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Abstract: This paper examines the quantitative structure-inhibitory activity relationship of 15-
lipoxygenase (15-LOX) in sets of 100 homo- and heterocyclic compounds using GUSAR2019
software. Statistically significant valid models were built to predict the IC50 parameter. A
combination of MNA- and QNA-descriptors with three whole molecular descriptors (topological
length, topological volume, and lipophilicity) was used to develop 18 statistically significant valid
consensus QSAR models. These compounds had varying degrees of inhibition of the catalytic
activity of 15-LOX: the range of variation in the pICso value was 3.873. The satisfactory coincidence
between the theoretically calculated and experimentally determined pICso values for compounds
TS1, TS2 and 1-8 suggests the potential use of models M1-M18 for virtual screening of virtual
libraries and databases to find new potentially efficient inhibitors of 15-LOX.

Keywords: inhibitors of 15-lipoxygenase; 15-LOX; QSAR models; GUSAR 2019 program; QNA
descriptors; MNA descriptors; structure—-activity relationships

1. Introduction

Lipoxygenases (EC 1.13.11.12, LOX) are oxidoreductases with iron or manganese as a cofactor
and are the most important enzymes in biological systems. They are found in mammals, plants, fish,
mosses, bacteria, yeasts, corals, algae, and fungi [1-13]. LOXs catalyze the oxidation of free and
esterified polyunsaturated fatty acids (PUFAs) containing one or more (1Z, 4Z)-penta-1,4-diene
systems into hydroperoxides [1,14], which are then metabolized into various signaling compounds
such as leukotrienes and lipoxins in animals [15,16], prostaglandin-like molecules in corals [8],
volatile substances of green leaves [17-19], jasmonic acids in plants [20,21], and lactones in
microorganisms [22]. The LOX superfamily is classified based on their regiospecificity into 5-, 8-, 9-,
10-, 12-, 13-, 15-, fusion-, mini- and Mn-LOX. The specificity of LOXs affects the number of the carbon
atom in the PUFA molecule which is attacked by an oxygen molecule followed by the formation of
hydroperoxides [2]. Subsequently, the hydroperoxides formed are converted into ketones, aldehydes
and alcohols by other enzymes [3]. Of the 10 LOX types mentioned above, 5-, 8-, 9-, 10-, 12-, 13-, 15-
LOXs are the so-called classic LOXs. Among these classical LOXs, 9- and 13-LOXs are the most
important enzymes in plants while 5-, 12- and 15-LOX are predominantly found in animals [2,23].
The catalytic center of all the six families of classical LOXs (5-, 8-, 9-, 10-, 12-, 13-, and 15-LOX) contains
"non-heme" iron Fe(Ill) in activated state [1]. The mechanism of PUFA oxidation under the action of
LOXs has been extensively studied and described in the scientific literature, e.g. in [24-26].

The relevance of the search for 15-LOX inhibitors is due to the pathophysiological effect of the
products of oxidative metabolism of PUFAs under the action of this enzyme on the organism of
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animals and humans. Thus, arachidonic acid metabolites formed with participation of 15-LOX in
various types of cells and organs of animals and humans are involved in the development of many
diseases, including atherosclerosis, hypertension, diabetes, obesity and neurodegenerative disorders
[27-29]. In addition, 15 LOX inhibitors have been shown to be more efficient than COX inhibitors in
suppressing the growth of epithelial cancer cells, regardless of the expression status of each enzyme
[28,30].

To date, several types of inhibitors of the catalytic activity of LOX are known: antioxidants and
free radical acceptors (a); chelating agents (b); non-competitive redox inhibitors (c); and combinations
of chelators and reducing agents (d) [31]. All of these are used in biochemistry and in the food
industry to regulate the PUFA metabolism under the action of LOX isoforms. However, most of these
bioactive agents are 5-LOX inhibitors. Compared to 5-LOX inhibitors, the 15-LOX inhibitors are
covered much less in scientific literature. Therefore, the search for 15-LOX inhibitors is an urgent task
for the medical and pharmaceutical chemistry. It should be noted that soybean 15-LOX (15-sLOX)
has been used as a model for 5-hLOX due to their similarity in structure and mechanism of action
[32,33].

Currently, QSAR/QSPR methods are actively used in the development of lead compounds and
drugs based on them. These methods make it possible to solve a wide range of important tasks: 1)
unbiased search for potential bioactive compounds in virtual librari es; 2) extension of the scope of
application of active components of known drugs; 3) evaluation of the side effects and toxicity of
potential drugs and new bioactive compounds; 4) molecular design of new potentially low-toxicity
bioactive compounds based on the structures of known drugs and hit compounds.

QSAR/QSPR methods allow for modeling of biological activity and physicochemical properties
based on a relatively small number of structures in the training sets, which is their major advantage.
The concept of these methods is based on the fundamental postulate of organic chemistry that states
that the properties of chemical compounds are determined by their structures. The essence of
QSAR/QSPR methods lies in the correct selection of various physicochemical and structural
descriptors which allow an unbiased description of each structure of the training sets, as well as
mathematical and statistical methods for building regression relationships based on the most
informative descriptors. The application of QSAR approaches at the preclinical phase can
significantly reduce the time and material costs in the targeted development of new potential drugs,
as various researchers repeatedly noted [34-46]. The use of QSAR/QSPR methods to solve the above
problems is widely reported in scientific literature, including research articles, scientific reviews and
monographs. Every year, the well-known software packages implementing these methods are
improved and new ones are developed [47-56].

