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Abstract: We study a duel game in which each player has partial knowledge of the game parameters. We present a

method by which, in the course of repeated plays, each player estimates the missing parameters and consequently

learns his optimal strategy.
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0. Introduction

We study a duel game in which certain game parameters (related to the players’ kill probabilities)
are unknown and present a method by which each player can estimate the opponent’s parameters and
consequently learn his optimal strategy.

The duel game with which we are concerned has been presented in [1] and a similar one in [2].
The game is a variation of duels and, more generally, games of timing studied in the literature [3–5].

The paper is organized as follows. In Section 1 we present the rules of the game. In Section 2 we
solve the game under the assumption of complete information. In Section 3 we present an algorithm
for solving the game when the players have incomplete information. In Section 4 we evaluate the
algorithm by numerical experiments. Finally, in Section 5 we summarize our results and present our
conclusions.

1. Game Description

The duel with which we are concerned is played between players P1 and P2, under the following
rules.

1. It is played in discrete rounds (time steps) t ∈ {1, 2, ...}.
2. In the first turn, the players are at distance D.
3. P1 (resp. P2) plays on odd (resp. even) rounds.
4. On his turn, each player has two choices: (i) he can shoot his opponent or (ii) he can move one

step forward, reducing their distance by one.
5. If Pn shoots, he has a kill probability pn(d) of hitting (and killing) his opponent, where d is their

current distance. If he misses, the opponent can walk right next to him and shoot him for a certain
kill.

6. Each player’s payoff is 1 if he kills the opponent and −1 if he shoots and misses (in which case he
is certain to be killed).

For n ∈ {1, 2}, we will denote by xn(t) the position of Pn at round t. The starting positions are
x1(0) = 0 and x2(0) = D, with D = 2N, N ∈ N. The distance between the players at time t is

d = |x1(t)− x2(t)|.

For n ∈ {1, 2}, the kill probability is a decreasing function pn : {1, 2, . . . D} → [0, 1] with pn(1) = 1. It is
convenient to describe the kill probabilities as vectors:

pn = (pn,1, ..., pn,D) = (pn(1), ..., pn(D)).
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This duel can be modeled as an extensive form game or tree game. The game tree is a directed graph
G = (V, E) with vertex set

V = {1, 2, ..., 2D},

where

1. the vertex v = d ∈ {1, 2, ..., D} corresponds to a game state in which the players are at distance d
and

2. the vertex v = d + D ∈ {D + 1, D + 2, ..., 2D} is a terminal vertex, in which the “active” player
has fired at his opponent.

The edges correspond to state transitions; it is easy to see that the edge set is

E = {(1, D + 1), (2, 1), (2, D + 2), (3, 2), (3, D + 3), ..., (D, D − 1), (D, 2D)}.

An example of the game tree, for D = 6, appears in Figure 1. The circular (resp. square) vertices are
the ones in which P1 (resp. P2) is active and the rhombic vertices are the terminal ones.

Figure 1. Game tree example

To complete the description of the game, we will define the expected payoff for the terminal
vertices. Note that the terminal vertex d + D is the child of the nonterminal vertex d in which:

1. The distance of the players is d and, assuming Pn to be the active player, his probability of hitting
his opponent is pn,d.

2. The active player is P1 (resp. P2) iff d is even (resp. odd).

Keeping the above in mind, we see that the payoff (to P1) of vertex d + D is

∀d ∈ {1, ..., D} : Q(d + D) =

{
p1,d · 1 + (1 − p1,d) · (−1) = 2p1,d − 1, when d is even;
p2,d · (−1) + (1 − p2,d) · 1 = 1 − 2p2,d when d is odd.

The payoff to P2 at vertex d + D is −Q(d + D). This completes the description of the duel.

