Submitted:
08 November 2024
Posted:
11 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Arid Zone Plants in Mexico
3. Nutritional Benefits and Importance of Arid Zone Plants
4. Importance and Traditional Use of Arid Zone Plants
5. Arid Zone Plants’ Bioactive Compounds and Their Foodstuff Usage
5.1. Agave Leaves
5.2. Pulque and Agave Syrup
5.3. Yucca Leaves and Fruits
5.4. Opuntia Cladodes and Fruits
5.5. Pitahaya and Pitaya Fruits
6. Use of Traditional Crops for the Development of Functional Foods
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morte, A.; Kagan-Zur, V.; Navarro-Ródenas, A.; Sitrit, Y. Cultivation of Desert Truffles—A Crop Suitable for Arid and Semi-Arid Zones. Agronomy 2021, 11, 1–13. [CrossRef]
- Gaur, M.K.; Squires, V.R. Climate Variability Impacts on Land Use and Livelihoods in Drylands. In Climate Variability Impacts on Land Use and Livelihoods in Drylands; 2017; pp. 1–20 ISBN 9783319566818.
- Ruiz-Nieto, J.E.; Hernández-Ruiz, J.; Hernández-Marín, J.; Mendoza-Carrillo, J.; Abraham-Juárez, M.; Isiordia-Lachica, P.M.; Mireles-Arriaga, A.I. Mesquite (Prosopis Spp.) Tree as a Feed Resource for Animal Growth. Agrofor. Syst. 2020, 94, 1139–1149. [CrossRef]
- Tan, M.; Zheng, L. Increase in Economic Efficiency of Water Use Caused by Crop Structure Adjustment in Arid Areas. J. Environ. Manage. 2019, 230, 386–391. [CrossRef]
- Jiang, L.; Hu, D.; Wang, H.; Lv, G. Discriminating Ecological Processes Affecting Different Dimensions of α- and β-Diversity in Desert Plant Communities. Ecol. Evol. 2022, 12, 1–13. [CrossRef]
- Mizrahi, Y. Do We Need New Crops for Arid Regions? A Review of Fruit Species Domestication in Israel. Agronomy 2020, 10. [CrossRef]
- Muluneh, M.G. Impact of Climate Change on Biodiversity and Food Security: A Global Perspective—a Review Article. Agric. Food Secur. 2021, 10, 1–25. [CrossRef]
- Marasco, R.; Mosqueira, M.J.; Cherif, A.; Daffonchio, D. Diversity and Plant Growth-Promoting Properties of Microbiomes Associated with Plants in Desert Soils BT - Microbiology of Hot Deserts. In; Ramond, J.-B., Cowan, D.A., Eds.; Springer International Publishing: Cham, 2022; pp. 205–233 ISBN 978-3-030-98415-1.
- Mohanta, T.K.; Mohanta, Y.K.; Kaushik, P.; Kumar, J. Physiology, Genomics, and Evolutionary Aspects of Desert Plants. J. Adv. Res. 2023. [CrossRef]
- Yang, X.D.; Wu, N.C.; Gong, X.W. Plant Adaptation to Extreme Environments in Drylands. Forests 2023, 14, 2–4. [CrossRef]
- Arba, M. The Potential of Cactus Pear (Opuntia Ficus-Indica (L.) Mill.) as Food and Forage Crop. In Emerging research in Alternative Crops; Hirich, A., Choukr-Allah, R., Ragab, R., Eds.; Cham, Switzerland, 2020; Vol. 58, pp. 335–357 ISBN 978-3-319-90471-9.
- Daniloski, D.; D’Cunha, N.M.; Speer, H.; McKune, A.J.; Alexopoulos, N.; Panagiotakos, D.B.; Petkoska, A.T.; Naumovski, N. Recent Developments on Opuntia Spp., Their Bioactive Composition, Nutritional Values, and Health Effects. Food Biosci. 2022, 47, 101665. [CrossRef]
- Aldughaylibi, F.S.; Raza, M.A.; Naeem, S.; Rafi, H.; Alam, M.W.; Souayeh, B.; Farhan, M.; Aamir, M.; Zaidi, N.; Mir, T.A. Extraction of Bioactive Compounds for Antioxidant, Antimicrobial, and Antidiabetic Applications. Molecules 2022, 27, 1–16. [CrossRef]
- Rodrigues, C.; Paula, C.D. de; Lahbouki, S.; Meddich, A.; Outzourhit, A.; Rashad, M.; Pari, L.; Coelhoso, I.; Fernando, A.L.; Souza, V.G.L. Opuntia Spp.: An Overview of the Bioactive Profile and Food Applications of This Versatile Crop Adapted to Arid Lands. Foods 2023, 12, 1–31. [CrossRef]
- CONAFOR Las Zonas Áridas Son Más Que Desierto Available online: https://www.gob.mx/conafor/es/articulos/las-zonas-aridas-son-mas-que-desierto?idiom=es.