Among the many QSAR/QSPR methods whose classification is based on the choice of certain
types of descriptors and machine learning methods for constructing mathematical equations [34—
46,57], 2D- and 3D-QSAR methods are the most popular. The calculation of descriptors in these
methods is based on structural formulae and molecular diagrams of chemical compounds (2D-QSAR)
and on potentially bioactive conformations of chemical structures (3D-QSAR) [34,36,58,59]. The
choice of one of these methods depends mainly on the objectives of a particular study. 2D-QSAR
methods, together with 3D to 6D-QSAR methods, can be used to model biological activity where
there is a need to find compounds that can either increase or decrease the enzymatic specificity of
certain proteins. The lack of reliable crystallographic data on potentially biologically active
conformations of organic compounds in the active centres of proteins, such as in the case of 15-LOX
inhibitors, increases the demand for 2D-QSAR methods over all other methods for modeling enzyme
specificity. It should be understood that the application of 2D-QSAR methods is not limited to
modeling biological activity. These methods can be successfully applied to model the
physicochemical properties of organic compounds, as noted in our previous work and in the work of
others.

GUSAR 2019 (General Unrestricted Structure Activity Relationships) is among the programs
that allow the calculation of physicochemical and structural descriptors with subsequent selection of
the most significant ones and construction of consensus QSAR/QSPR models based on them.
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Previous versions of this program are known such as GUSAR 2013 and GUSAR 2011 [47,48,53,60—
74]. The demo version of the latter can be found at way2drug.com. Regardless of the version, this
program has proved its worth in modeling different types of biological activity and a number of
physicochemical properties (lipophilicity, biotransformation factor, antioxidant activity) in a number
of heterogeneous organic compounds, as reported both by its developers and by us in previous works
[60-63,67-74].

The purpose of the present work was to study the quantitative structure—activity relationship of
15-LOX inhibitors in a series of homo- and heterocyclic compounds with common structural formulae
I-XVI (Figure 1) [75-90] using the GUSAR 2019 program and to build statistically significant valid
prediction models for the pICso parameter designed to search for new potentially efficient 15-LOX
inhibitors in virtual libraries and databases.
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Figure 1. General structural formulas of modeled 15-LOX inhibitors based on a series of derivatives
of phenol (I), resorcinol (II), anacardic acid (III), dimethoxybenzene (IV,V), alkyl ester of 2-(4-
isobutylphenyl) propionic acid (VI), 1, 3-diarylprop-2-yn-1-one (VII), proline (VIII), pyrrole (IX), alkyl
ester of 2-methylfuran-3-carbonyl acid (X), ketoprofen (XI), naphthalene (XII), 1,4-di-N-oxide of
quinoxaline (XIII), isoflavone (XIV), 4-hydroxy-2-(phenylmethyl)benzofuran (XV), and coumarin
(XVI) [75-90].

2. Results and Discussion
2.1. Prediction of the Numerical Values of the ICso Parameter Using the GUSAR 2019 Program

As a result of QSAR modeling based on the consensus approach implemented in the GUSAR
2019 software, eighteen consensus models M1-M18 were generated. All of these models are designed
to predict the numerical values of the pICso parameter for LOX inhibitors. The difference between
these models lies in the choice of different types of descriptors and the number of partial regression
relationships constructed from them. The descriptive power characteristics of these consensus
models are shown in Table 1. They were automatically calculated in GUSAR 2019 software based on
the comparison of experimental values of the pICso parameter for LOX inhibitors and its values
predicted by these models. In our previous works [60-63,67-74], we explained that the coefficients of
determination R?, Q%wmo, values of standard deviation SD and F criterion presented in Table 1 are
averages calculated taking into account all partial regression models included in each of the Mi
consensus models.


https://doi.org/10.20944/preprints202411.0466.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 November 2024 d0i:10.20944/preprints202411.0466.v1

Table 1. Statistical parameters and accuracy of the predicted pICso values of the compounds included
in the training sets TrS1-TrS2 within the consensus models M1-M18. pICso is1 = pICso rs2 = 3.873, pICso
51 = 3.196; pICsots2 = 3.275.

Training Set Method Model N1 Nem  RZ . Q%0 F SO V. A2
QSAR models based on the QN A descriptors
TrS1 SCR M1 84 20 0.825 0.758 10.429 0.485 17 0.067
TrS2 M10 70 20 0.804 0714 7.608 0.531 15 0.090
TrS1 M4 84 20 0.997 0.802 14.606 0.437 17 0.195
RBE-SCR
TrS2 M13 70 20 0.996 0.753 10.204 0.492 15 0.243
TrS1 Both M7 84 20 0.962 0.800 13.026 0.443 17 0.162
ot
TrS2 Mil6 70 20 0959 0.759 9.264 0491 15 0.200
QSAR models based on the MNA descriptors
TrS1 SCR M2 84 20 0.798 0.725 8.749 0517 16 0.073
TrS2 Mil1 70 20 0.825 0.741 6.444 0512 17 0.084
TrS1 M5 84 20 0985 0.745 11.115 0.495 16 0.240
RBEF-SCR
TrS2 M14 70 20 0982 0.725 7.267 0.518 17 0.257
TrS1 Both M8 84 20 0955 0.760 10.365 0.486 16 0.195
ot
TrS2 M17 70 20 0959 0.759 7.170 0.495 17 0.200
QSAR models based on both QNA and MNA descriptors
TrS1 SCR M3 84 320 0.842 0.777 8747 0.480 17 0.065
TrS2 M12 70 320 0.842 0.766 7.067 0.499 16 0.076
TrS1 M6 84 320 0991 0.783 11.373 0460 17 0.208
RBF-SCR
TrS2 Mi15 70 320 099 0769 9.189 0.480 16 0.221
TrS1 Both M9 84 320 0965 0.798 10443 0.454 17 0.167
ot
TrS2 M18 70 320 0966 0.787 8401 0474 16 0.179

