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Abstract: Polymer recycling is an essential and crucial topic in our sustainability‐driven society. The 

depletion of oil and the increasing interest in biomass conversion clearly stimulate the search for 

alternative  carbon  sources.  On  the  other  hand  polymeric  products  (plastic,  rubber  etc.)  are 

ubiquitous  and  an  integral  part  of  our  life.  Recycling  these  products  is  then  of  paramount 

importance also, and perhaps crucially here, from an environmental point of view. In this work we 

will  focus on  the most common commodities, being  the most  important  (in  terms of production 

volume) thermoplastics, rubbers and thermosets. A consequence of this choice is also that the most 

common materials as well as chemical and biochemical recycling methods will be discussed. New 

advances in the corresponding technologies will be presented and critically evaluated. Finally, on 

the basis of this literature review, we will identify current trends and possible future developments. 

Keywords: polymer recycling; mechanical recycling; chemical recycling 

 

1. General Definitions and Aim of This Work 

Recycling of polymeric products is necessity in the current sustainability‐driven climate of our 

society. This  has  stimulated  an  increasing  number  of  research  projects,  in  turn  resulting  also  at 

academic level in an exponential increase of publications during the last 3 decades (Figure 1). 

 

Figure 1. Number of scientific publications in the last 25 years. Source: Web of Science (retrieved on 

October 2024 by using the key words “Polymer” AND “recycling”). 

This general topic and  its popularity as objective of scientific and  technological development 

stems  among  others  from  environmental  concerns  as well  economic  considerations  conceptually 

linked  to  the depletion of  fossil  resources and  the  fate of polymeric products at  the  end of  their 

lifetime [1]. 

The legislation in European countries clearly recommend the re‐use and recycling of polymer 

waste (as opposed to landfill) as main priorities [2]. On a longer timescale biodegradation would be 

obviously  the  preferred  route  [3],  even  though  the  task  of  replacing  current  plastics  by  fully 
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biodegradable ones can only be defined as tantalizing. When dealing with recycling, which is often 

seen as  the main  solution  to decrease  the  environmental  impact of polymeric products  [4,5] and 

decrease the energy demand [6], multiple options are possible (Figure 2) and constitute the objective 

of many multidisciplinary  research projects  [7] where  technical  aspects  are often  combined with 

economic and environmental ones [8,9]. 

 

Figure 2. Schematic representation of recycling options. LMW=low molecular weight. 

We  notice  here  that  both  the materials  and  chemical  recycling  offers  side  opportunities  as 

ground waste (see below) finds also relevant applications while chemical recycling often results in 

oil that can be conveniently used as fuels and fillers that can be reused in composites. 

We use here the term material recycling as opposed to the widespread “mechanical recycling” 

for two reasons.  In first  instance,  the word “mechanical” does not encompass the possibility, also 

when  dealing  with  a  single  recycled  polymer,  of  chemical  reactions  during  processing  (e.g., 

extrusion). The paradigmatic cases of PP (giving degradation upon recycling) and polycondensates 

(like Nylon, giving usually branching during processing)  constitute here  relevant  examples  [10]. 

Moreover, as discussed below, in case polymer blends are considered, these almost always imply the 

presence of chemical reactions at the interface with the formation of compatibilizers to improve the 

dispersion  of  one  component  in  the  other.  Also  in  this  case,  among  other  possibilities,  the 

paradigmatic example of transesterification reactions between PET and PC can be put forward [11]. 

This holds true also for more complex systems, for example for textile waste. Blends of polyamide‐6 

and polyether‐urea  copolymers and  rPET  showed  the  relevant  influence of  interchange  reactions 

between ester‐amide groups and possibly additional ones (acidolysis, alcoholysis and aminolysis) 

during processing in the melt [12]. 

Thermosets and rubbers deserve a special mention as their crosslinked nature factually hinder, 

although not entirely ([13–17]), the very few attempts at material recycling. For rubbers in particular, 

the use of  thermoplastic elastomers constitute a valid alternative whenever possible based on  the 

product requirements [18]. For thermosets, at least PU or epoxy resins, the aminolysis of the urethane 

and C‐O bonds respectively seems to constitute a viable option [19]. 

It must be  finally  stressed here  the  crucial difference between  industrial and post‐consumer 

waste. The former is relatively clean and pure while the latter suffers from severe contamination from 

impurities and other plastics, thus being much more difficult to recycle [20]. 

Generally speaking material recycling results in worse properties (thermal and mechanical) with 

respect  to  the virgin materials  [21–27], even  though  in  specific cases only at  the  level of physical 

appearance  [28].  It  is  stressed  that material  recycling does not  solve  the problem of  the negative 

impact of plastics on the environment, it only postpones this solution. This is because after the end‐

of‐life  of  the  recycled plastics  they  are  converted  again  in waste or  litter  [29].  Indeed,  feedstock 

recycling (either chemical or biochemical) display the advantage of closing the loop and constitutes 

a  conditio  sine  qua  non  as  upon multiple  recycling  steps will  ultimately  deteriorate  the  polymer 
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properties in a decisive way [30]. The dichotomy material vs chemical recycling has been the subject 

of many controversial contributions. It suffices here to say that several Life‐cycle analysis has shown 

the convenience of material recycling for commodity low‐cost polymers (e.g., polyolefins) [31] and 

thermoplastic  composites  [32].  This  is  not  surprising when making  allowances  for  the  fact  that 

separation  of waste  plastics  and  their  processing  (via  reactive  extrusion)  are  certainly  and  self‐

speaking less energy intensive than pyrolysis, separation of the monomers from the resulting oil, re‐

polymerization followed by an extrusion step to pelletize the new polymer [33], the last two steps 

being also carried out when using monomers from fossil resources. As a result, the discussion seems 

fairly obsolete although it must be noticed that a definitive advantage of the chemical recycling route 

is  the presence  of  suitable  infrastructure  as  oil  refineries  can  be  conveniently used  to  refine  the 

pyrolysis oil [34]. 