- Álvarez-Chávez, J.; Santos-Zea, L.; Ramírez-Jiménez, A.K.; Kleinschek, K.S. Agave By-Products: An Overview of Their Nutraceutical Value, Current Applications, and Processing Methods. Polysaccharides 2021, Vol. 2, Pages 720-743 2021, 2, 720–743. [CrossRef]
- Martínez, Y.; Iser, M.; Valdivié, M.; Rosales, M.; Albarrán, E.; Sánchez, D. Dietary Supplementation with Agave Tequilana (Weber Var. Blue) Stem Powder Improves the Performance and Intestinal Integrity of Broiler Rabbits. Anim. 2022, Vol. 12, Page 1117 2022, 12, 1117. [CrossRef]
- Pérez-Zavala, M. de L.; Hernández-Arzaba, J.C.; Bideshi, D.K.; Barboza-Corona, J.E. Agave: A Natural Renewable Resource with Multiple Applications. J. Sci. Food Agric. 2020, 100, 5324–5333. [CrossRef]
- Jiménez, G.G.; Durán, A.G.; Macías, F.A.; Simonet, A.M. Structure, Bioactivity and Analytical Methods for the Determination of Yucca Saponins. Molecules 2021, 26, 1–30. [CrossRef]
- López-Ramírez, Y.; Cabañas-García, E.; Areche, C.; Trejo-Tapia, G.; Pérez-Molphe-Balch, E.; Gómez-Aguirre, Y.A. Callus Induction and Phytochemical Profiling of Yucca Carnerosana (Trel.) McKelvey Obtained from in Vitro Cultures. Rev. Mex. Ing. Quim. 2021, 20, 823–837. [CrossRef]
- Al-Sulbi, A.O.; Alghanem, A.A. Synchronous Management of Public Green Spaces: The Case of Imam Abdulrahman Bin Faisal University’s Eastern Campus – Dammam, Saudi Arabia. Ain Shams Eng. J. 2022, 13, 1–10. [CrossRef]
- Krümpel, J.; George, T.; Gasston, B.; Francis, G.; Lemmer, A. Suitability of Opuntia Ficus-Indica (L) Mill. and Euphorbia Tirucalli L. as Energy Crops for Anaerobic Digestion. J. Arid Environ. 2020, 174, 1–8. [CrossRef]
- Eleojo, C.; Amoo, S.O.; Kudanga, T. Opuntia (Cactaceae) Plant Compounds, Biological Activities and Prospects – A Comprehensive Review. Food Res. Int. 2018, 112, 328–344. [CrossRef]
- du Toit, A.; de Wit, M.; Osthoff, G.; Hugo, A. Antioxidant Properties of Fresh and Processed Cactus Pear Cladodes from Selected Opuntia Ficus-Indica and O. Robusta Cultivars. South African J. Bot. 2018, 118, 44–51. [CrossRef]
- Besné-Eseverri, I.; Trepiana, J.; Gómez-Zorita, S.; Antunes-Ricardo, M.; Cano, M.P.; Portillo, M.P. Beneficial Effects of Opuntia Spp. on Liver Health. Antioxidants 2023, 12, 1–20. [CrossRef]
- Regalado-Rentería, E.; Aguirre-Rivera, J.R.; González-Chávez, M.M.; Sánchez-Sánchez, R.; Martínez-Gutiérrez, F.; Juárez-Flores, B.I. Assessment of Extraction Methods and Biological Value of Seed Oil from Eight Variants of Prickly Pear Fruit (Opuntia Spp.). Waste and Biomass Valorization 2018, 11, 1181–1189. [CrossRef]
- Manzur-Valdespino, S.; Arias-Rico, J.; Ramírez-Moreno, E.; Sánchez-Mata, M. de C.; Jaramillo-Morales, O.A.; Angel-García, J.; Zafra-Rojas, Q.Y.; Barrera-Gálvez, R.; Cruz-Cansino, N.D.S. Applications and Pharmacological Properties of Cactus Pear (Opuntia Spp.) Peel: A Review. Life 2022, 12. [CrossRef]
- Balendres, M.A.; Bengoa, J.C. Diseases of Dragon Fruit (Hylocereus Species): Etiology and Current Management Options. Crop Prot. 2019, 126, 1–7. [CrossRef]
- Attar, S.H.; Urün, I.; Kafkas, S.; Kafkas, N.E.; Ercisli, S.; Ge, C.; Mlcek, J.; Adamkova, A. Nutritional Analysis of Red-Purple and White-Fleshed Pitaya ( Hylocereus ) Species. 2022.
- Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R. Phenolic Compounds Profile and Antioxidant Capacity Of. Foods 2021, 10, 1183.