2. Solution with Complete Information

It is easy to solve the above duel when each player knows D and both p1 and p2. We construct
the game tree as described in Section 1 and we solve it by backward induction. Since the method is
standard, we simply give an example of its application. Suppose that

∀n, d : pn,d =

{
1 when d = 1,

min
(

1, cn
dkn

)
when d > 1.

We take c1 = 1, k1 = 1, c2 = 1, k2 = 1
2 . The kill probabilities are
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Table 1. Kill probabilities

d 1 2 3 4 5 6

p1,d 1.000 0.500 0.333 0.250 0.200 0.166
p2,d 1.000 0.707 0.577 0.500 0.447 0.408

The game tree with terminal payoffs is illustrated in Figure 2.

Figure 2. Game tree example with values of terminal vertices.

By the standard backward induction procedure we select the optimal action at each vertex and also
compute the values of the nonterminal vertices. These are indicated in Figure 3 (optimal actions
correspond to thick edges). We see that the game value is −0.1547, attained by P2 shooting when the
players are at distance 3 (which happens in round 4).

Figure 3. Game tree example with values of all vertices

We next present a proposition which characterizes each player’s optimal strategy in terms of a
shooting threshold. 1 In the following we use the standard notation by which “−n” denotes the “other
player”. I.e., p−1 = p2 and p−2 = p1.2

Theorem 1. We define for n ∈ {1, 2} the shooting criterion vectors Kn = (Kn,1, ..., Kn,D) where

Kn,1 = 1 and for d ≥ 2 : Kn,d = pn,d + p−n,d−1.

1 This proposition is stated informally in [1].
2 We use the same notation for several other quantities as will be seen in the sequel.
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Then the optimal strategy for Pn is to shoot as soon as it is his turn and the distance of the players is less
than or equal to the shooting threshold dn, where:

d1 = max{d : K1,d ≥ 1}, d2 = max{d : K2,d ≥ 1}.

Proof. Suppose the players are at distance d and the active player is Pn.

1. If P−n will not shoot in the next round, when their distance will be d − 1, then Pn must also not
shoot in the current round, because he will have a higher kill probability in his next turn, when
they will be at distance d − 2.

2. If P−n will shoot in the next round, when their distance will be d − 1, then Pn should shoot iff pn,d
(his kill probability now) is higher then 1 − p−n,d−1 (P−n’s miss probability in the next round). In
other words, Pn must shoot iff

pn,d ≥ 1 − p−n,d−1

or, equivalently, iff
Kn,d = pn,d + p−n,d−1 ≥ 1. (1)

Hence we can reason as follows.

1. At vertex 1, P2 is active and his only choice is to shoot.
2. At vertex 2, P1 is active and he knows P2 will certainly shoot in the next round. Hence P1 will

shoot iff he has an advantage, i.e., iff

Q1(2) ≥ Q1(1) ⇔ 2p1,2 − 1 ≥ 1 − 2p2,1 ⇔ p1,2 + p2,1 ≥ 1.

This is equivalent to K1,1 ≥ 1 and will always be true.
3. Hence at vertex 3, P2 is active and he knows that P1 will certainly shoot in the next round (at

vertex d). So P2 will shoot iff

Q1(3) ≤ Q1(2) ⇔ 1 − 2p2,3 ≤ 2p1,2 − 1 ⇔ p2,3 + p1,2 ≥ 1.

which is equivalent to K2,3 ≥ 1. Also, if K2,3 < 1, then P1 will know, when the game is at vertex 4,
that P2 will not shoot when at 3. So, P1 will not shoot when at 4. But then, when at 5, P2 knows
that P1 will not shoot when at 4. Continuing in this manner we see that K2,3 < 1 implies that
firing will take place exactly at the vertex 2.

4. On the other hand, if K2,3 ≥ 1, then P1 knows when at 4 that P2 will shoot at the next round. So,
when at 4, P1 should shoot iff K1,4 ≥ 1. If, on the other hand, K1,4 < 1, then P1 will not shoot
when at 4 and P2 will shoot when at 3.