In  this work  attention will  be  paid  to  commercially  available  polymers,  following  similar 

overviews  already  published  in  the  past  [35],  as  to  provide  the  reader  with  a  comprehensive 

summary of the state of the art. In the future outlook section we will provide a concise overview of 

recent  and present developments. A  section  on design  for  recycling will  try  to  forecast possible 

application of reversible chemistry  for  the circular economy while  the reader  is referred  to recent 

works for the more industrial oriented product design for recycling [36]. 

2. Recycling of Current Commercially Available Polymers 

2.1. Pre‐Treatment 

The  first  step  in  material  recycling  for  post‐consumer  waste  is  the  sorting  into  different 

components.  This  is  conveniently  achieved  on  the  basis  of  density  differences,  but  also  with 

spectroscopic (especially FTIR and Raman [37,38]) methods. For example FTIR has proven useful in 

separating  acrylonitrile‐butadiene‐styrene  (ABS),  high‐impact  polystyrene  (HIPS)  and 

ABS/polycarbonate blend (ABS/PC). Fire tests can be conveniently carried out to detect the presence 

of flame retardants as in ABS and HIPS [37]. This is crucial as the presence of flame retardants can 

constitute  a problem  in  terms  of  side‐reactions during melt processing  [39]. Generally  speaking, 

sorting still faces many challenges due to the heterogenous nature of the waste and the advent of 

novel  complex  product  for  example  from  the  biomedical  sector  [40].  Separation  form metals  is 

becoming  also  a  relevant  issue when  dealing with  recycling  of  different materials  from  electric 

vehicles [41]. Moreover, specific problems also might arise when sorting specific waste. For example 

textiles consists usually of different polymeric materials such polyesters, polyamides and acrylics. 

Their presence  in mixed yarns  [42] constitutes a  relevant challenge, besides  the expected  issue of 

contamination with  other  compounds  [43].  Beside  spectroscopic  characterization, more  specific 

techniques are often  required  for a precise determination of  the polymer physical properties. For 

example a novel GPC technique has been reported for characterizing molecular weight of recycled 

polymers [44]. This development requires less difference in refractive index values between polymer 

and solvent/contaminants, which is obviously a common case for waste materials. 

After the sorting step and on the basis of different characterization techniques, it might be clear 

that the quality of the waste is not enough to justify a re‐processing step in the melt. In these cases, 

grinding into solid particles might still offer option for re‐use. Indeed, the use in bitumen, asphalt 

and concrete as  low cost application  for waste polymers  [45–72], especially  in case of crosslinked 

materials [73], is still quite popular. For example, the use of recycled latexes from the paint industry 

in concrete delivered the expected effect on the final product, namely improved bond stress in the 

elastic region  [74]. Concrete application remain attractive also  for recovered  fibers  [57,75] or even 

single‐polymer  fibre‐reinforced  thermoplastic  composites  [76]. This  strategy  is  quite general  and 

implies the use of recycled polymer in the construction industry in general [77]. It must be stressed 

here that the complex nature of these materials makes it very difficult, if possible at all, to pinpoint 

the exact  function of  the polymers as  related  to  their  (chemical) structure. As a consequence,  the 

product  designers  do  not  have  at  their  disposal  any  exact  tools  for  selecting  the most  suitable 

materials  for  a  given  application  and  comprehensive/comparative  studies will  probably  still  be 

needed. 
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Along the same line, a novel application area is the use of waste polymers in metallurgical and 

mineral manufacturing processes. This  is quite  interesting as  recycled polymers  can be used  (for 

example as interfacial agents and binders) as well as their pyrolysis products (for example H2, CH4 

and CO), the latter as reducing agents [78]. Also application of recycled polymers as binders has been 

described [79]. 

When  the possibility exists  for direct collection or easy sorting of a plastic waste  [80], many 

technologies  become  available  for  recycling  [81]. One  such  example  is  constituted  by ABS  from 

electronic goods. This  can be  collected  and  segregated  in  a  relatively  easy way  according  to  the 

existence of proper legislation in many countries. The obtained purified waste can then be recycled 

mechanically  or  thermally  [82].  It  has  been  shown  for  example  that ABS  from monitors  can  be 

efficiently recycled as material with little variation in thermal and mechanical properties [83]. 

After sorting, a further, often more accurate strategy, for the separation of different polymeric 

materials is the use of selective solvents as in the case of PC, PS and ABS [84]. These processes are 

often quite accurate and able to distinguish quite a number of different polymers, for example for 

packaging materials based on LDPE and HDPE, PVC, PS and PET. Generally speaking high yields 

(>90%) and purities are achieved [85]. This is popular as it allows in principle multi‐layer recycling 

even  if  its  applicability  is  dependent  in  the material  under  investigation  [86].  Furthermore,  its 

environmental impact is questionable as many potentially dangerous and not environmental friendly 

organic solvents are used [87,88]. The same holds true for polymeric products displaying the presence 

of  additives  in  relevant  percentages with  PVC  being  a  paradigmatic  example  [89]. Despite  the 

difficulties  in handling  organic  solvents  at  large  scale,  the  selective dissolution  strategy  remains 

interesting, also form an economic perspective [90], for multi‐layer films when the objective is the 

recovery of the single components [91]. 