- García-Cruz, L.; Dueñas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and Phenolic Compounds Profiling and Antioxidant Capacity of Pitaya (Stenocereus Spp.) Fruit from Two Species (S. Pruinosus and S. Stellatus). Food Chem. 2017, 234, 111–118. [CrossRef]
- García Ordoñez, T.E.; Díaz Castro, F.; Castellanos Suárez, J.A.; Sedano Castro, G.; Almeraya Quintero, S.X. Characterization of the Pitaya Crop Stenocereus Pruinosus in the Community of Dolores Hidalgo, Huitziltepec, Puebla. Rev. Científica y Académica 2024, 5, 632–648. [CrossRef]
- Escobedo-García, S.; Salas-Tovar, J.A.; Flores-Gallegos, A.C.; Contreras-Esquivel, J.C.; González-Montemayor, Á.M.; López, M.G.; Rodríguez-Herrera, R. Functionality of Agave Bagasse as Supplement for the Development of Prebiotics-Enriched Foods. Plant Foods Hum. Nutr. 2019 751 2019, 75, 96–102. [CrossRef]
- Juárez-Trujillo, N.; Monribot-Villanueva, J.L.; Jiménez-Fernández, V.M.; Suárez-Montaño, R.; Aguilar-Colorado, Á.S.; Guerrero-Analco, J.A.; Jiménez, M. Phytochemical Characterization of Izote (Yucca Elephantipes) Flowers. J. Appl. Bot. Food Qual. 2018, 91, 202–210. [CrossRef]
- Rezende, F.M.; Véras, A.S.C.; Siqueira, M.C.B.; Conceição, M.G.; Lima, C.L.; Almeida, M.P.; Mora-Luna, R.E.; Neves, M.L.M.W.; Monteiro, C.C.F.; Ferreira, M.A. Nutritional Effects of Using Cactus Cladodes (Opuntia Stricta Haw Haw) to Replace Sorghum Silage in Sheep Diet. Trop. Anim. Health Prod. 2020. [CrossRef]
- Pulido-Hornedo, N.A.; Ventura-Juárez, J.; Guevara-Lara, F.; González-Ponce, H.A.; Sánchez-Alemán, E.; Buist-Homan, M.; Moshage, H.; Martínez-Saldaña, M.C. Hepatoprotective Effect of Opuntia Robusta Fruit Biocomponents in a Rat Model of Thioacetamide-Induced Liver Fibrosis. Plants 2022, 11. [CrossRef]
- Rathi, K.M.; Singh, S.L.; Gigi, G.G.; Shekade, S.V. Nutrition and Therapeutic Potential of the Dragon Fruit: A Qualitative Approach. Pharmacognosy Res. 2023, 16, 1–9. [CrossRef]
- Corzo-Rios, L.J.; Bautista-Ramírez, M.E.; Gómez y Gómez, Y. de la M.; Torres-Bustillos, L.G. Frutas de Cactáceas: Compuestos Bioactivos y Sus Propiedades Nutracéuticas. Propiedades Funcionales hoy 2017, 35–66. [CrossRef]
- Arellano-Plaza, M.; Paez-Lerma, J.B.; Soto-Cruz, N.O.; Kirchmayr, M.R.; Gschaedler Mathis, A. Mezcal Production in Mexico: Between Tradition and Commercial Exploitation. Front. Sustain. Food Syst. 2022, 6, 46. [CrossRef]
- de la Rosa, O.; Flores-Gallegos, A.C.; Muñíz-Márquez, D.; Contreras-Esquivel, J.C.; Teixeira, J.A.; Nobre, C.; Aguilar, C.N. Successive Fermentation of Aguamiel and Molasses by Aspergillus Oryzae and Saccharomyces Cerevisiae to Obtain High Purity Fructooligosaccharides. Foods 2022, 11, 1–15. [CrossRef]
- Aldrete-Herrera, P.I.; López, M.G.; Medina-Torres, L.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; González-Ávila, M.; Ortiz-Basurto, R.I. Physicochemical Composition and Apparent Degree of Polymerization of Fructans in Five Wild Agave Varieties: Potential Industrial Use. Foods 2019, Vol. 8, Page 404 2019, 8, 404. [CrossRef]
- Vázquez-Vuelvas, O.F.; Chávez-Camacho, F.A.; Meza-Velázquez, J.A.; Mendez-Merino, E.; Ríos-Licea, M.M.; Contreras-Esquivel, J.C. A Comparative FTIR Study for Supplemented Agavin as Functional Food. Food Hydrocoll. 2020, 103, 1–10. [CrossRef]
- Martinez Gamiño, D.; Garcia Soto, M.J.; Gonzalez Acevedo, O.; Godinez Hernandez, C.; Juarez Flores, B.; Ortiz Basurto, R.I.; Rodriguez Aguilar, M.; Flores Ramirez, R.; Martinez Martinez, M.; Ratering, S.; et al. Prebiotic Effect of Fructans from Agave Salmiana on Probiotic Lactic Acid Bacteria and in Children as a Supplement for Malnutrition. Food Funct. 2022, 13, 4184–4193. [CrossRef]
- Mulík, S.; Ozuna, C. Mexican Edible Flowers: Cultural Background, Traditional Culinary Uses, and Potential Health Benefits. Int. J. Gastron. Food Sci. 2020, 21, 1–14. [CrossRef]