5. We continue in this manner for increasing values of d. Since both K1,d and K2,d are decreasing
with d, there will exist a maximum dn value (it could equal D) in which some Kn,d will be greater
than one and Pn will be active; then Pn must shoot as soon as the game reaches or passes vertex
dn and he “has the action”.

This completes the proof.

Returning to our previous example, we compute the vectors Kn for n ∈ {1, 2} and list them in the
following table.
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Table 2. Shooting Criterion

d 1 2 3 4 5 6
Round 6 5 4 3 2 1

K1,d 1.500 1.040 0.827 0.700 0.614
K2,d 1.707 1.077 0.833 0.697 0.608

For P1 the shooting criterion is last satisfied when the distance is d = 3; this happens at round 4 in
which P1 is inactive, so he should shoot at round 5. However, for P2 the shooting criterion is also last
satisfied at distance d = 3 and round 4, in which P2 is active; so he should shoot at round 4. This is the
same result we obtained with backward induction.

3. Solution with Incomplete Information

We will now present an approach to the solution of the duel when each player has incomplete
knowledge of his opponent’s kill probability function. More specifically, we assume that the players’s
kill probabilities have, for all d, the form f (d; θ) where θ is a parameter vector. Assuming P1 has θ = θ1

and P2 has θ = θ2, we have
∀d : p1,d = f (d; θ1), p2,d = f (d; θ2).

Furthermore, we assume that both players know the general form f (d; θ) and each Pn knows his own
parameter vector θn but not the θ−n of his opponent.

Obviously in this case the players cannot perform the computations of either backward induction
or the shooting criterion. Consequently we will propose an “exploration-and-exploitation” approach. In
other words, under the assumption that multiple duels will be played, each player initially adopts a
random strategy and, collecting information from played games, he gradually builds and refines an
estimate of his optimal strategy.

We give now a more detailed description of our approach, by Algorithm 1, presented below in
pseudocode.

Algorithm 1 Learning the Optimal Duel Strategy

1: Input: Duel parameters D, θ1, θ2; Learning parameters λ, σ0; Number of plays R
2: p1=COMPKILLPROB(θ1)
3: p2=COMPKILLPROB(θ2)
4: Randomly initialize parameter estimates θ0

1 , θ0
25: for r ∈ {1, 2, ..., R} do

6: pr
1=COMPKILLPROB(θr−1

1 )
7: pr

2=COMPKILLPROB(θr−1
2 )

8: dr
1=COMPSHOOTDIST(p1, pr

2)9: dr
2=COMPSHOOTDIST(pr

1, p2)
10: σr = σr−1/λ
11: X=PLAYDUEL(p1, p2, dr

1, dr
2, σr, X)

12: (p̂r
1, p̂r

2)=ESTKILLPROB(X)
13: θr

1=ESTPARS(p̂r
1, 1)

14: θr
2=ESTPARS(p̂r

2, 2)
15: end for
16: return dR

1 , dR
2 , θR

1 , θR
2

The following remarks explain the operation of the algorithm.

1. In line 1 the algorithm takes as input: (i) the duel parameters D, θ1, θ2, (ii) two learning parameters
λ, σ0 and (iii) the number R of duels used in the learning process.

2. Then, in lines 2-3, the true kill probability pn (for n ∈ {1, 2}) is computed by the function
COMPKILLPROB(θn), which simply computes

∀n, d : pn(d) = fn(d; θn).

We emphasize that these are the true kill probabilities.
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3. In line 4 initial, randomly selected parameter vector estimates θ0
1 , θ0

2 are generated.
4. Then the algorithm enters the loop of lines 5-15 (executed for R iterations) which constitutes the

main learning process.

(a) In lines 6-7 we compute new estimates of the kill probabilities pr
n, by function COMPKILL-

PROB, based on the estimates of parameters θr−1
n :

∀n, d : pr
n(d) = fn

(
d; θr−1

n

)
.