2.2. Material Recycling 

After  sorting,  the  co‐existence  of  physical mixture  of  polymers  is more  the  rule  than  the 

exception.  If  individual  components  can  be  separated,  generally  speaking, mixing  of  a  recycled 

polymer with the virgin one provides ample opportunities for properties control as shown for PE 

[92,93], ABS [94] and PLA derivatives [95]. 

If further separation is not possible or feasible from an economic point of view, a logical solution 

would be actually to blend the polymers in the melt. Generally speaking the potential of polymer 

blends  (as  originated  from  unsorted  plastic waste)  is  quite  underestimated  [96,97].  This  stems 

ultimately, among others, from the over‐design nature of many polymeric products. Indeed, the use 

of a specific material for a given application has been driven during the last few decades by technical 

(satisfaction of the product requirements) as well as economic considerations (economic feasibility) 

[98–105]. The availability of many materials that satisfies product requirements and are commercially 

available at  relatively  low price  led also  to overdesign. Examples of  the blending strategy can be 

found  in PLA/rHDPE  [106],  rPET/PC  [11],  rSAN/PVC  and  rABS/PVC  [107]  blends  and  even  for 

rubbers such as EPDM/rEPDM  [108]. This strategy often  results  in products with  (slight)  inferior 

quality, thus suggesting a down‐cycling character [109]. Obviously one tries to compensate the loss 

of properties in the recycled material with the gain obtained by choosing a suitable second component 

in the blend. An example is constituted by rPET/PC blends where the relatively high Tg and barrier 

properties  of  the  PC  are  crucial  in  compensating  those  for  the  rPET  [11].  Special  cases  can  be 

highlighted when  the waste originates  from  a given  source  and with  a known  composition. For 

example,  polymer  blends  based  on  20 different  printers waste  have  been  reported  to  consist  of 

HIPS/PS  (90/10 wt/wt), HIPS/ABS  (90/10 wt/wt) and pure HIPS. Despite having slightly different 

mechanical  properties  as  a  result  of  the  different  chemical  structures,  materials  obtained  by 

formulating the different components displayed consistent mechanical behaviour and could be used 

to manufacture hangers, organizing boxes, soles and, watering cans [110]. 

Blending of different components  (usually present already as physical mixtures)  represent a 

valid option especially when suitable compatibilization techniques are used (for example PET/PE/PC, 

Polyolefins/Nylon or PET blends [111] and even quaternary ones consisting of PE, PP, PS and PET 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 November 2024 doi:10.20944/preprints202411.0669.v1

https://doi.org/10.20944/preprints202411.0669.v1


  5 

 

[112]).  Compatibilization  of  polymer  blends  is most  often  a  pre‐requisite  to  obtain  the  desired 

mechanical behavior. This necessity stems from the immiscible nature of polymers [113,114] and thus 

the necessity to improve the dispersion of one component into the other. Compatibilization helps in 

strengthening  the  interfacial  adhesion  between  different  polymeric  components,  thus  also when 

dealing with recycled fibers that most often lack interfacial interaction with polymeric materials, thus 

resulting in weaker composites [115]. This might be balanced by surface treatment. One example is 

provided by plasma treatment to modify the surface properties for PET films used then as adhesive 

[116], but also of carbon fibres [117]. Finally, the addition of specific reactive monomers (e.g., acrylics) 

has also been reported to increase the interfacial adhesion between PP and different kind of fibres 

[118]. 

Compatibilizers are traditionally prepared in the melt by functionalization of virgin polymers 

(Figure 3) [119]. 

 

Figure 3. Functionalization of iPP with MAH. 

We  take  here  the  functionalization  of  iPP with MAH  as  paradigmatic  example  even  if  the 

chemistry of these processes  is heavily dependent on the substrate and the used monomers [119]. 

These reactions and the function from the corresponding compatibilizer (precursor) date back from 

the last two decades of the 1900s (see for example [119–122]), but have been recently “brought back 

to life” in many different studies (vide supra) [123]. 

For  biodegradable  polymers  (usually  polyesters) material  recycling  is  also  interesting  as  it 

constitutes an added value, besides biodegradability,  in  terms of end‐of‐life policy  [124]. This has 

been demonstrated for PLA/PHBV blends [125] and for PLA alone [126] upon addition of a chain 

extender [127]. Also  in the case of polyolefin blends, the use of reactive additives,  in this peculiar 

cases peroxide helps in improving the compatibility between different components, such as PE and 

PP [128] (Figure 4). 
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Figure 4. Schematic representation of radical coupling reactions in PE/PP mixtures. 

This is probably due to the formation of graft/block copolymers (via radical coupling) and the 

subsequent action of the latter as compatibilizer for the blend. The use of compatibilizers has been 

reported as crucial in improving the compatibility also with solid particles for polyolefins waste from 

agricultural  silage  films  [129]. The  latter  are mainly  constituted by PE with  small PP  impurities. 

