices:

u =

c −d∗

d c∗

 =

c0 + ic1 −d0 + id1

d0 + id1 c0 − ic1

 = c0σ0 + id1σ1 − id0σ2 + ic1σ3

iv =

a b∗

b −a∗

 =

a0 + ia1 b0 − ib1

b0 + ib1 −a0 + ia1

 = ia1σ0 + b0σ1 + b1σ2 + a0σ3

4.1. Proof that the two forms of Lagrangian are the same

Proposition 3. The two sums forming the interaction terms in the Lagrangian are equal:

qψ∗ Ā ψ + qψA ψ̄∗ = 1
2 (Ā J + A J̄ + J̄ A + J Ā) (7)

Proof. The probability current Jµ is calculated out of the real quaternionic and imaginary quaternionic
components of the Pauli algebra spinor ψ as follows:

Jµ = u∗σµ(iv) + (iv)∗σµu

(Here the components of the conserved current J are understood not as numbers, but as scalar two by
two matrices).

This can be checked by using the two-column completion of Ψ as described in 1 and in [2], and
then rewriting the usual formula for the probability current [5] with 2 × 2 blocks iv and u.
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We need to calculate separately the scalar and the vector components of the current:

J0 = q[u∗u + (iv)∗(iv)]σ0 J = Jkσk = q[u∗σk(iv) + (iv)∗σku]σk

(Note that both u∗u + (iv)∗(iv) and u∗σk(iv) + (iv)∗σku are real scalars)
To prove 7 we calculate separately the left side and the right side. The spinor ψ = u + iv is

decomposed as sum of a real quaternionic function u and an imaginary quaternionic function iv. We
begin with the left side:

L.S. = qψ∗ Ā ψ + qψA ψ̄∗ =

q [u∗ + (iv)∗](A0 − A) (u + iv) + q [u∗ − (iv)∗](A0 + A) (u − iv) =
= q (ū − iv̄)(A0 − A) (u + iv) + q (ū + iv̄)(A0 + A) (u − iv) =
= 2qA0(ūu + v̄v)σ0 − 2iqAk(ūσkv − v̄σku)σk =

= 2qA0[u∗u + (iv)∗(iv)]σ0 − 2qAk[u∗σk(iv) + (iv)∗σku]σk

(Note that the expressions in square brackets are real scalars)
Now calculate the right side:

R.S. = 1
2 (Ā J + A J̄ + J̄ A + J Ā) =

= 1
2 [(A0 − A)(J0 + J) + (A0 + A)(J0 − J)+

+(J0 − J)(A0 + A) + (J0 + J)(A0 − A)] =

= 2(A0 J0 − 2A · J − 2A ∧ J − 2J ∧ A) =

= 2(A0 J0 − 2A · J)

(the last equality because the outer product is anticommutative)
Now use the expressions for the current in (8):

R.S. = 2qA0[u∗u + (iv)∗(iv)]σ0 − 2qAk[u∗σk(iv) + (iv)∗σku]σk (8)

L.S. = R.S.

5. The Clifford algebra Lagrangian
The Pauli algebra M2(C) is isomorphic to the Clifford algebra Cl1,2 so that every element can be

expressed in its three generators:

e2
0 = 1, e2

1 = −1, e2
2 = −1 (9)

The table below defines six matrix representations of Cl1,2 into M2(C), of which the first is chosen
to be the standard one.

The automorphisms of M2(C) are labelled by their action on the three cyclic subgroups of order
4 of the finite quaternion group Q8. These automorphisms form a group isomorphic to the group of
permutations of three letters, see [7], [8].

Here the finite quaternion group is (including their opposite signs):

Q8 = {σ0, −iσ1, −iσ2, −iσ3} ↔ {1, i, j, k }

This action can be seen in the columns corresponding to the generators

e1, e2, e1e2
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The subscripts ijk in the following table show the isomorphism between the outer automorphisms of
Q8 and the group of permutations of three letters.