' N is the number of structures in the training set; Nem is the number of regression equations used for
the consensus model; % is the coefficient of determination calculated for the compounds of TrSi;
% is the correlation coefficient calculated for the training set by cross-validation with the exception
of one; F is Fisher’s criterion; SD is the standard deviation; V is the number of variables in the final

regression equation. 2 A = RZ .o, — Q70

The data presented in Table 1 allow us to E conclude that all the QSAR consensus models
M1-M18 constructed by us feature acceptable stability, since the A parameter for them is smaller than
the value of 0.3 allowed in scientific literature [44]. Consensus models M1-M3 and M10-M12 have
the highest stability, as they provide small A values (A <0.1). The SCR method was used to select the
descriptors for their construction. The consensus models M7-M9 and M16-M18, which were
constructed using the Both method for descriptor selection, show an acceptable level of stability (A
< 0.2). The consensus models M5-M6 and M13-M15 have the lowest stability, with the exception of
M4. The selection of descriptors in the construction of these models was performed using the RBE-
SCR method. Thus, the data in Table 1 allow us to conclude that, in all cases, the nature of the
descriptors on which the consensus models M1-M18 were built did not play a decisive role in their
stability. At the same time, the method of descriptor selection was a significant factor that affected
the stability of these models.

It should be noted that the statistical characteristics (average R2 (R?), average (? (Q?), average F

(F), average Q2mo(Q2y,), average SD (SD)) whose calculation is provided by GUSAR 2019 do not
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allow a detailed assessment of the descriptive ability of QSAR models, while assessment of the
predictive ability of QSAR models is not performed by this program at all. Therefore, metrics based
on different types of R? coefficients of determination (R?, R%, average R (E), Q%1, Q%2, average
R2msi (Wm), CCC) were additionally used to objectively assess the descriptive and predictive ability
of the M1-M18 QSAR models. In addition, metrics designed to evaluate the prediction errors of pICso
values (RMSE, MAE, SD) were used to determine the true prediction quality index of the pICso
parameter based on the M1-M18 models for the test sets TS1-TS2 of compounds [44-46,57]. The
calculation of all these criteria was performed using the Xternal Validation Plus 1.2 software [91]. The
formulae used in this program to calculate all the above criteria are given in Table S1 in the
Supplementary Material. The same software was used to check the models for systematic errors.

The process of internal and external validation of the developed QSAR models M1-M18 was
based on the structures of training sets TrS1-TrS2 and external test set TS1, respectively. In addition,
the predictive ability of the M10-M18 models was evaluated using the structures of the LOX
inhibitors contained in the internal test set TS2. In addition, the predictive ability of the M3, M6, M9,
M12, M15 and M18 models was evaluated by comparing the experimentally determined (see Section
2.2) and calculated values of the pICso parameter for the structures of LOX inhibitors 1-8 contained
in the test set TS3.

Tables 2-3 present the threshold (maximum and minimum) values of different types of
coefficients of determination and prediction errors of the pICs parameter for some of the QSAR
models we built. These were calculated using Xternal Validation Plus 1.2 software [91] for 100% and
95% structures of the 15-LOX inhibitors contained in the training sets TrS1-TrS2 and test sets TS1-
TS2, respectively. Those QSAR models for which numerical data are not available in Tables 2-3
occupied an intermediate position between the maximum and minimum values for all statistical
features listed in this table. The data in Tables 2-3 allow an objective assessment of the range of
variability of different statistical criteria characterising the descriptive and predictive ability of the
M1-M18 QSAR models. Tables S2-56 in the Supplementary Material present the full set of criteria
calculated using Xternal Validation Plus 1.2 software for the TrS1-TrS2 and TSI-TS2 sets,
considering both 100% and 95% of the 15-LOX inhibitor structures contained therein.

Table 2. Range of variability of statistical criteria in assessing the descriptive power of models M1-

M1s.
Code of the Training Set

Criteria TSl T2
100% data of TrS1 95% data of TrS1 100% data of TrS2 95% data of TrS2
max min max min max min max min
- M4 M2 M4 M2  M13, M15 M10 M15 M10
0.990 0.932 0.993 0942 0.986 0.923 0.991 0.934
- M4 M2 M4 M2 M13 M10 M15 M10
0.989 0.920 0.992 0933 0.985 0.914 0.991 0.934
RY M4 M2 M4 M2 M13 M10 M13 M10
0.989 0.891 0.963 0.786 0.984 0.886 0.9545 0.781
— M4 M2 M4 M2 M13 M10 M13 M10
Rem 0.964 0.811 0971 0.837 0.959 0.813 0.969 0.832
AR M2 M4 M2 M4 M10 M13 M10 M15
0.067 0.009 0.057  0.006 0.071 0.012 0.062 0.008
M4 M2 M4 M2  M13, M15 M10 M13,M15 MI10
ccC 0.993 0.942 0.996  0.962 0.992 0.951 0.995 0.959

RMSE M2 M4 M2 M4 M10 M13 M10 M14, M15
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0.278 0.101 0.244 0.088 0.290 0.120 0.260 0.101

M2 M4 M2 M4 M10 M13 M10 M14

MAE 0.225 0.079 0.201  0.070 0.240 0.092 0.218 0.079
M2 M4 M2 M4 Mi11 M13 M11 M15

°P 0.165 0.063 0.140 0.053 0.168 0.078 0.147 0.060
MAE + 35D M2 M4 M2 M4 M10 M13 M10 M15

0.719 0.268 0.620  0.230 0.733 0.326 0.644 0.261

Table 3. Range of variability of statistical criteria in assessing the predictive ability of models M1-
M18 using test sets TS1-TS2.