However, they also comprise solid particles (sand and minerals) that are not easily recovered after 

grinding  the  used  films. When  recycling  the  obtained  particles  by  extrusion  the  addition  of  a 

compatibilizer  (typically a maleic anhydride, MAH,  functionalized polymer at 2,5 wt %  intake) a 

chemical  reaction between  the  ‐OH groups  at  the  surface of  the  solid particles  and  the MAH  is 

inferred to take place (Figure 5). 

 

Figure 5. Reaction at in the interface between PP‐g‐MAH (taken here as example) and reactive ‐OH 

groups at the filler surface. 

The result of such reactivity is the formation of chemical bonds between filler and matrix and 

consequently the retaining of the mechanical properties compared to the virgin film. Similar benefits 

have been also reported for wood‐based composites with recycled polymers [130–132]. The concept 

of  surface  reaction  can be  exploited also  for  recycling of  crosslinked particles  (do not melt upon 
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heating) by creating an interpenetrating network as demonstrated in the case of SAP [133] with silane 

coupling agents (Figure 6). 

 

Figure 6. Schematic representation for the reaction of silane coupling agents with ‐COOH groups on 

the surface of SAP particles. 

The obtained product has been shown a retention of the absorption properties higher than 80 %, 

thus demonstrating the validity of this approach. In reality this kind of strategy is widely applied as 

a kind of last resource (vide supra). When the quality of the waste mixed plastic is not enough to justify 

reprocessing in the melt, use of the grinded solid as filler in combination with a resin still allows the 

production of composites [134,135]. 

The promotion of radical reactions during extrusion has benefit for polymer blends [136,137], 

but also for homopolymers. As shown for the recycling of polyamides, the use of γ‐irradiation might 

result in branching/crosslinking of the polymer [138], thus compensating for the viscosity loss, with 

respect  to  the  virgin  polymer, during  the  product  lifetime. The  addition  of  stabilizers  (typically 

radical  quenchers)  represent  also  an  effective  strategy  to  counterbalance  possible  degradation 

reaction upon recycling [139], even though these low molecular weight compounds do not usually 

help  in  improving  the compatibility between polymers.  In some specific cases  the use of recycled 

polymers results also  in superior properties with respect to the virgin one as  in the case of rPP in 

wood composites. This was attributed to the increased crystallinity of rPP as compared to the original 

one (probably as a consequence of the thermal degradation). The formation of a transcrystalline layer 

at the surface of the wood fibres was deemed responsible for the observed mechanical behaviour in 

terms of creep compliance [140]. 

Food packaging (e.g., PET [141], polyolefins [142]) requires special regulation to be re‐applied in 

the same field [143]. This often results in the need of dedicated policies for the return of specific waste 

as  to minimize  possible  contamination  [144]. However,  the  combination  of  recycled with  virgin 

material  [145,146]  in  a  multilayer  structure  could  also  represent  a  solution  provided  that  the 

migration kinetics of pollutants between the recycled and the virgin layer is known [147–149] and 

possibly controlled [150]. 

Blending is not the only option for material recycling. From a technological point of view, melt 

blowing represents a convenient method to directly convert recycled polymers into a fabric/film as 

already demonstrated for PP [151]. A recent development include also the concept of microfibrils, for 

example  blends  of  PET  and  LDPE where  the  former  is  present  as microfibrils  [152],  ultimately 

displaying  properties  superior  upon  cold  drawing  [29]. Micronization  is  also  an  alternative  to 

blending when weaker bonds (for example O‐O or S‐S) are present [153]. 

The idea of recovering high‐value materials from polymeric products finds a relevant example 

in the recovery of glass and carbon fibers [154–157]. In particular, carbon fibers, given the increase in 

production and the broad range of applications have been receiving significant attention in the past 

decade  [158–161].  It  is worth noticing here  that  the  recovery  of  these  fibers might display  quite 

general benefits [71,115] as their use  in composites with recycled polymers as matrix significantly 
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dampens  the  effect  of  recycling. This  is  a  simple  consequence  of  the  fact  that  the property  of  a 

composite depend also on the one of the filler according to equations like the one below (1) for the 

elastic modulus (E). 

𝐸 ൌ 𝐸௠ ൈ ൫1െ ∅௙൯ ൅ 𝐸௙ ൈ ∅௙    (1)

Where E is the elastic modulus, ϕ the volume fraction and the subscripts m and f refers to the 

matrix and filler respectively. If we take, for example, the elastic modulus of PP (2 GPa) and carbon 

fibers (170 GPa) [162] at ϕf=0,05 the modulus of the composite is equal to 10,4 GPa. A 30% loss of 

modules for PP upon recycling would then result in a composite with modulus equal to 9,83 GPa, 

thus a loss of about 6%. Natural fibers (such as palm [163,164], silk and cotton [165] ones) can also be 

used. Recently, also the use of nano‐additives has been proposed to minimize the property loss [166–

170].  Besides  fibers,  the  addition  of  different  fillers  (such  as  zeolites  [171],  ash  [172],  SiC/Al2O3 

particles [173], metal powder [174], recycled materials [175–177] and toughening particles [178]) to 

unsorted polymeric waste has  also been  reported. Comparative  studies  are  able  to highlight  the 

difference between different fillers and in some special cases pinpoint synergy in terms of mechanical 

behavior of  the composite  [179].  In special cases  the presence of  the  reinforcement  results also  in 

improved stability against weathering and aging [180]. All strategies briefly outlined above constitute 

a part of the sustainability practices that are currently being defined and implemented for composite 

materials [181,182]. It goes without saying that the possibility of recycling both the matrix and the 

filler constitutes, whenever possible, the ideal scenario [183]. 