- Attanzio, A.; Diana, P.; Barraja, P.; Carbone, A.; Spanò, V.; Parrino, B.; Cascioferro, S.M.; Allegra, M.; Cirrincione, G.; Tesoriere, L.; et al. Quality, Functional and Sensory Evaluation of Pasta Fortified with Extracts from Opuntia Ficus-Indica Cladodes. J. Sci. Food Agric. 2019, 99, 4242–4247. [CrossRef]
- Gouws, C.; Mortazavi, R.; Mellor, D.; McKune, A.; Naumovski, N. The Effects of Prickly Pear Fruit and Cladode (Opuntia Spp.) Consumption on Blood Lipids: A Systematic Review. Complement. Ther. Med. 2020, 50, 102384. [CrossRef]
- Ibrahim, S.R.M.; Mohamed, G.A.; Khedr, A.I.M.; Zayed, M.F.; El-Kholy, A.A.E.S. Genus Hylocereus: Beneficial Phytochemicals, Nutritional Importance, and Biological Relevance-A Review. J. Food Biochem. 2018, 42, 1–29. [CrossRef]
- Rivera, G.; Bocanegra-García, V.; Monge, A. Traditional Plants as Source of Functional Foods: A Review. CYTA - J. Food 2010, 8, 159–167. [CrossRef]
- García-Morales, S.; Corzo-Jiménez, I.J.; Silva-Córdova, N.F.; Soto-Cordero, A.M.; Rodríguez-Mejía, D.I.; Pardo-Núñez, J.; León-Morales, J.M. Comparative Study of Steroidal Sapogenins Content in Leaves of Five Agave Species. J. Sci. Food Agric. 2022, 102, 5653–5659. [CrossRef]
- González-Llanes, M.D.; Hernández-Calderón, O.M.; Rios-Iribe, E.Y.; Alarid-García, C.; Castro Montoya, A.J.; Escamilla-Silva, E.M. Fermentable Sugars Production by Enzymatic Processing of Agave Leaf Juice. Can. J. Chem. Eng. 2018, 96, 639–650. [CrossRef]
- López-Romero, J.C.; Ayala-Zavala, J.F.; González-Aguilar, G.A.; Peña- Ramos, E.A.; González-Rios, H. Biological Activities of Agave-by-Products and Their Possible Applications in Food and Pharmaceuticals. J. Sci. Food Agric. 2017, 98, 2461–2474. [CrossRef]
- Vernon-Carter, E.J.; Garcia-Diaz, S.; Reyes, I.; Carrillo-Navas, H.; Alvarez-Ramirez, J. Rheological and Thermal Properties of Dough and Textural and Microstructural Characteristics of Bread with Pulque as Leavening Agent. Int. J. Gastron. Food Sci. 2017, 9, 39–48. [CrossRef]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Extractable and Macromolecular Antioxidants of Opuntia Ficus-Indica Cladodes: Phytochemical Profiling, Antioxidant and Antibacterial Activities. South African J. Bot. 2019, 125, 402–410. [CrossRef]
- Khaled, S.; Dahmoune, F.; Madani, K.; Urieta, J.S.; Mainar, A.M. Supercritical Fractionation of Antioxidants from Algerian Opuntia Ficus-indica (L.) Mill. Seeds. J. Food Process. Preserv. 2019, 44, 1–12. [CrossRef]
- Bakar, B.; Çakmak, M.; Ibrahim, M.S.; Özer, D.; Saydam, S.; Karatas, F. Investigation of Amounts of Vitamins, Lycopene, and Elements in the Fruits of Opuntia Ficus-Indica Subjected to Different Pretreatments. Biol. Trace Elem. Res. 2020. [CrossRef]
- Diboune, N.; Nancib, A.; Nancib, N.; Aníbal, J.; Boudrant, J. Utilization of Prickly Pear Waste for Baker’s Yeast Production. Biotechnol. Appl. Biochem. 2019, 66, 744–755. [CrossRef]
- Puente-Garza, C.A.; García-Lara, S.; Gutiérrez-Uribe, J.A. Enhancement of Saponins and Flavonols by Micropropagation of Agave Salmiana. Ind. Crops Prod. 2017, 105, 225–230. [CrossRef]
- Puente-Garza, C.A.; Meza-Miranda, C.; Ochoa-Martínez, D.; García-Lara, S. Effect of in Vitro Drought Stress on Phenolic Acids, Flavonols, Saponins, and Antioxidant Activity in Agave Salmiana. Plant Physiol. Biochem. 2017, 115, 400–407. [CrossRef]
- Santiago-García, P.A.; Mellado-Mojica, E.; León-Martínez, F.M.; López, M.G. Evaluation of Agave Angustifolia Fructans as Fat Replacer in the Cookies Manufacture. LWT - Food Sci. Technol. 2017, 77, 100–109. [CrossRef]
- Martinez-Gutierrez, F.; Ratering, S.; Juárez-Flores, B.; Godinez-Hernandez, C.; Geissler-Plaum, R.; Prell, F.; Zorn, H.; Czermak, P.; Schnell, S. Potential Use of Agave Salmiana as a Prebiotic That Stimulates the Growth of Probiotic Bacteria. Lwt 2017, 84, 151–159. [CrossRef]
- Palatnik, D.R.; Aldrete Herrera, P.; Rinaldoni, A.N.; Ortiz Basurto, R.I.; Campderrós, M.E. Development of Reduced-Fat Cheeses with the Addition of Agave Fructans. Int. J. Dairy Technol. 2017, 70, 212–219. [CrossRef]