Code of the Test Set
TS1 TS2
Criteria
100% data of TS1 95% data of TS1 100% data of TS2 95% data of TS2
max min max min max min max min
- M14 M9, M12 MI10 M3 M13 M11 M13 M11
0.832 0.776 0.870 0.798 0.849 0.723 0.880 0.730
R M14 M12 M10 M3 M13 M11 M13 M11
0
0.832 0.775 0.870  0.790 0.848 0.721 0.868 0.722
RY M14 M9 M1 M12 M13 M11 M16 M11
0

0.806 0.711 0.820 0.627 0.809 0.580 0.700 0.583

M3,
- M14 M12 M10 M13 M11 M13 M11

R?m M12
0.872 0.832 0.903 0.866 0.894 0.805 0.914 0.843
- M14 M12 M10 M3 M13 M11 M13 M11

OR“m
0.828 0.774 0.869 0.783 0.845 0.716 0.868 0.673
ccc M14 M9 M10 M3 M13 M11 M13 M11
0.761 0.700 0.815 0.732 0.748 0.574 0.742 0.633
M1 M18 M12 M1 M11 M13 M11 M13
RMSEP
0.147 0.040 0.123  0.016 0.204 0.118 0.186 0.104
MAE M14 M9 M10 M3 M13 M11 M13 M11
0.909 0.873 0.928 0.892 0.915 0.831 0.921 0.836
D M12 M14 M12 M13 M11 M13 M11 M13
0.441 0.384 0.406  0.338 0.497 0.367 0.433 0.342
M13 M12 Mileé M11 M13 Mi11 M13
MAE + 3-SD

0.377 0.326 0.347 0.287 0.411 0.314 0.365 0.291

The data from Table2 allow us to conclude that all the models M1-M18 showed high predictive
power.

Figure 2 how correlations between the experimental and calculated values of the pIC50
parameter for the 15-LOX inhibitors contained in the TrS1 set as an example of the high predictive
power of our QSAR models M1-MO9.
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Figure 2. Comparison of experimental pICso values (pICso>) with those predicted (pICsoPred) by
models M1 to M9 for 15-LOX inhibitors contained in the training set TrS1 using three methods: SCR
(a), RBE-SCR (b) and Both (c).

In this case, according to this Table2, the best descriptive ability was provided by the M4, M13,
and M15 QSAR models built using RBF-SCR as the descriptor selection method. The lowest accuracy
in reproducing the experimental data contained in the TrS1-TrS2 sets was demonstrated by the M2
and M10 models, in which the descriptors were selected using the SCR method. In particular, the M2
model had the smallest numerical values of different types of coefficients of determination and the
largest values of prediction errors of the pICso parameter for the structures contained in the TrS1 set.
At the same time, the M4 model showed the largest numerical values of different types of coefficients
of determination and the smallest error values. This conclusion holds true for both 100% and 95% of
the data contained in the TrS1 set.

The conclusions drawn from the analysis of the goodness of fit of the M10-M18 models built on
the TrS2 set are less clear. For example, detailed analysis of different types of coefficients of
determination and prediction errors shows small differences in the estimation of the descriptive
ability of the M10-M18 models depending on the completeness of inclusion of the experimental data
(100% and 95% of the data) contained in the TrS2 set. In fact, if 100% of the data in TrS2 are considered,
the maximum coefficients of determination R2o, R? o, E , CCC and the minimum ®R2m coefficient
are provided by the M13 model. The same model, based on the data in the tables, is characterised by
the minimum values of error and standard deviation in the prediction of the pICso parameter for the
structures of the 15-LOX inhibitors included in the TrS2 set. The maximum value of the R? coefficient
is given by the M15 model.

If 95% data of the training set TrS2 is taken into account, the M13 model showed the best
descriptive power even on the basis of a smaller set of criteria. In fact, it was characterised by the
largest values of coefficients of determination such as R?, R%, and CCC, along with the minimum
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value of the AR?m coefficient. The M15 model gave the largest values of the coefficients, R0, mean
R%n in combination with the smallest values of the RMSE, B parameter and standard deviation SD.
At the same time, the minimum value of the MAE error is observed for the M14 model based on 95%
data of the TrS2 training set.

The data of Table 3 and Tables 54-56 in the Supplementary Material allow us to conclude that
almost all the QSAR models built by us are characterised by moderate predictive ability and absence
of systematic errors in predicting the target property for the structures of 15-LOX inhibitors contained
in test sets TS1-TS2. The highest numerical values of different types of coefficients of determination
in predicting the pICso parameter for 100% of the 15-LOX inhibitor structures contained in TS1 were
demonstrated by the M14 model. The same model had the smallest value of the RMSE error. The
smallest values of MAE error, SD value and B parameter for 100% of the data in the TS1 were
provided by the M13 and M17 models, respectively.

The worst results for all the statistical criteria described above were observed for the M9 and
M12 models. For example, the M9 model was characterised by the minimum values of the R?, R, @
and CCC criteria. The M12 model gave the minimum values of the R?, RZO,E , and CCC criteria,
while the M12 model provided the minimum values of the R?, R%, Q?%1, and Q% criteria, combined
with the maximum value of the RMSEP error. However, the M18 model was characterised by the
maximum value of the ®R?m coefficient. The highest value of the MAE error in predicting the pICso
parameter for 100% of the TSI structures was demonstrated by the M3 model. The M5 model was
gave the maximum values of the SD and B parameters.