The  general  strategy  of  recovering  high  value  fibers  [184,185],  even with  non‐conventional 

methods [186], is also valid when using recycled fibers in in situ polymerization processes [187], as 

additives in concrete [188]. A recycled polymer can also be used to produce fibers [189] and be used 

then as reinforcement in new composites as shown for polyamide 6 [190], PP [191] and PET [192]. 

In case separation  is not an option grinding and use as  filler  for  the all composite  is still an 

investigated option [193] in addition to mixing with concrete [194,195]. Recently the possibility, for 

thermoplastic composites of grinding and then application for 3D printing has been demonstrated 

for  wind  blades  [196]  and  other  polymer  waste  [197,198]  based  on  PLA  [199–203],  PET  and 

derivatives [200–202,204], ABS [200,201,203], HDPE [201]. It must be noticed how this approach often 

relies on a relatively high purity of waste streams, but, whenever possible, it also reduces the energy 

demand as well as the carbon footprint of the recycling process [205]. Also the use of recycled fibers 

in new composites for addictive manufacturing is gaining a lot of interest as recycled fibers are more 

cost effective, albeit the inferior properties, than virgin ones [206]. Application of recycled composite 

have also been found in water treatment [207]. Generally speaking, additive manufacturing seems to 

represent  a  large  application  field  for many  polymers  to  the  point  that  a  specific  codification 

procedure is propose to keep track of the material used [208]. 

2.3. Chemical Recycling 

The general idea of chemical recycling consists in destroying the polymeric structure, whenever 

possible by depolymerization reactions, as to recover the (original) monomers. Pyrolysis represents 

in this context the most used technique especially for polyolefins due to difficulties in other methods 

for separation [209,210], thus especially even when blended with other polymers [211]. 

Chemical  recycling  offers  a  promising  solution  to  enhance  recycling  rates, with microwave 

heating emerging as an attractive technology for polymer breakdown [212–215] in order to improve 

the degradation kinetics. However, the outcome in terms of chemicals obtained and possibility for 

direct re‐use in polymerization remain heavily dependent on the complex chemistry of degradation 

[216] as well as the applicability (also from an economic standpoint) of suitable separation techniques. 

Indeed, many works refer to the pyrolysis oil for other applications such as fuels [217]. 

Also in this case, when the waste has a consistent chemical structure, for example originating 

form a  common  application,  interesting  results have been  reported. The pyrolysis of  crosslinked 

PMMA (from dental waste) yielding >90 wt % liquid phase with >98% purity in the monomer. After 

purification by distillation and re‐polymerisation the properties are similar to the ones of the virgin 
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polymer [218]. Similar results have been also reported by using innovative technologies such as an 

indirectly heated fluidised bed [219]. 

For  polycondensates  chemical  recycling  is undoubtedly  easier  than  for  polyolefins  or  other 

polymer involving radical chemistry. Indeed, in this special case, the polymer and the corresponding 

monomers are usually in thermodynamic equilibrium with each other. This allows the use of reactive 

chemicals  to depolymerize  the material  to  low molecular weight compounds  (not necessarily  the 

monomers)  that  can  be  re‐polymerized  again  in  a  theoretically  straightforward  manner.  The 

approach is quite general (Figure 7a,b) as it applies to a wide range of polycondensates [220,221]. 
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(b) 

Figure 7. a. Reactions for the chemical recycling of PET (A), Nylon 6 and 6,4 (B) and PC (C). b. 

Reactions for the chemical recycling of PU (D). 

Waste based on thermosets requires generally speaking destructive approaches as to destroy the 

3 dimensional structure [222,223] or, in any case, eliminate the bond between the chains similarly to 

what happens in rubber devulcanization [13–15]. This holds true also when trying to recover fillers. 

Indeed, In case of thermosets, special methods are needed to recover the fibers [224], for example the 

matrix degradation by using  superheated  steam  [225],  supercritical water  [226], alcohols  [227] or 

acetic acid near the critical point [228]. Comparative studies have also shown a clear dependence of 

the composite properties on the strategy to recover the fibers [229]. Interesting developments involve 

the use of multiple steps as to break the thermoset structure to recover the fibers. An example is the 

chemical disruption of an epoxy based thermoset [230] (Figure 8). 

 

Figure 8. Chemical recycling of epoxides. 

It is believed that the used solvent diffuses inside the composite thereby causing swelling and 

increasing the accessibility of the functional groups. The Lewis acid catalyst can then selectively break 
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the  C‐N  bonds,  thus  effectively  degrading  the  3‐dimensional  structure  to  the  level  of  soluble 

chemicals. This leaves ultimately the fibers behind. 

3. Future Outlook 

The stringent necessity for a circular policy, for example European countries committing to full 

circularity  before  2050, will most  probably  and  hopefully  attract  even more  interest  in  polymer 

recycling in the coming years. On a long term the design at molecular level of novel materials easier 

to  recycle  deserves  a  relevant  spotlight.  On  the  other  hand,  novel  developments  for  currently 

available materials are also needed. We highlight in the following section both strategies. 