- Pintor-Jardines, A.; Arjona-Román, J.L.; Totosaus-Sánchez, A.; Severiano-Pérez, P.; González-González, L.R.; Escalona-Buendia, H.B. The Influence of Agave Fructans on Thermal Properties of Low-Fat, and Low-Fat and Sugar Ice Cream. Lwt 2018, 93, 679–685. [CrossRef]
- Andrade, A.I.C.; Bautista, C.R.; Cabrera, M.A.R.; Guerra, R.E.S.; Chávez, E.G.; Ahumada, C.F.; Lagunes, A.G. Agave Salmiana Fructans as Gut Health Promoters: Prebiotic Activity and Inflammatory Response in Wistar Healthy Rats. Int. J. Biol. Macromol. 2019, 136, 785–795. [CrossRef]
- González-Herrera, S.M.; Rocha-Guzmán, N.E.; Simental-Mendía, L.E.; Rodríguez-Herrera, R.; Aguilar, C.N.; Rutiaga-Quiñones, O.M.; López, M.G.; Gamboa-Gómez, C.I. Dehydrated Apple-Based Snack Supplemented with Agave Fructans Exerts Prebiotic Effect Regulating the Production of Short-Chain Fatty Acid in Mice. J. Food Process. Preserv. 2019, 43, 1–8. [CrossRef]
- Bafundo, K.W.; Duerr, I.; McNaughton, J.L.; Johnson, A.B. The Effects of a Quillaja and Yucca Combination on Performance and Carcass Traits of Coccidia-Vaccinated Broilers Exposed to an Enteric Disease Challenge. Poult. Sci. 2021, 100, 101391. [CrossRef]
- Stefanello, C.; Moreira, B.; Gräf, W.M.; Robalo, S.; Costa, S.T.; Vieira, I.M.; Miranda, D.J. Effects of a Proprietary Blend of Quillaja and Yucca on Growth Performance, Nutrient Digestibility, and Intestinal Measurements of Broilers. J. Appl. Poult. Res. 2022, 31. [CrossRef]
- Boutakiout, A.; Elothmani, D.; Hanine, H.; Mahrouz, M.; Le Meurlay, D.; Hmid, I.; Ennahli, S. Effects of Different Harvesting Seasons on Antioxidant Activity and Phenolic Content of Prickly Pear Cladode Juice. J. Saudi Soc. Agric. Sci. 2018, 17, 471–480. [CrossRef]
- González-Monroy, A.D.; Kaur Kataria, T.; Olvera-Cervantes, J.L.; Corona-Chávez, A.; Ozuna, C.; Rodríguez-Hernández, G.; Sosa-Morales, M.E. Dielectric Properties of Beverages (Tamarind and Green) Relevant to Microwave-Assisted Pasteurization. J. Food Sci. 2018, 83, 2317–2323. [CrossRef]
- Liguori, G.; Gentile, C.; Gaglio, R.; Perrone, A.; Guarcello, R.; Francesca, N.; Fretto, S.; Inglese, P.; Settanni, L. Effect of Addition of Opuntia Ficus-Indica Mucilage on the Biological Leavening, Physical, Nutritional, Antioxidant and Sensory Aspects of Bread. J. Biosci. Bioeng. 2020, 129, 184–191. [CrossRef]
- Dick, M.; Limberger, C.; Cruz Silveira Thys, R.; de Oliveira Rios, A.; Hickmann Flôres, S. Mucilage and Cladode Flour from Cactus (Opuntia Monacantha) as Alternative Ingredients in Gluten-Free Crackers. Food Chem. 2020, 314, 1–9. [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the Characterization of Opuntia Spp. Juices by LC-DAD-ESI-MS/MS. Food Chem. 2016, 210, 558–565. [CrossRef]
- Betancourt, C.; Cejudo-Bastante, M.J.; Heredia, F.J.; Hurtado, N. Pigment Composition and Antioxidant Capacity of Betacyanins and Betaxanthins Fractions of Opuntia Dillenii (Ker Gawl) Haw Cactus Fruit. Food Res. Int. 2017, 101, 173–179. [CrossRef]
- Otálora, M.C.; de Jesús Barbosa, H.; Perilla, J.E.; Osorio, C.; Nazareno, M.A. Encapsulated Betalains (Opuntia Ficus-Indica) as Natural Colorants. Case Study: Gummy Candies. Lwt 2019, 103, 222–227. [CrossRef]
- Bouazizi, S.; Montevecchi, G.; Antonelli, A.; Hamdi, M. Effects of Prickly Pear (Opuntia Ficus-Indica L.) Peel Flour as an Innovative Ingredient in Biscuits Formulation. Lwt 2020, 124, 1–7. [CrossRef]
- Yao, X.; Hu, H.; Qin, Y.; Liu, J. Development of Antioxidant, Antimicrobial and Ammonia-Sensitive Films Based on Quaternary Ammonium Chitosan, Polyvinyl Alcohol and Betalains-Rich Cactus Pears (Opuntia Ficus-Indica) Extract. Food Hydrocoll. 2020, 106, 1–9. [CrossRef]
- Gengatharan, A.; Dykes, G.A.; Choo, W.S. The Effect of PH Treatment and Refrigerated Storage on Natural Colourant Preparations (Betacyanins) from Red Pitahaya and Their Potential Application in Yoghurt. LWT - Food Sci. Technol. 2017, 80, 437–445. [CrossRef]
- de Souza, A.C.; Fernandes, A.C.F.; Silva, M.S.; Schwan, R.F.; Dias, D.R. Antioxidant Activities of Tropical Fruit Wines. J. Inst. Brew. 2018, 124, 492–497. [CrossRef]