The results of evaluating the predictive ability of QSAR models M10-M18 using 100% data of
the test set TS2 were more unambiguous. The maximum values of the different types of
determination coefficients along with the minimum values of the prediction errors of the pICso
parameter in this case belonged to the M13 model. The minimum values of the determination
coefficients in combination with the maximum values of the prediction errors of the pICso parameter
for the 15-LOX inhibitors corresponded to the M11 model.

Removal of 5% of the data with the worst prediction results for pICso from TS1 and TS2
contributed to a slight increase in the numerical values of different types of coefficients of
determination and a decrease in the numerical values of the prediction errors for this parameter.
However, the changes in all the statistical criteria were not systematic when the data from both sets
were manipulated in this way. In particular, after removing 5% of data from TS1, the highest
numerical values of the coefficients of determination R2, R%, Q2%1, and Q%2 and the @ were
obtained from the M10 model. The maximum value of the R*o criterion in comparison of the
experimental pICso values with the predicted ones was observed for the M1 model. The minimum
values of RMSE and MAE errors based on 95% of the data of the TS1 set were shown by the M13 and
M16 models, respectively. The lowest values of SD and B were shown by the M4 model.

Removing 5% of the data from the TS2 set had almost no effect on the generalizing conclusions.
In this case, like in the case of 100% data in the TS2, the M13 model provided the largest numerical
values of different types of coefficients of determination and the smallest values of pICso prediction
errors for the 15-LOX inhibitors, with the exception of SD whose numerical value was the smallest
for the M17 model. The minimum numerical values of different types of coefficients of determination
combined with the maximum values of the pICso prediction errors for both 100% and 95% data in the
TS2 were observed for the M11 model.

Based on analysis of the numerical values of different validation criteria presented in Tables 1—-
3 of this section and in Tables 52-56 in the Supplementary Material, we can conclude that almost all
the models showed high descriptive and moderate predictive power, since they met the internal and
external validation criteria described in Section 2.3. It should be noted that this condition was met for
both 100% and 95% of the data contained in the TrS1-TrS2 and TS1-TS2 sets.

2.2. Experimental Determination of the ICso Parameter Against 15-LOX for Compounds 1-8

The results of the in vitro analysis of the inhibitory activity of a series of 2H-(benzo)pyran-2-one
derivatives 1-8 against 15-LOX are presented in Table 4 and Figure 3.
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Table 4. Experimental characterisation of the inhibition of 15-LOX activity in the presence of
compounds 1-8.

Enzyme activity inhibition,

Compound Concentration, pM o ICso, pmol/l
(¢]

60 27.62
70 45.25

1 72.5
80 63.30
90 81.12
30 12.99
40 33.61

2 48.2
50 53.12
60 74.14
20 40.679
30 49.593

3 30.4
40 58.907
50 66.821
60 29.47
70 47.37

4 70.8
80 68.27
90 88.18
50 21.78
60 37.64

5 69.6
70 51.49
80 63.36
10 16.2134
20 35.8994

6 24.9
30 65.0854
40 83.2714
40 25.9180
45 46.8465

7 45.7
50 68.7750
55 89.7035
40 13.886
45 36.793

8 47 .4
50 63.700
55 86.607

ICsovalues were determined by linear interpolation between the points closest to 50% inhibition
(Figure 3).
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Figure 3. Decrease in 15-LOX activity as a function of the concentration of inhibitors 1-8.

The inhibitory activity against 15-LOX was experimentally determined for compounds 1-8. The
values of semi-efficient inhibitory concentration are in the range of 24-73 pmol/l, which allows us to
classify these compounds as moderate inhibitors of the enzyme.

As it can be seen from the plot (Figure 3), a sharp change in inhibitory activity was observed in
a narrow concentration range for compounds 7, 8, which can serve as a basis for the assumption that
the enzyme is highly sensitive to these inhibitors.

2.3. Evaluation of the predictive ability of the M3, M6, M9, M12, M15, and M18 models based on
Compounds 1-8 in the Test Set TS3

Subsequently, the consensus models M3, M6, M9, M12, M15, and M18 were used to predict the
numerical values of the pICso parameter for compounds 1-8 from the TS3 set. The results of these
calculations in comparison with the experimental values of the pICsoexp parameter and the 2-RMSEP
criterion, which corresponded to 100% and 95% of the data from the TS1 and TS2 sets, respectively,
for these compounds are shown in Tables 5 and 6. In selecting the numerical values of the 2-RMSEP
criterion corresponding to the M3, M6, M9, M12, M15, and M18 models for subsequent comparison
with the ApICso values, which are in fact equal to the modulus of the difference between the
experimental and predicted values of the pICso parameter, we focused on the minimum value of this
parameter (see Table5). It should be noted that all the tested compounds were within the range of
applicability of the M3, M6, M9, M12, M15, and M18 models. These models were selected for the
prediction of the pICso parameter for the 15-LOX inhibitors 1-8 because each of these consensus
models included 320 partial regression relationships, which makes it possible to take into account the
structural characteristics of each of the tested compounds in the most objective and complete way. In
addition, it was of scientific interest to explore the applicability of these models with satisfactory and
worst case predictive performance, judging by the statistical criteria derived from TS1-TS2, to predict
the target property for new compounds not included in the modeling.
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Table 5. Results of parameter pICso prediction for 15-LOX inhibitors 1-8 by QSAR models M3, M6,
M9, M12, M15, M18.