3.1. Design for Recycling 

New developments are needed to start producing materials that are inherently recyclable at their 

end‐of  life  [231].  In  the  last couple of decades  the development of Covalent Adaptable Networks 

(CANs), also referred to as dynamic covalent networks, rapidly gained momentum. This is due to 

their ability  to potentially  replace  the  conventional  thermosets of which  the  crosslinks  cannot be 

broken easily. Additionally, these types of networks can sometimes exhibit a remarkable feature of 

self‐healing, which expands the service  lifetime of the products. The development of CANs spans 

from the discovery of new reversible ‘click’ chemistries, to the use of these chemistries to design new 

CANs, and  finally  tailoring  their properties  to  the product applications. CANs possess  reversible 

covalent bonds which can be broken under a variety of stimuli, among which thermal energy and 

light are the most common triggers [232]. The equilibrium reactions at the foundation of CANs can 

be classified into two types, depending on the mechanism of the bond formation and dissociation. As 

illustrated in Figure 9, the bond exchange can occur via an associative or dissociative mechanism. 

Associative networks (also known as vitrimers) have the ability to undergo bond exchange and thus 

possess a degree of flow, while still maintaining the network integrity and the number of crosslinks 

throughout the recycling process. In contrast, dissociative networks lose complete network integrity 

after thermal treatment. This becomes apparent as thermal treatment results in a lower viscosity as 

compared to vitrimers. For this reason dissociative networks are considered to be less challenging to 

recycle. As  illustrated  in Figure  9,  the  reversible  bonds  can  be only part  of  a  crosslink  between 

polymer strands, or  the monomers  themselves are designed with  functional groups  to eventually 

produce a cross‐linked network with reversible bonds in the  ‘main chain’ as well. We touch upon 

several  considerations  in  the  design  of  CANs,  being  the  types  of  chemistry  that  induces  bond 

dissociation  or  exchange,  several  strategies  to  synthesize  such  networks  and  typical  recycling 

conditions of CANs. 
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Figure 9. Schematic representation of A) an associative mechanism, B) a dissociative mechanism. C) 

An illustration of crosslinks based on reversible chemistry, D) An example of a crosslinked network 

built from monomers with ‘end‐capped’ functional groups. 

Due to the double step mechanism of dissociative reactions, the crosslink density depends on 

the  time  and  temperature.  Therefore,  it will  vary  during  the  reprocessing  step  and  commonly 

thereafter as well [233]. The most common chemistry being employed for the design of dissociative 

CANs  is  the  Diels‐Alder  reaction,  as  displayed  in  Figure  9B.  The  furan‐maleimide  couple  in 

particular has been introduced in polymer networks in several ways, by exploiting functionalities in 

the backbone  and  introduce  furan groups. For  instance, poly‐ketones  can be  functionalized with 

furan groups with a Paal‐Knorr reaction with furfuryl amine [234,235]. Others have demonstrated 

the  functionalization  of  jatropha  oil  [236,237] with  furan  groups  via  epoxidation  of  unsaturated 

bonds,  followed  by  an  epoxy‐amine  reaction  with  furfuryl  amine.  Similarly,  this  has  been 

demonstrated  for  the  design  of  recyclable  rubbers  [238,239]. Dissociative  networks  are  typically 

thermally recycled due to macroscopic  flow  induced by  the retro Diels‐Alder reaction at elevated 

temperatures. Higher temperatures break the Diels‐Alder crosslinks and thus the recycling will be 

similar as for a thermoplastic. Typically, the equilibrium conversion of the Diels‐Alder reaction starts 

to decrease at above 70  °C  [240]. The actual application window may  therefore be more narrow 

compared  to  associative  networks.  The  temperature  at  which  the  network  undergoes  a  phase 

transition from a solid to a viscous liquid depends on the cross‐link density. This in turn depends on 

the network architecture and the number of functional groups per monomer. Paul Flory and Walter 

Stockmayer developed a  theory on molecular size distribution and percolation of multifunctional 

end‐capped branch units, leading to a simple relationship [241,242]. 

𝑥௚௘௟ ൌ
ଵ

ඥሺଵି௙ಲሻሺଵି௙ಳሻ
    (2)

Equation (2) is known as the Flory‐Stockmayer equation. Here,  𝑥௚௘௟  is the critical gel conversion, 
i.e., the minimal conversion at which every branch unit becomes part of the total network. This can 

be calculated with  the number of  functional groups per monomeric branch unit.  𝑓஺   and  𝑓஻   are 
taken here as the number of functional groups of a furan bearing monomer and a maleimide one. The 

equilibrium conversion decreases by heating the material to below  𝑥௚௘௟  to induce macroscopic flow. 

Flory‐Stockmayer  theory  is  in  line with  experimental  ‘de‐gelation’  temperatures, and  can predict 

accurately at which temperature the gel‐liquid transition takes place and thus at which temperature 

it can be recycled. As such, several publications highlight the good agreement for Diels‐Alder systems 

built from furan end‐capped monomers and a bismaleimide [243–246], which was possible by their 

accurate description of the reaction kinetics. In dissociative network the main challenge is to recycle 

without any side reactions. For Diels‐Alder networks, the reaction rate is high enough to push the 

equilibrium downwards  in minutes or even seconds at 140 °C, until  the point where perhaps  the 

system is heat‐transfer limited instead of kinetically limited. However, at these temperatures some 

other  side  reactions  can  jeopardize  the  reversibility of  the  system. The most  considered ones are 

maleimide  homo‐polymerization  [247,248], Double Diels‐Alder  [249]  or  aromatization  [250–252], 