- Amjadi, S.; Ghorbani, M.; Hamishehkar, H.; Roufegarinejad, L. Improvement in the Stability of Betanin by Liposomal Nanocarriers: Its Application in Gummy Candy as a Food Model. Food Chem. 2018, 256, 156–162. [CrossRef]
- Hsu, C.T.; Chang, Y.H.; Shiau, S.Y. Color, Antioxidation, and Texture of Dough and Chinese Steamed Bread Enriched with Pitaya Peel Powder. Cereal Chem. 2019, 96, 76–85. [CrossRef]
- Som, A.M.; Ahmat, N.; Abdul Hamid, H.A.; Azizuddin, N.M. A Comparative Study on Foliage and Peels of Hylocereus Undatus (White Dragon Fruit) Regarding Their Antioxidant Activity and Phenolic Content. Heliyon 2019, 5, 1–13. [CrossRef]
- Zambrano, C.; Kerekes, E.B.; Kotogán, A.; Papp, T.; Vágvölgyi, C.; Krisch, J.; Takó, M. Antimicrobial Activity of Grape, Apple and Pitahaya Residue Extracts after Carbohydrase Treatment against Food-Related Bacteria. Lwt 2019, 100, 416–425. [CrossRef]
- Utpott, M.; Ramos de Araujo, R.; Galarza Vargas, C.; Nunes Paiva, A.R.; Tischer, B.; de Oliveira Rios, A.; Hickmann Flôres, S. Characterization and Application of Red Pitaya (Hylocereus Polyrhizus) Peel Powder as a Fat Replacer in Ice Cream. J. Food Process. Preserv. 2020, 44, 1–10. [CrossRef]
- Leticia García-Cruz; Valle-Guadarrama, S.; Guerra-Ramírez, D.; Martínez-Damián, M.T.; Zuleta-Prada, H. Cultivation, Quality Attributes, Postharvest Behavior, Bioactive Compounds, and Uses of Stenocereus: A Review. Sci. Hortic. (Amsterdam). 2022, 304, 0304–4238. [CrossRef]
- Cejudo-Bastante, M.J.; Hurtado, N.; Muñoz-Burguillos, P.; Heredia, F.J. Stenocereus Griseus (Haw) Pitaya as Source of Natural Colourant: Technological Stability of Colour and Individual Betalains. Int. J. Food Sci. Technol. 2019, 54, 3024–3031. [CrossRef]
- Pérez-Armendáriz, B.; Cardoso-Ugarte, G.A. Traditional Fermented Beverages in Mexico: Biotechnological, Nutritional, and Functional Approaches. Food Res. Int. 2020, 136. [CrossRef]
- de la Rosa, O.; Flores-Gallegos, A.C.; Muñíz-Marquez, D.; Nobre, C.; Contreras-Esquivel, J.C.; Aguilar, C.N. Fructooligosaccharides Production from Agro-Wastes as Alternative Low-Cost Source. Trends Food Sci. Technol. 2019, 91, 139–146. [CrossRef]
- Sáyago-Ayerdi, S.G.; Zamora-Gasga, V.M.; Venema, K. Changes in Gut Microbiota in Predigested Hibiscus Sabdariffa L Calyces and Agave (Agave Tequilana Weber) Fructans Assessed in a Dynamic in Vitro Model (TIM-2) of the Human Colon. Food Res. Int. 2020, 132, 1–8. [CrossRef]
- Enríquez-Salazar, M.I.; Veana, F.; Aguilar, C.N.; De la Garza-Rodríguez, I.M.; López, M.G.; Rutiaga-Quiñones, O.M.; Morlett-Chávez, J.A.; Rodríguez-Herrera, R. Microbial Diversity and Biochemical Profile of Aguamiel Collected from Agave Salmiana and A. Atrovirens during Different Seasons of Year. Food Sci. Biotechnol. 2017 264 2017, 26, 1003–1011. [CrossRef]
- Gutiérrez-Uribe, J.A.; Figueroa, L.M.; Martín-del-Campo, S.T.; Escalante, A. Pulque; Elsevier Inc., 2017; ISBN 9780128023099.
- Villarreal-Morales, S.L.; Muñiz-Márquez, D.B.; Michel-Michel, M.; González-Montemayor, Á.M.; Escobedo-García, S.; Salas-Tovar, J.A.; Flores-Gallegos, A.C.; Rodríguez-Herrera, R. Aguamiel a Fresh Beverage from Agave Spp. Sap with Functional Properties. Nat. Beverages Vol. 13 Sci. Beverages 2019, 179–208. [CrossRef]
- Attallah, N.G.M.; El-Sherbeni, S.A.; El-Kadem, A.H.; Elekhnawy, E.; El-Masry, T.A.; Elmongy, E.I.; Altwaijry, N.; Negm, W.A. Elucidation of the Metabolite Profile of Yucca Gigantea and Assessment of Its Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities. Mol. 2022, Vol. 27, Page 1329 2022, 27, 1329. [CrossRef]
- Morales-Figueroa, G.-G.; Pereo-vega, G.D.; Reyna-murrieta, M.E.; Pérez-morales, R.; López-mata, M.A.; Sánchez-escalante, J.J.; Tapia-rodriguez, M.R.; Ayala-zavala, J.F.; Juárez, J.; Quihui-cota, L. Antibacterial and Antioxidant Properties of Extracts of Yucca Baccata , a Plant of Northwestern Mexico , against Pathogenic Bacteria. 2022, 2022, 1–8.