We emphasize that these are estimates of the kill probabilities, based on the parameter
estimates θr−1

n .
(b) In lines 8-9 we compute new estimates of the shooting thresholds dr

n, by function COMP-
SHOOTDIST. For Pn, this is achieved by computing the shooting criterion Kn using the
(known to Pn) pn and the (estimated by Pn) pr

−n.
(c) In line 10, σr (which will be used as a standard deviation parameter) is divided by the

factor λ > 1.
(d) In line 11 the result of the duel is computed by the function PLAYDUEL. This is achieved as

follows:

i. For n ∈ {1, 2}, Pn selects a random shooting distance d̂n from the discrete normal
distribution [6] with mean dr

n and standard deviation σr.
ii. With both d̂1, d̂2 selected, it is clear which player will shoot first; the outcome of

the shot (hit or miss) is a Bernoulli random variable with success probability pn,d̂n
,

where Pn is the shooting player. Note that pn is the true kill probability.

The result is stored in a table X, which contains the data (shooting distance, shooting player,
hit or miss) of every duel played up to the r-th iteration.

(e) In line 12, the entire game records X are used by ESTKILLPROB(X) to obtain empirical
estimates of the kill probabilities p̂r

1, p̂r
2. These estimates are as follows:

∀n, ∀d ∈ Dn: p̂r
n,d =

∑r∈Rn,d
Zr∣∣Rn,d
∣∣

where

Dn = {d : d such that Pn may shoot}
Rn,d = {r : in the r-th game Pn actually shot from distance d},

Zr =

{
1 iff the shot in the r-th game hit the target,
0 iff the shot in the r-th game missed the target

(f) In line 13-14 the function ESTPARS uses a least squares algorithm to find (only for the Pn

who currently has the action) θr
n values which minimize the squared error

J(θn) = ∑
d∈Dn

(
fn(d; θn)− p̂r

n,d

)2
.

(g) In line 21 the algorithm returns the final estimates of optimal shooting distances dR
1 , dR

2 and
parameters θR

1 , θR
2 .

Note that multiplication by 1/λ ∈ (0, 1) results in limr→∞ σr = 0. Hence, while in the initial
iterations of the learning process the players essentially use random shooting thresholds (exploration)
with standard deviation σr, it is hoped that, as r increases and σr of the used shooting thresholds goes
to zero, the estimates of the kill probabilities and shooting thresholds will converge to their optimal
values (exploitation). This is actually corroborated by the experiments we present in the next section.
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4. Experiments

In this section we present numerical experiments to evaluate our approach.

4.1. Experiments Setup

In the following subsection we present several experiment groups, all of which share the same
structure. Each experiment group corresponds to a particular form of the kill probability functions.
In each case, the kill probability parameters, along with the initial player distance D, are the game
parameters. For each choice of game parameters we proceed as follows.

First we select the learning parameters λ, σ and the number of learning steps R. These, together
with the game parameters, are the experiment parameters. Then we select a number J of estimation
experiments to run for each choice of experiment parameters. For each of the J experiments we
compute the following quantities.

1. The relative error of the final kill probability parameter estimates. For a given parameter θn,i, this
error is defined to be

∆θn,i =

∣∣∣∣∣ θn,i − θR
n,i

θn,i

∣∣∣∣∣.
2. The relative error of the shooting threshold estimates. Letting dR

n be the estimate of the shooting
threshold based on the true kill probability vector pn and kill probability vector estimate pR

−n, this
error is defined to be

∆dn =

∣∣∣∣dn − dR
n

dn

∣∣∣∣.
3. The relative error of the optimal payoff estimates. Letting QR

n be the estimate of the optimal payoff
(computed from the estimated shooting thresholds dR

1 , dR
2 ) , this error is defined to be

∆Qn =


∣∣∣Qn−QR

n
Qn

∣∣∣ iff Qn ̸= 0

0 iff Qn = 0 and QR
n = Qn

1 iff Qn = 0 and QR
n ̸= Qn

Note that ∆Q2 = ∆Q1, because the game is zero-sum.