although given methods to prove aromatization are sometimes debatable. Other Diels‐Alder couples 

involving anthracene have been used as well and are generally more stable at higher temperatures, 

and for this reason also require a higher temperature or time to be reprocessed compared to furan‐

maleimide systems [253,254]. Other types of chemistries are for this purpose also explored and are 

summarized in Figure 10. For example, Schiff base reactions involve imine bonds that can undergo 

both  an  associative  pathway  (trans‐amination)  and  a  dissociative  pathway,  being  a  hydrolysis 

reaction towards the ketone and primary amine [233]. This mostly occurs in acidic conditions and in 

water, and these materials could be reprocessed by acid catalyzed degradation in solution to retrieve 

the starting materials, or alternatively by thermal recycling [255,256]. 
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Figure  10. A)  the Schiff base  reaction B) Boronic  ester  complexation C) Oxime  chemistry  and D) 

Acylhydrazone chemistry, used for the design of CANs. 

Boronic acids and diols can form a reversible boronic ester bond, and emerged as an attractive 

and safe chemistry for biomedical applications [261]. Complexation of a diol and a boronic acids is 

pH responsive and can therefore its reversibility has mostly been demonstrated with pH as stimulus. 

Similarly, acylhydrazones are dissociative as well and are recyclable upon changes of pH [262]. pH 

activation would therefore be favored to induce reversibility as thermal activation brings up concerns 

about the thermal stability. The conditions used to demonstrate the recyclability of these crosslinked 

networks are reported in Table 1 along with the reported recycling conditions. 

Table 1. Reported  recycling conditions sorted on  the  type of  reversible dissociative chemistry  for 

comparative purposes. 

Chemistry  T (°C)  Method  Comments  reference 

Diels‐Alder:  furan‐

maleimide  cross‐linked 

castor oil 

130  Free flow into mould  three cycles  [257] 

Diels‐Alder:  furan‐

maleimide  cross‐linked 

polyketones 

120–

150 

Dynamic  mechanical 

thermal analysis 

seven cycles  [258] 

Diels‐Alder:  furan‐

maleimide  crosslinked 

EPDM rubber   

175  Hot pressing  One cycle shown in 

tensile tests 

[239] 

Schiff base: Vanillin based  50 °C  Acid hydrolysis  Shown  once  with 

NMR 

[259] 

Schiff base: Vanillin based  170 °C  Hot pressing  three cycles  [255] 

Oximes  155 °C  Hot pressing  four cycles  [260] 

The mechanism in associative networks requires an additional third party to take place in the 

exchange process. Heat  induces both  thermal motions  to bring  these groups  together  and  faster 

exchange kinetics [263]. Some exchange reactions, such as trans‐esterification, are rather slow and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 November 2024 doi:10.20944/preprints202411.0669.v1

https://doi.org/10.20944/preprints202411.0669.v1


  14 

 

may require a catalyst to stimulate the rapid bond exchange. In their review, Kumar et. al. provide 

an overview of reprocessing conditions for trans‐esterification reactions [264]. Transesterification is 

often catalyzed by Zinc acetate as was done in the pioneering work of Montarnal et. al. [265], and 

lowers the temperature somewhat to reprocess the material. Zhang et. al. [232] provide an overview 

several strategies to recycle vitrimers and provide examples in which conditions even vitrimers can 

be continuously recycled. Taplan and co‐workers [266] highlight that so far the reprocessability of 

vitrimers is limited to compression molding only, but managed to process vitrimers in continuous 

fashion as well through extrusion at 150 °C. This was done by  increasing the bond exchange rate 

through  careful  network design.  Several  examples  of  typically  reported  recycling  conditions  are 

listed in Table 2 for a variety of reversible chemistries. It should be noted that the conditions to recycle 

are chosen for the sole purpose to prove the concept of recycling, even though it may be possible at 

lower temperatures as well. Overall, the thermal cycles employed  in these examples highlight via 

tensile tests the recovery of mechanical properties after several recycling steps. 

Table  2.  Reported  reprocessing  conditions  for  vitrimers,  listed  for  various  types  of  associative 

chemistries. 

Chemistry  Temperature    Method  Comments  reference 

Trans‐esterification: 

fractionated lignin and sebacic 

acid 

 

160 °C  Hot 

pressing 

Zn(acac)2 as catalyst  [267] 

 

 

Trans‐esterification:  palm  oil 

based epoxy and citric acid 

170 °C  Hot 

pressing 

Catalyst free   

[268] 

 

Di‐sulfide metathesis  180  Hot 

pressing 

Three  cycles,  welding 

performance tested 

[269] 

Polyurethane  150  Extrusion  Twin‐screw  extrusion, 

one cycle 

[266] 

3.2. General Considerations 

For currently available materials many trends and necessities can be identified. In first instance, 

further improvements of the sorting process (for example based on macroscopic properties such as 

color and density [270]) as to be able to more efficiently separate almost pure components, would be 

desirable.  In  this  respect, advances have been booked  in  improving  the spectroscopic  techniques, 

such as FTIR [271]. This is important also at polymer level as biodegradable polymers (e.g., PLA) are 

gradually  replacing oil‐based non‐biodegradable ones  (e.g., PE)  in  several  applications  [272,273]. 

Being  able  to  identify  the  presence  of  both  kind  of  polymers  is  paramount  in  defining  suitable 

separation strategies or blending ones in case the mixed waste cannot be separated [274]. 