- Mokbli, S.; Nehdi, I.A.; Sbihi, H.M.; Tan, C.P.; Al-Resayes, S.I.; Rashid, U. Yucca Aloifolia Seed Oil: A New Source of Bioactive Compounds. Waste and Biomass Valorization 2018, 9, 1087–1093. [CrossRef]
- Song, W.; Lagmay, V.; Jeong, B.G.; Jung, J.; Chun, J. Changes in Physicochemical and Functional Properties of Opuntia Humifusa during Fermentation with Cellulolytic Enzyme and Lactic Acid Bacteria. Lwt 2022, 159, 113192. [CrossRef]
- Abd El-Moaty, H.I.; Sorour, W.A.; Youssef, A.K.; Gouda, H.M. Structural Elucidation of Phenolic Compounds Isolated from Opuntia Littoralis and Their Antidiabetic, Antimicrobial and Cytotoxic Activity. South African J. Bot. 2020, 131, 320–327. [CrossRef]
- Chahdoura, H.; Barreira, J.C.M.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Flamini, G.; Soković, M.; Achour, L.; Ferreira, I.C.F.R. Bioactivity, Hydrophilic, Lipophilic and Volatile Compounds in Pulps and Skins of Opuntia Macrorhiza and Opuntia Microdasys Fruits. Lwt 2019, 105, 57–65. [CrossRef]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and Quantification of Individual Betalain and Phenolic Compounds in Mexican and Spanish Prickly Pear (Opuntia Ficus-Indica L. Mill) Tissues: A Comparative Study. J. Food Compos. Anal. 2019, 76, 1–13. [CrossRef]
- da Silveira Agostini-Costa, T. Bioactive Compounds and Health Benefits of Pereskioideae and Cactoideae: A Review. Food Chem. 2020, 327, 1–14. [CrossRef]
- Sandate-Flores, L.; Rodríguez-Rodríguez, J.; Velázquez, G.; Mayolo-Deloisa, K.; Rito-Palomares, M.; Torres, J.A.; Parra-Saldívar, R. Low-Sugar Content Betaxanthins Extracts from Yellow Pitaya (Stenocereus Pruinosus). Food Bioprod. Process. 2020, 121, 178–185. [CrossRef]
- König, J. Functional Foods. Encycl. Imdustrial Chem. 2016, 1, 492–499. [CrossRef]
- Jiang, L.L.; Gong, X.; Ji, M.Y.; Wang, C.C.; Wang, J.H.; Li, M.H. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia. Foods 2020, 9. [CrossRef]
- Ramírez-Pulido, B.; Bas-Bellver, C.; Betoret, N.; Barrera, C.; Seguí, L. Valorization of Vegetable Fresh-Processing Residues as Functional Powdered Ingredients. A Review on the Potential Impact of Pretreatments and Drying Methods on Bioactive Compounds and Their Bioaccessibility. Front. Sustain. Food Syst. 2021, 5. [CrossRef]
- Pinela, J.; Carocho, M.; Dias, M.I.; Ceja, C.; Barros, L.; Ferreira, I. Wild Plant - Based Functional Foods , Drugs , and Nutraceuticals. Wild Plants, Mushrooms Nuts 2017, 1, 315–351. [CrossRef]
- Tanna, B.; Mishra, A. Metabolites Unravel Nutraceutical Potential of Edible Seaweeds: An Emerging Source of Functional Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1613–1624. [CrossRef]
- Gutiérrez-García, G.J.; Quintana-Romero, L.A.; Morales-Figueroa, G.G.; Esparza-Romero, J.; Pérez-Morales, R.; López-Mata, M.A.; Juárez, J.; Sánchez-Escalante, J.J.; Peralta, E.; Quihui-Cota, L.; et al. Effect of Yucca Baccata Butanolic Extract on the Shelf Life of Chicken and Development of an Antimicrobial Packaging for Beef. Food Control 2021, 127. [CrossRef]
- García-Lucas, K.A.; Méndez-Lagunas, L.L.; Rodríguez-Ramírez, J.; Campanella, O.H.; Patel, B.K.; Barriada-Bernal, L.G. Physical Properties of Spray Dryed Stenocereus Griseus Pitaya Juice Powder. J. Food Process Eng. 2016, 40, 1–9. [CrossRef]


| Component (%) | Agave spp | Yuccaflowers | Opuntia spp | Opuntia fruit | Hylocereus | Stenocereus |
| Moisture | 6.44-8.5 | 50-70 | 90.1 | 89.96 | 87-88.01 | 85.8 |
| Carbohydrate | 60-74 | 9.77 | 8.17 | 1.35 | 9.34-11 | 12.33 |
| Proteins | 2.5-8.35 | 0.31 | 0.36 | 1.18 | 0.18-1.1 | 1.29 |
| Lipids | 0.3 | 17.55 | 0.14 | 0.76 | 0.4-0.45 | 0.12 |
| Fiber | 5-8 | 19.23 | 2.75 | 2.84 | 0.45-3 | 3.23 |
| Ashes | 6-8 | 1.60 | 1.32 | 6.75 | 0.96 | 0.46 |
| Authors | [16,33] | [34] | [35] | [36] | [37] | [38] |
| Plants | Bioactive compounds | Functional activity | Author |
| Agave spp. | Polyphenols (flavonoids), Terpenoids, Steroids, Glycosides, Fructans, Inulin, Oligosaccharides (fructooligosaccharides). | Prebiotic activity Antioxidant activity Anti-inflammatory activity Antimicrobial activity Antifungal activity Improvement of nutritional, rheological, thermal, and sensory properties |
[51,57,58,59,60,61,62,63,64] |
| Yucca spp. | Polyphenols (Gallic acid, 4-hydroxybenzoic acid, Vanillic acid, Chlorogenic acid, Caffeic acid, 4-Coumaric acid, Ferulic acid, Rutin, Quercetin 3-D-galactoside, Quercetin 3-glucoside, Trans-cinnamic acid, Quercetin, Kaempferol), saponins. | Antioxidant activity Ant—inflammatory activity Antimicrobial activity |
[34,65,66] |