4.2. Experiment Group A

In this group the kill probability function has the form:

n ∈ {1, 2} : pn,d = min
( cn

dkn
, 1
)

.

Let us look at the final results of a representative run of the learning algorithm. With c1 = 1,
k1 = 0.5, c2 = 1,k2 = 1 and D = 10, we run the learning algorithm with R = 1500, σ0 = 6D and for
three different values λ ∈ {1.001, 1.01, 1.05}. In Figure 4 we plot the logarithm (with base 10) of the
relative payoff error ∆Q1 + ϵ (we have added ϵ = 10−3 to deal with the logarithm of zero error). The
three curves plotted correspond to the λ values 1.001, 1.01, 1.05. We see that, for all λ values, the
algorithm achieves zero relative error; in other words it learns the optimal strategy for both players.
Furthermore convergence is achieved by the 1500-th iteration of the algorithm (1500-th duel played),
as seen by the achieved logarithm value −3 (recall that we have added ϵ = 10−3 to the error, hence
the true error is zero). Convergence is fastest for the largest λ value, i.e., λ = 1.05, and slowest for the
smallest value λ = 1.001.
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Figure 4. Plot of logarithmic relative error log10 ∆Q1 of P1’s payoff for a representative run
of the learning process.

In Figure 5 we plot the logarithmic relative errors log10 ∆dn. These also, as expected, have converged
to zero by the 1500-th iteration.
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+
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Figure 5. Plot of logarithmic relative errors log10 ∆d1, log10 ∆d2 for a representative run of
the learning process.

The fact that the estimates of the optimal shooting thresholds and strategies achieve zero error, does
not imply that the same is true of the kill probability parameter estimates. In Figure 6 we plot the
relative errors ∆c1, ∆k1.
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Figure 6. Plot of relative parameter errors ∆c1, ∆k1 for a representative run of the learning
process.
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It can be seen that these errors do not converge to zero; in fact, for λ ∈ {1.01, 1.05} the errors converge
to fixed nonzero values, which indicates that the algorithm obtains wrong estimates. However, the
error is sufficiently small to still result in zero-error estimates of the shooting thresholds. The picture is
similar for the errors ∆c2, ∆k2, hence their plots are omitted.

In the above we have given results for a particular run of the learning algorithm. This was a
successful run, in the sense that it obtained zero-error estimates of the optimal strategies (and shooting
thresholds). However, since our algorithm is stochastic, it is not guaranteed that every run will result
in zero-error estimates. To better evaluate the algorithm, we have run it for J = 10 times and averaged
the obtained results. In particular, in Figure 7 we plot the average of ten curves of the type plotted in
Figure 4. Note that now we plot the curve for R = 5000 plays of the duel.

0 1000 2000 3000 4000 5000
number of r games played

3.0

2.5

2.0

1.5

1.0

0.5

0.0

lo
g 1

0 o
f a

ve
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ge
 

Q
1

+
e 

ov
er

 J 
ru

ns

= 1.001 = 1.01 = 1.05

Figure 7. Plot of Q1 (P1’s payoff) for a representative run of the learning process.

Several observations can be made regarding Figure 7.

1. For the smallest λ value, namely λ = 1.001, the respective curve reaches −3 at r = 4521. This
corresponds to zero average error, which means that, in some algorithm runs, it took more than
4500 iterations (duel plays) to reach zero error.

2. For the λ = 1.01, all runs of the algorithm reached zero-error after r = 656 runs.
3. Finally, for λ = 1.05, the average error never reached zero; in fact 3 out of 10 runs converged to

nonzero-error estimates, i.e., to non-optimal strategies.