SCR RBF-SCR Both
Compound pICsoexe 1
Model pICsopred  «pICs02  Model — pICsopred  spICso  Model pICsopred  epICso

M3 4.323 0.183 M6 4.313 0.173 M9 4.267 0.127
1 4.140

M12 4.301 0.161 M15 4.301 0.161 M18 4.249 0.109

M3 4.033 0.284 M6 4.063 0.254 M9 3.934 0.383
2 4.317

M12 4.145 0.172 M15 4.166 0.151 M18 4.054 0.263

M3 4.086 0.431 M6 4.119 0.398 M9 4.081 0.436
3 4.517

Mi12 4.054 0.463 M15 4.112 0.405 M18 4.052 0.465

M3 4.874 0.724 Meé6 4.836 0.686 M9 4.823 0.673
4 4.150

Mi12 4.840 0.690 M15 4.808 0.658 M18 4.813 0.663

M3 4.426 0.269 M6 4.389 0.232 M9 4.388 0.231
5 4.157

M12 4.518 0.361 M15 4.479 0.322 M18 4.493 0.336

M3 4.403 0.201 M6 4.373 0.231 M9 4.385 0.219
6 4.604

M12 4.427 0.177 M15 4.398 0.206 M18 4.429 0.175

M3 4.532 0.192 M6 4.450 0.11 M9 4.501 0.161
7 4.340

M12 4.635 0.295 M15 4.552 0.212 M18 4.613 0.273

M3 4318 0.006 M6 4.290 0.034 M9 4270 0.054
8 4.324

M12 4.396 0.072 M15 4.364 0.040 M18 4.362 0.038

! The experimental determination of the parameter pICso for compounds 1-8 is presented in Section
IIL. 2ApICso = pICso Pred — pICso ex-

Table 6. Numerical values of error RMSEP and parameter 2-RMSER for models M3, M6, M9, M12,
M15, M18 estimated using Xternal Validation Plus 1.2 software based on TS1, TS2.

RMSEP 2:RMSEP
Model TS1 TS2 TS1 TS2
100% data 95% data 100% data 95% data100% data 95% data100% data95% data
M3 0.437 0.389 - - 0.874 0.778 - -
M6 0.431 0.326 - - 0.862 0.652 - -
M9 0.440 0.375 - - 0.880 0.750 - -
M12 0.441 0.406 0.458 0.390 0.882 0.812 0.916 0.780
M15 0.425 0.365 0.420 0.362 0.850 0.730 0.840 0.724
M18 0.432 0.381 0.433 0.373 0.864 0.762 0.866 0.746

The data in Tables 5 and 6 allow us to conclude that almost all numerical values of pICso for
compounds 1-8 predicted by the M3, M6, M9, M12, M15, and M18 models fall within the 95%
confidence interval equal to + 2-RMSE, i.e. the difference between the predicted and experimentally
determined values of the pICso parameter for 15-LOX inhibitors 1-8 does not numerically exceed the
minimum value of the 2-RMSEP criterion for each of the models (see Tables 5 and 6). The M3 model
showed the highest prediction error by this criterion when the pICso parameter was predicted for
compound 4, but even in this case the difference between the experimental and theoretically
predicted values of the pICso parameter fell within the 2:-RMSEP range. However, the same model
(M3) showed the smallest prediction error of the pICso parameter for compound 8. This demonstrates
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the good predictive ability and correctness of our constructed models, as well as the applicability of
the GUSAR2019 program for modeling 15-LOX inhibitors.

Thus, all the QSAR consensus models M1-M18 are characterised by high descriptive and
moderate predictive power when comparing experimental and predicted values of pICso based on
TrS1 and TrS2 training sets structures, external and internal test sets TS1 and TS2, and compounds
1-8. These models can be used for virtual screening of virtual libraries and databases to search for
new 15-LOX inhibitors in the series of homo- and heterocyclic compounds with common structural
formulae I-XVI.

3. Research Methods

The simulation procedure was performed for the compounds whose formulas are shown in
Figure 4.

3.1. The Methodology of the Computational Experiment

QSAR modeling of 15-LOX inhibitors with general structural formulae I-XVI (Figure 4) was
performed using the GUSAR 2019 (General Unrestricted Structure Activity Relationships) computer
program [53,65,66,92-98].

The QSAR models were built in several steps that are the basis of the operation of this program
and have been described in detail in our previous work [60-63,67-74]. The stages of QSAR model
building are shown schematically in Figure 5.

Formation of training and test sets

v
Selection of QNA and MNA descriptors for constructing QSAR models

v
Generating the parameters of regression equations

v

Formation of regression equations using the self-consistent regression (SCR)
method as well as its combination with radial basis functions (RBF-SCR)

!

Construction of consensus models based on the developed regression equations

v

Validation of QSAR models on the training and test sets

Figure 5. Schematic representation of the GUSAR algorithm.

3.2. Formation of the Training and Test Sets

Training set TrS1 and test set TS1 were generated from the structure set S1. The structure set S1
contained 100 15-LOX inhibitors with their corresponding pICso values. Training set TrS2 and test set
TS2 were formed based on the structures contained in training set TrS1. Figure 6 shows a scheme that
clearly illustrates the strategy of forming the training and test sets TrS1-TrS2, TS1-TS2.

The pICso parameter for each compound included in the data set S1 (and the training TrS1-TrS2
and test sets TS1-TS2 generated from it) was calculated as the negative decimal logarithm of its
corresponding ICso value (in mol/l). Numerical ICso values for the 15-LOX inhibitors being modelled
were measured experimentally and are given in [75-90]. The complete list of organic compounds
from which the data set S1 was generated with their corresponding pICso characteristics is presented
in Table S8 in the Supplementary Material.
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Data Set S1
N =100,
IC50=57.0 - 425,000.0 nM

Breakdown S1

in ratio 5:1
S2 S3
TrS1 for models M1-M9 TS1 for models M1-M18
N =284, N =16,

IC5y=57.0 - 425,000.0 nM ICsp = 140.0 - 220,000.0 nM

Breakdown TrS1
in ratio 5:1

S4 S5
TrS2 for models M10-M18 TS2 for models M10-M18
N =170, N =14,

IC5y=57.0 - 425,000.0 nM IC50=170.0 - 320,000.0 nM

Figure 6. Chart of constructing the training and test sets and design of the QSAR consensus models
M1-M18 (S denotes “set”, TrS and TS are “training and test sets”, respectively, N is the number of
compounds included to the corresponding sets and arrays). Designations: (1) S1 are all datasets; (2)
52 is the training set TrS1 for models M1-M9; (3) S3 is the external test set TS1 for models M1-M18;
(4) 54 is the training set TrS2 for models M10-M18; (5) S5 is the internal test set TS2 for models M10-
M18.