The morphisms between the representations are obtained by combining the inverse of one
representation with another. The automorphism of M2(C) converting the DE 123 into DE 231 for
example will be

φ231 ◦ φ−1
123

Here is the table for φijk : Cl1,2 → M2(C):

φijk e0 e1 e2 e1e2 e0e1 e0e2 e0e1e2

φ 123 σ3 −iσ1 − iσ2 −iσ3 σ2 −σ1 − iσ0

φ 231 σ1 −iσ2 − iσ3 −iσ1 σ3 −σ2 − iσ0

φ 312 σ2 −iσ3 − iσ1 −iσ2 σ1 −σ3 − iσ0

φ 213 σ3 −iσ2 − iσ1 iσ3 − σ1 σ2 iσ0

φ 132 σ2 −iσ1 − iσ3 iσ2 − σ3 σ1 iσ0

φ 321 σ1 −iσ3 − iσ2 iσ1 − σ2 σ3 iσ0

The action of the bar-star automorphism and of the bar and of "star" (Hermitian conjugate)
anti-automorphisms on the generators of the Clifford algebra can be seen in the following table:

operation e0 e1 e2 e1e2 e0e1 e0e2 e0e1e2

bar-star -1 1 1 1 -1 -1 -1
bar -1 -1 -1 -1 -1 -1 1
star 1 -1 -1 -1 1 1 -1

Now use φ−1
123 to rewrite all the vector expressions in terms of generators of the Clifford algebra,

according to the first line in the table. The σ0 being identity is omitted.

∂ = −e0e2 ∂1 + e0e1 ∂2 + e0 ∂3 (10)

A = −e0e2 A1 + e0e1 A2 + e0 A3

J = −e0e2 J1 + e0e1 J2 + e0 J3

The other elements of the Lagrangian that depends on the representation are iσ3 and σ3, and according
to the first line of the table, they should be replaced with −e1e2 and with e0.

Now one can write the representation-independent Lagrangian, by substituting 10 into 6. In this
article the substitution is done only for the case of the free Dirac equation .

If the six representations are applied to all the expressions in the Lagrangian and in the resulting
equations, then the morphisms between representations will transform solutions into solutions. Both
the new Pauli algebra spinors and the corresponding new equations will be different but the underlying
eight equations of the Dirac equation and its Hermitian conjugate will be exactly the same.
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This raises the question, will the solutions to the transformed equations be the same as before,
or will they be genuinely different? This question is answered in 4. Only the free Dirac equation is
needed there, so here is its representation-independent form:

(∂0 − e0e2 ∂1 + e0e1 ∂2 + e0 ∂3)ψ + e0e1e2 m ψ̄∗e0 = 0 (11)

6. The six sectors of fermion fields are distinct
The method used to show this is the mass inversion symmetry, described in [2]. For convenience

this short argument is reproduced here. Given a solution ψ of the free Dirac equation define ψ ′ = ψσ3.
Then multiply this equation, which appears first, on the right by σ3, and recall that σ̄3

∗ = −σ3:

∂ψ = i m ψ̄∗σ3 ∂ψσ3 = i m ψ̄∗σ3σ3 ∂ψσ3 = −i m ¯(ψσ3)
∗
σ3 ∂ψ ′ = −i m ψ̄ ′∗σ3

So ψ ′ is also a solution of the Dirac equation but with the mass of opposite sign.

Proposition 4. Only massless spinors can be solutions to two versions of the free Dirac equation belonging to
two different sectors.

Proof. These are the six versions of the free Dirac equation obtained by applying the six representations
to the representation-independent free Dirac equation :

123 (∂0 + σ1 ∂1 + σ2 ∂2 + σ3 ∂3)ψ − i m ψ̄∗σ3 = 0 (12)

231 (∂0 + σ2 ∂1 + σ3 ∂2 + σ1 ∂3)ψ − i m ψ̄∗σ2 = 0

312 (∂0 + σ3 ∂1 + σ1 ∂2 + σ2 ∂3)ψ − i m ψ̄∗σ1 = 0

213 (∂0 − σ2 ∂1 − σ1 ∂2 + σ3 ∂3)ψ + i m ψ̄∗σ3 = 0

132 (∂0 − σ1 ∂1 − σ3 ∂2 + σ2 ∂3)ψ + i m ψ̄∗σ1 = 0

321 (∂0 − σ3 ∂1 − σ2 ∂2 + σ1 ∂3)ψ + i m ψ̄∗σ2 = 0

Suppose that the spinor ψ is a solution of two different equations, with the same mass. We can always
use the morphisms between representation to make the first of two equations the top line 123. Now
let the second equation be any other except 213 (this case will be dealt with separately). For example
suppose the second equation is 231. Multiply both equations on the right by σ3:

123 (∂0 + σ1 ∂1 + σ2 ∂2 + σ3 ∂3)ψ
′ + i m ψ̄ ′∗σ3 = 0 (13)

231 (∂0 + σ2 ∂1 + σ3 ∂2 + σ1 ∂3)ψ
′ − i m ψ̄ ′∗σ2 = 0

So ψ ′ is a solution for the first equation with mass −m and for the second with mass m , which is
only possible if the mass is zero. This argument applies to all lines except 213 where we do not have
the anticommutation.