The above observations corroborate a fact well known in the study of reinforcement learning
[7]. Namely, a small learning rate (in our case small λ) results in higher probability of converging to
the true parameter values, but also in slower convergence. This can be explained as follows: a small
λ results in higher σr values for a large proportion of duels played by the algorithm; i.e., in more
extensive exploration, which however results in slower exploitation (convergence). 3

We conclude this group of experiments by running the learning algorithm for various combina-
tions of game parameters; for each combination we record the average error attained at the end of the
algorithm (i.e., at r = R = 5000). The results are summarized at the following tables.

3 An analogous phenomenon occurs in connection to the “temperature parameter” T in simulated annealing [8] and many
other learning algorithms.
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Table 3. Values of final average relative error ∆Q1 for c2 = 1, k2 = 1 and various values of
c1, k1, λ. D is fixed at D = 10.

λ 1.001 1.01 1.05

k1 0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50
c1

1.00 0.000 0.000 0.000 0.000 0.100 0.482 0.224 0.500 1.207
1.50 0.000 0.000 0.000 0.059 0.049 1.748 0.215 0.480 3.777
2.00 0.000 0.000 0.048 0.074 0.199 0.097 0.144 0.980 0.072

Table 4. Round at which ∆Q1 converged to zero for all J = 10 sessions for c2 = 1, k2 = 1
and various values of c1, k1, λ. D is fixed at D = 10. If ∆Q1 did not converge for all sessions
we note for how many sessions it converged.

λ 1.001 1.01 1.05

k1 0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50
c1

1.00 4521 1456 2983 656 9/10 8/10 7/10 5/10 5/10
1.50 3238 2939 1754 7/10 9/10 9/10 0/10 8/10 6/10
2.00 4153 423 8/10 2/10 9/10 6/10 3/10 4/10 6/10

From tables 6 and 7 we see that for λ = 1.001 almost all learning sessions conclude in zero ∆Q1,
while increasing the value of λ results in more sessions concluding with non-zero error estimates.
Furthermore, we observe that when the average ∆Q1 converges to zero for multiple values of λ

the convergence is faster for bigger λ. These results highlight the trade off between exploration and
exploitation discussed above.

Finally, in table 8 we see how many learning sessions were run and how many converged to zero
error estimate ∆Q1 for different values of D and λ.

Table 5. Fraction of learning sessions that converged to ∆Q1 − 0 for different values of D
and λ.

λ 1.001 1.01 1.05
D

8 163/170 144/170 89/170
10 165/170 139/170 81/170
12 161/170 123/170 68/170
14 164/170 134/170 73/170

total 653/680 540/680 311/680

Table 6. Values of final average relative error ∆Q1 for d21 = 1, d22 = D and various values
of d11, d12, λ. D is fixed at D = 10.

λ 1.001 1.01 1.05
d11 d12

1 D/2 0.000 0.233 1.000
1 2D/3 0.000 0.000 0.799
1 D ∼ 6·10−16 ∼ 2·10−16 0.800
D/3 2D/3 0.000 0.000 2.799
D/3 D 0.000 0.000 0.777
D/2 D 0.000 0.000 0.480
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Table 7. Round at which ∆Q1 converged to zero for all J = 10 sessions for d21 = 1, d22 = D
and various values of d11, d12, λ. D is fixed at D = 10. If ∆Q1 did not converge for all
sessions we note for how many sessions it converged.

λ 1.001 1.01 1.05
d11 d12

1 D/2 287 7/10 0/10
1 2D/3 812 333 9/10
1 D 7/10 9/10 9/10
D/3 2D/3 326 139 5/10
D/3 D 225 397 5/10
D/2 D 711 464 6/10

Table 8. Fraction of learning sessions that converged to ∆Q1 − 0 for different values of D
and λ.