Table 7. Statistical characteristics of the training sets TrS1-TrS2.

) . Code of the Training Set
Designation of TrS:

TrS1 TrS2
N 84 70
pICsy 5.308
ApICso 3.873
Thresholds used to evaluate model's forecast

0.10 x ApICso 0.387
0.15 x ApICso 0.581
0.20 x ApICso 0.775
0.25 x ApICso 0.968

Table 8. Statistical characteristics of the test sets TS1-TS2.

Code of the Test Set
Designation of TS:
TS1 TS2
N 84 70
pICsy 4.765 4.678
ApICso 3.196 3.275
Distribution of the observed response values of test sets TSi around the test mean
pICsy £0.5, % 37.500 50.000
pICsy 1.0, % 75.000 78.571

pICsyt 1.5, % 87.500 85.714
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pICsp+ 2.0, % 93.750 92.857
Distribution of the observed response values of test sets TSi around the training mean
pICsy +0.5, % 12.500 14.286
pICsy +1.0, % 50.000 42.857
pICsyx 1.5, % 87.500 85.714
pICsy= 2.0, % 100.000 100.000

QSAR models M1-M9 were built using the TrS1 training set, which contained 84 structures of
15-LOX inhibitors with their corresponding values of the pICso parameter. To test the predictive
ability of the M1-M9 models, a test set TS1 containing 16 15-LOX inhibitors with their corresponding
values of the pICs parameter was used. Both sets were obtained by partitioning the data set S1, in
which all compounds were previously ranked in ascending order of the pICso parameter, in 5:1 ratio.
The structures were partitioned into the training set TrS1 and the test set TS1 by transferring every
sixth compound from the data set S1 to TS1. The remaining 84 structures of the 15-LOX inhibitors
were used to form the training set TrS1.

The TrS2 set contained 70 15-LOX inhibitors with their corresponding values of the pICso
parameter. It was intended for constructing the QSAR models M10-M18. The validity of the QSAR
models M10-M18 was tested using the TS2 set. Both sets, TrS2 and TS2, were generated on the basis
of TrS1. The same principle was used to generate the training set TrS1 and the test set TS1 from the
data set S1. The characteristics of the training sets TrS1, TrS2 and the test sets TS1, TS2 are shown in
Tables 7 and 8 respectively. The data in these tables indicate that the compounds of the training and
test sets are fairly evenly distributed over the entire range of pICso variation. At the same time, the
range of variation of the pICso parameter for the 15-LOX inhibitors included in training sets TrS1-
TrS2 and test sets TS1-TS2 exceeds the ApICso value of 3 (i.e. ApICso > 3), which determines the
correctness of the further QSAR modeling process [44]. In addition, as it can be seen from Figure 4,
the training sets are characterised by rather a high degree of molecular diversity.

The structures of the compounds in the training and test sets TrS1-TrS2, TS1-TS2 were plotted
in Marvin Sketch 23.4 software [99] and then converted to SDF format using Discovery Studio
Visualiser software [100].

3.3. Building QSAR Models

The M1-M18 QSAR models were built on the basis of two types of substructural descriptors of
atomic neighborhoods: QNA (Quantitative Neighborhoods of Atoms) and MNA (Multilevel
Neighborhoods of Atoms) [47,48,53,60-68], and three types of whole molecule descriptors
(topological length, topological volume, and lipophilicity). These types of descriptors were
automatically calculated by the GUSAR 2019 program. At the same time, the QNA and MNA
descriptors are unique characteristics of molecules, and their calculation is available in different
versions of the GUSAR software (GUSAR 2011, GUSAR 2013, and GUSAR 2019). The ideology of
calculating QNA and MNA descriptors was proposed by Professor V.V. Poroikov's research team. It
is described in detail in the Appendix and in a number of articles [47,64,65,92-97]. The rather
complicated mathematical apparatus used for calculating QNA descriptors complicates their
physical interpretation. Therefore, they are not explicitly displayed in the section dealing with
calculations.

The MNA descriptors are computed using the PASS (Prediction of Activity Spectra for
Substances) algorithm [53,66], which predicts approximately 6,400 “biological activities” with an
accuracy threshold of an average prediction of at least 95%. These descriptors are generated based on
the structural formulae of the chemical compounds without using any pre-compiled list of structural
fragments [47,53,66,92]. They are generated as a recursively defined sequence:

e  Zero-level MNA descriptor for each atom is the mark A of the atom itself;
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e  Any next-level MNA descriptor for the atom is the substructure notation A (D1D2 ... Di ...),

where Di is the previous-level MNA descriptor for i-th immediate neighbor of the atom A.

The neighbor descriptors D1 D2 ... Di ... are arranged in a unique manner. This may be, for
example, a lexicographic sequence. The MNA descriptors are generated using an iterative procedure,
which results in the formation of structural descriptors that include the first, second, etc.
neighborhoods of each atom. The label contains not only information about the type of atom, but also
additional information about whether it belongs to a cyclic or acyclic system, etc.