| Opuntia spp (Cladodes) | Phenols (gallic acid, epicatechin gallate, vanillic acid, chlorogenic acid, procyanidin B2, epicatechin, vanillin, p-coumaric acid, epigallocatechin, ferulic acid, synapic acid, benzoic acid, ellagic acid, hyperoside, isoquercetin, rutin, chloridzine, quercetin, vitamin C & E, and flavonoids; Caempferol, Hyperoside, Prociadin), Terpenoids (β-carotene, α-carotene, lutein, zeaxanthin). | Antioxidant activity Hypoglycemic activity Antibacterial activity |
[23,53,67,68,69,70] |
| Opuntia spp (fruit) | Phenols (vitamin A, C & E, flavonoids; rutin, quercetin glucoside, isorhamnetin glucosyl-dirhamnoside, isorhamnetin pentosyl-rutinoside, isorhamnetin pentosyl-glucoside, isorhamnetin pentosyl-rhamnoside, isorhamnetin rutinoside, isorhamnetin glucoside, quercetin), Betalains (betaxanthins, muscaaurin, indicaxanthin isomer I, indicaxanthin isomer II, betacyanins, betanin, betanidin-5-O-β-glucoside, gomphrenin, betanidin isobetanin, indicaxanthin isomer, indicaxanthin, betanin isomer), Terpenoids (carotenoids), and Organic acids (malic acid, quinic acid, citric acid, succinic acid, piscidic acid derivative I, piscidic acid derivative II, piscidic acid, 2-Feruloyl piscidic acid, hydroxybenzoic acid, eucomic acid, ferulic acid glucoside, caffeic acid, and fumaric acid) | Antioxidant activity Antimicrobial activity Anti-inflammatory activity Hypoglycemic activity Antiulcerogenic activity |
[71,72,73,74,75] |
| Hylocereus spp. | Phenols (vitamins, flavonoids, phenolic acids, and betalains; betacyanins, betanin, isobetanin, betanidin, phyllocactin and hylocerenin), Terpenoids, Fatty acids and sterols |
Antioxidant activity Antimicrobial activity Prebiotic activity |
[47,76,77,78,79,80,81,82] |
| Stenocereus spp. | Phenols and betalains (isobetanin, betanidin, 17-Decarboxy-neobetanin, isobetanidin, neobetanin, 2-Decarboxy-neobetanin, betacyanins and betaxanthines). | Antioxidant potential | [31,83,84] |
| Plants | Food or additive | Functional contribution | Bioactive compound | Author |
| Agave spp | Powdered extract of Agave salmiana fructans | Prebiotic activity and Anti-inflammatory activity | Fructans | [63] |
| Cookies with Agave angustifolia fructans as a fat substitute | Improved rheological properties | Fructans | [59] | |
| Reduced fat cheeses | Improved nutritional qualities | Fructans | [61] | |
| Ice cream | Improved thermal properties | Fructans | [62] | |
| Dehydrated apple enriched with prebiotics | Prebiotic activity and sensory properties | Fructans | [64] | |
| Yucca spp. | Antimicrobial control in food Food packaging development |
Antimicrobial activity |
Saponins | [105] |
| Opuntia spp (Cladodes) | Pasta with flour from Opuntia cladodes | Antioxidant activity Hypoglycemic activity | Fiber | [45] |
| Prickly pear cladode juice | Antioxidant activity | Gallic acid, epicatechin gallate, vanillic acid, procyanidin B2, epicatechin, p-Coumaric acid, epigallocatechin, ferulic acid, sinapic acid, benzoic acid, hyperoside, isoquercetin, rutin, quercetin | [67] | |
| Cookies gluten-free with flour from cactus | Antioxidant activity | Fiber soluble and insoluble, flavonoids, phenolic acids, leutin. β-carotene, zeaxanthin, α-carotene | [70] | |
| Bread with Opuntia ficus-indica mucilage | Antioxidant activity | Mucilage | [69] | |
| Pigment | Antioxidant activity | Betacyanins, betaxanthins | [72] | |
| Opuntia spp (fruit) | Gummy candy | Antioxidant activity | Betalains | [73] |
| Cookies enriched with prickly pear peel flour | Antioxidant activity | Carotenoids, betalains, betacyanins, betaxantins | [74] | |
| Edible films | Antioxidant activity and antimicrobial activity | Betalains | [75] | |
| Yogurt | Antioxidant activity | Betacyanins; betanin, isobetanin, betanidin, phyllocactin,hyloccerenin | [76] | |
| Wine | Antioxidant activity | Succinic acid, citric acid, acetic acid, | [77] | |
| Hylocereus spp. | Gummy candy | Antioxidant activity | Betalains | [78] |
| Chinese steamed bread enriched with pitaya peel powder | Antioxidant activity | Batacyanin | [79] | |
| Reduced-fat ice cream | Antioxidant activity Technological and physicochemical properties |
Betacyanins, fiber and minerals | [82] | |
| Natural colourant | Antioxidant activity | Betalains, isobetanin, betanidin, 17-Decarboxy-neobetanin, isobetanidin, neobetanin, 2-Decarbaxy-neobetanin | [84] | |
| Pitaya juice powders | Antioxidant activity | Betalains, fructose, glucose, sucrose, citric acid, malic acid and tartaric acid | [106] | |
| Stenocereus spp. | Low-sugar food colorant | Antioxidant and antimicrobial activity | Betaxantinas | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