λ 1.001 1.01 1.05
D

8 76/110 80/110 49/110
10 97/110 95/110 56/110
12 94/110 78/110 39/110
14 100/110 84/110 40/110

total 367/440 337/440 184/440

4.3. Experiment Group B

In this group the kill probability function is piecewise linear

pn,d =


1 when d ∈ [1, dn1]

− 1
dn2−dn1

d + dn2
dn2−dn1

when d ∈ [dn1, dn2]

0 when d ∈ [dn2, D]

Let us look again at the final results of a representative run of the learning algorithm. With
d11 = D, d12 = D/3, d21 = 1, d22 = D and D = 8, we run the learning algorithm with R = 500,
σ0 = 6D and for the values λ ∈ {1.001, 1.01, 1.05}. In Figure 8 we plot the logarithm (with base 10) of
the relative payoff error ∆Q1 + ϵ. We see similar results as in Group A, for all λ values, the algorithm
achieves zero relative error. Convergence is achieved by the 300-th iteration of the algorithm and it is
fastest for λ = 1.05, and slowest for λ = 1.001.
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Figure 8. Plot of logarithmic relative error log10 ∆Q1 of P1’s payoff for a representative run
of the learning process.

In Figure 9 we plot the logarithmic relative errors log10 ∆dn. These also, as expected, have converged
to zero by the 300-th iteration.
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Figure 9. Plot of logarithmic relative errors log10 ∆d1, log10 ∆d2 for a representative run of
the learning process.

As in Group A, the fact that the estimates of the optimal shooting thresholds and strategies achieve
zero error does not imply that the same is true for the kill probability parameter estimates. In Figure
10, we plot the relative errors ∆d1 and ∆d2. The relative error ∆d2 converges to zero quickly, but the
relative error ∆d1 does not converge to zero for λ = 1.05. For λ = 1.05 the error converges to a fixed
nonzero value, which indicates that the algorithm obtains wrong estimates. However, the error is
sufficiently small to still result in zero-error estimates of the shooting thresholds.
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Figure 10. Plot of relative parameter errors ∆d1, ∆d2 for a representative run of the learning
process.

As in group A, to better evaluate the algorithm, we have run it for J = 10 times and averaged the
obtained results. In particular, in Figure 11 we plot the average of ten curves of the type plotted in
Figure 4. Note that now we plot the curve for R = 500 plays of the duel.
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Figure 11. Plot of Q1 (P1’s payoff) for a representative run of the learning process.

We again run the learning algorithm for various combinations of game parameters and record the
average error attained at the end of the algorithm (again at r = R = 5000) for each combination. The
results are summarized at the following tables.
From Tables 6 and 7, we observe that for most parameter combinations, all learning sessions conclude
with a zero ∆Q1 for the smaller λ values. However, for λ = 1.05, the algorithm fails to converge and
exhibits a high relative error. Notably, increasing λ from 1.001 to 1.01 generally accelerates convergence,
although this is not guaranteed in every case. In one instance, a higher λ (specifically 1.01) leads to
a slower average convergence of ∆Q1 to zero, indicating the importance of initial random shooting
choices. We also observe that results for the highest λ are suboptimal, with the algorithm failing to
converge in varying numbers of sessions, such as in 1 out of 10 or even 5 out of 10 cases. Notably,
when convergence does occur, it happens relatively quickly, with sessions typically completing in
under 1000 iterations. These findings also highlight the trade-off between exploration and exploitation,
as discussed earlier.

Finally, in table 8 we see how many learning sessions were run and how many converged to zero
error estimate ∆Q1 for different values of D and λ.
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5. Discussion

We proposed an algorithm for estimating the unknown game parameters and the optimal strate-
gies through the course of repeated plays. We tested the algorithm for two models of the kill probability
function and found that it converged for the majority of tests. Furthermore, we observed the estab-
lished relationship between higher learning rates and reduced convergence quality, underscoring the
trade-off between learning speed and stability in convergence. Future research could investigate addi-
tional models of the accuracy probability function, including scenarios where the two players employ
distinct models, and work toward establishing theoretical bounds on the algorithm’s probabilistic
convergence.
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