Secondly the definition of a high‐value application and in general upcycling strategies [275,276], 

for example in batteries [277], is needed as to boost research in the field as well compensate for the 

low‐value applications. One other way is to modify the recycled polymer (directly during extrusion), 

for example by grafting PE with GMA [278,279] (Figure 11). 
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Figure 11. Grafting of GMA onto PE. 

The modified polymer is obviously more polar than the original PE and as such can be used for 

example for adhesive applications. 

Thirdly,  improved  and more  sustainable  pre‐treatment  techniques  should  be  systematically 

developed. Despite the many advantages of material recycling as outlined above one key aspect to 

be considered is the present of additives such as stabilizers and plasticizers. If these low molecular 

weight  compounds  (for  example  brominated  flame  retardants  [280,281]) present  a  threat  for  the 

people health or for the environment they have to be removed prior to recycling. The same holds true 

in case these molecules simply interfere with the chemistry, if any, involved in the recycling step in 

the melt [282]. A new trend is detectable to tackle this problem, namely the use of green solvents as 

pre‐treatment step. At the same time comparative studies have been carried out to selectively isolate 

and  separate  low  molecular  weight  additives  (as  well  as  oligomeric  fractions  generated  by 

degradation upon  recycling)  from  the bulk  recycled polymers  [283]. This knowledge  is crucial  in 

selecting  the most  suitable  separation  process  and  thus  render  the  recycled  product  as  pure  as 

possible. 

Another aspect deserving attention is the presence of an intermediate way between material and 

chemical recycling. When degradation cannot be avoided (for example upon multiple recycling steps) 

the oligomeric nature of the obtained product makes it possible to find applications as lubricants [284]. 

More  importantly,  the  oligomers  route  seems  to  be developing due  to  less  energy demand  and 

possibility to go back to materials quite easily [285]. 

Developments are also needed at theoretical level for example with the use of advanced machine 

learning technique to predict polymer properties when mixing virgin and recycled polymers [286]. 

This is can be achieved also by traditional theoretical approaches to maximize the recycled polymer 

intake  to  obtain  a  given  mechanical  behavior  [287].  Generally  speaking,  the  development  of 

theoretical models able  to predict  the processing behavior as well as  the  final product properties 

represents a crucial development [288]. Form an economic point of view, polymer recycling can be 

conveniently performed in an integrated manner as to combine in single facilities all recycling options 

(e.g.,  chemical  and  material)  in  order  to  minimize  transport  costs  [289]. Moreover,  significant 

advances  in  the  recycling  equipment  design  have  been  also  described  [290].  For  example  by 

introducing  nanoseconds  electromagnetic  pulses  grinded  waste  polymers  can  be  processed  by 

decreasing the overall heat load, thus reducing the impact of thermal degradation [291]. 

A possible game changer in the recycling word is the rising use of electrochemical techniques. 

The general strategy is the one of oxidation (for example of polyolefins [292], Figure 12). 
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Figure 12. Oxidation of polyolefins during electrochemical recycling. 

The obtained chemicals can be re‐used for the synthesis of polyesters and polyamides. Besides 

the fact that the obtained polymers are fairly different from the original polyolefins, the technique 

can also be used to depolymerize polyesters such as PET to the original monomers [292]. 

Also  from a  technological view point,  recent developments can be mentioned as specifically 

contributing to the material recycling. For example, extruders able to predict (based on the material 

properties as well as on the details of the extrusion process) the change in viscosity along the barrel 

and  to  compensate  for  it  by  adjusting  the  screw  speed,  have  been  recently  described  [293,294]. 

Moreover,  computational  fluid  dynamic  (CFD) modeling  of  the  extrusion  process  as well  as  of 

ancillary  steps  (e.g., melt  filtration  [295])  clearly  render  a mathematical  description  as well  as 

subsequent upscaling much easier. 

Finally, an  integrated approach,  following some specific  literature examples  [296], should be 

used in order to tackle the challenges posed by recycling in a comprehensive manner. This conceptual 

integration nicely dovetails the more logistic one (vide supra). This is conceptually counterbalancing 

the fragmentation factors in industrial and consumer applications [297], which in turn dovetails the 

kaleidoscopic varieties of recycling strategies. 
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List of Abbreviations 

ABS  Poly(acrylonitrile‐butadiene‐styrene) 

CAN  Covalent Adaptable Network 

CFD  Computational Fluid Dynamic 

EPDM  Ethylene Propylene Diene Monomer 

FTIR  Fourier Transform Infrared Spectroscopy 

GPC  Gel Permeation Chromatography 

GMA  Glycidyl methacrylate 

HDPE  High Density Polyethylene 

HIPS  High Impact Poly(styrene) 

i  Isotactic 

LDPE  Low Density Polyethylene 

LMW  Low Molecular Weight 

MAH  Maleic anhydride 

PAA  Poly(acrylic acid) 

PC  Poly(carbonate) 
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PE  Poly(ethylene) 

PET  Poly(ethylene terephthalate) 

PHBV  Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) 

PLA  Poly(lactic acid) 

PMMA  Poly(methyl methacrylate) 

PP  Poly(propylene) 

PS  Poly(styrene) 

PU  Poly(urethane) 

PVC  Poly(vinyl chloride) 

SAN  Styrene‐acrylonitrile resin 

SAP  Super Adsorbant Polymer 

r  Recycled 
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