For the lines 123 and 213 suppose that m ̸= 0 and consider also their bar-star equations:

(∂0 + σ1 ∂1 + σ2 ∂2 + σ3 ∂3)ψ − i m ψ̄∗σ3 = 0 (14)

(∂0 − σ2 ∂1 − σ1 ∂2 + σ3 ∂3)ψ + i m ψ̄∗σ3 = 0

(∂0 − σ1 ∂1 − σ2 ∂2 − σ3 ∂3)ψ̄
∗ − i m ψσ3 = 0

(∂0 + σ2 ∂1 + σ1 ∂2 − σ3 ∂3)ψ̄
∗ + i m ψσ3 = 0

Subtracting the first two lines and the last two lines we get

1
2 (σ1 + σ2)(∂1 + ∂2)ψ = i m ψ̄∗σ3

1
2 (σ1 + σ2)(∂1 + ∂2) ψ̄∗ = −i m ψσ3
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Combining we get 1
2 m 2 (∂1 + ∂2)

2ψ = ψ and with a change of coordinates we have an ODE

1
2 m 2

∂2ψ

∂s2 − ψ = 0

with real roots of its characteristic equation. So ψ is an exponential function and this is incompatible
with it being normalizable.

7. The Lack of Electromagnetic Interaction between Different Sectors
We consider the six symmetric versions of the equation (2) that links the fermion field to the

electromagnetic field. In the version labeled by the permutation 123 the linking matrix is iσ3. A look at
the fourth column of the table (5) shows that the representation independent expression is −e1e2. Its
values under the six representations are all different, showing a specific coupling within each sector.

8. The Group of Discrete Symmetries
Proposition 5. The group of discrete symmetries of fermion fields is the group of automorphisms of the first Pauli
group G1 where the abelian normal subgroup of inner automorphisms consists of identity, the charge conjugation
symmetry C, the mass inversion symmetry M and their composition. The group of outer automorphisms is a
direct product of the group of order two generated by the parity symmetry, which is the bar-star automorphism,
and the group of permutations on three letters, generated by permuting the three spatial derivates with the three
sigma matrices.

Proof. The proof consists of identifying the discrete symmetries with elements of the automorphism
group Aut(G1).

The inner automorphisms of the first Pauli group G1 are the conjugations by σ1 which is the
charge conjugation symmetry C, by σ3 which is the mass inversion symmetry M, and by their product
iσ2, which is CM = MC.

(This appears in [2], except it appears as right multiplication by the sigma matrix rather than
conjugation as here).

Rewriting the short exact sequence

1 −→ Inn G1 −→ Aut G1 −→ Out G1 −→ 1

we have
1 −→ C2 × C2 −→ AutG1 −→ C2 × S3 −→ 1

where in the outer automorphisms the cyclic group of order two is generated by the parity transfor-
mation "bar-star" and the group of permutations permutes between spatial derivatives and the three
sigma matrices.

The parity transformation inverts the signs of the three spatial derivatives and the three compo-
nents of the vector potential. Recalling that there are two versions of the Pauli algebra Dirac equation
related by the bar-star automorphism, this transformation essentially replaces the spinor ψ with its
bar-star image ψ̄∗ and vice versa. Since the choice between them is arbitrary, there are only six sectors
of fermion fields and not twelve. The group of automorphisms of G1 is described in [? ].

9. Conclusions and open questions
For the six-fold discrete symmetry to be a candidate to explain dark matter, two issues need to be

addressed: first, show that the six sectors of free fermion fields are genuinely distinct from each other;
and second, show the absence of electromagnetic interaction between different sectors. The first issue
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is addressed in (4). The second follows from the unique matrix coupling the fermion field to the EM
field in (2).

What remains is the important caveat, that the six-fold symmetry must be extended to weak and
strong interactions to be a reasonable explanation. This is not addressed in the present article.

According to [1] the universe consists of approximately 5% ordinary baryonic matter, ∼ 26% dark
matter, and ∼ 61% dark energy. This gives the ratio of dark matter to ordinary matter of 5.2 : 1 which
is close to 5 : 1, as predicted by the six-fold symmetry.
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