Three methods were used to reduce the descriptor space and select the most significant
descriptors:

1. Self-consistent regression (SCR) method;

2.  The method of combining self-consistent regression with radial basis functions (RBF-SCR);

3. The Bath method, which combines the simultaneous use of SCR and RBF-SCR methods in a
unique way.

All three of these unique methods were also developed by Professor Poroikov's research team
and implemented in the GUSAR 2019 program for selecting the most appropriate options. A more
detailed description of each method can be found in the Appendix and in the relevant papers [66].

The stability of the models was tested by using a sliding control procedure, with a 20-fold
randomized release of 20% of the compounds from the training samples TS1 and TS2. Both of these
procedures are automatically implemented in the GUSAR 2019 program [47,48,53,60-68].

Each of the eighteen final QSAR M1-M18 models was based on a consensus approach. This
approach involves combining several regression equations into one model, which is done
automatically based on the similarities between the equations.

Each of the final QSAR models M1-M2 and M4-M5, M7-M8, M10-M11, M13-M14, M16-M17
included 20 partial regression dependences. At the same time, the M1, M4, M7, M10, M13, and M16
models were based on QNA descriptors and three additional descriptors that describe the topological
length, topological volume, and lipophilicity of the modeled 15-LOX inhibitors. The M2, M5, M8,
M11, M14, and M17 models were built on a similar principle, but they were based on NA descriptors,
with automatic addition of the three whole molecule descriptors described above. The M3, M6, M9,
M12, M15, and M18 models each included 320 partial regression dependences. At the same time, each
of these 320 particular models was built independently of each other based on the three descriptors
of the entire molecule described above, with addition of the QNA or MNA descriptors.

Due to the specifics of the calculation process, which is described in detail in the Supplemental
Material, QNA and MNA descriptors are not amenable to unambiguous physical interpretation.
Therefore, the regression equations based on these descriptors are not explicitly displayed in the
GUSAR 2019 program.

3.4. Evaluation of the Descriptive and Predictive Ability of QSAR Models

The descriptive ability of the M1-M18 models was evaluated using several metrics. These
included metrics based on the coefficients of determinations R2, R20, average R2m and CCC, as well
as metrics estimating errors in predicting pICso values (RMS error (RMSE), mean absolute error
(MAE), and standard deviation (SD). The parameters of the predictive ability of the M1-M18 models
also included metrics based on the coefficients of determination R2, R2, E , CCC, Q%1 and Q%2 as
well as metrics estimating errors in predicting pICso values (RMS error (RMSE), mean absolute error
(MAE), standard deviation (SD)).

These statistical parameters were calculated using the External Validation Plus 1.2 software for
100% and 95% of the data (to account for errors) contained in the training and test samples [100]. The
Supplemental Material contains formulas for automatically calculating these criteria in this program.
The internal verification of the M1-M6 models was performed using LMO cross-validation (Q2LMO),
with 20% of compounds excluded from the training sets.

d0i:10.20944/preprints202411.0466.v1
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The threshold values of the validation criteria for the above parameters, based on which the
descriptive and predictive ability of the QSAR M1-M18 models was evaluated, are presented in Table
8.

Table 9. Criteria for evaluating the descriptive and predictive ability of QSPR M1-M18 models.

. High descriptive and Moderate descriptive and Low descriptive and
Model quality . o - - .- o
predictive ability predictive ability predictive ability
R2— R%»>0.8 R2— R%»<0.8 R2— R%»<0.6
R2,>08 R2,<0.6 R2,;>0.5
R?,,<0.15 R?,<0.2 R?,<0.2
Criteria based on R CCC>0.8 CCC<038 CcCC—07
Q2mo > 0.70 Q2mo £0.70 Q2mo< 0.60
Q1> 0.70 Q2r1<0.70 Q%1<0.60
Q%2> 0.70 Q%2<0.70 Q%2<0.60
A*<0.3 A*<0.3 A*>0.3
MAE MAE <0.387 MAE = (0.387;0.581] MAE > 0.581
Criteria B** B<0.775 B =(0.775; 0.968] B >0.968

* The symbol of the parameter characterizing the stability of the model. It is calculated as the
difference between the average values of the coefficients R? and Q%Mo (A = R-Q%mo) ** Criteria B are
calculated based on the values MAE and SD (B=MAE+3SD).

Acceptable values of different types of determination coefficients, based on R2, as well as ranges
of variation in MAE and RMSD values and criterion B for assessing the descriptive and predictive
ability of QSAR models M1-M18 were calculated taking the recommendations from the leading
scientists in the field of QSAR modeling [44-46,57] into account.

Thus, the permissible range of variation for the MAE parameter was estimated considering the
range of variability in the pICso parameter for the compounds in training sets TrS1 and TrS2, using
the following formulas:

MAE <0.1 pICso — if the criterion is met, then the models are characterized by a high predictive

ability

MAE =[0.1; 0.15} pICso —if the criterion is met, then the models are characterized by a moderate
predictive ability

MAE >0.15 pICso — if the criterion is met, then the models are characterized by a low predictive
ability

The permissible range of variation of criterion B, where B=EMAE+3SD, was estimated using the
formulas:

B < 0.2 pICso — if the criterion is met, then the models are characterized by a high predictive
ability

B =1[0.2; 0.25] pICs0o — if the criterion is met, then the models are characterized by a moderate
predictive ability

B > 0.25 pICso — if the criterion is met, then the models are characterized by a low predictive
ability

Additionally, the predictive ability of the QSAR M1-M18 models was evaluated by comparing
the predicted pICso values with the experimental values of the same parameter for the new promising
15-LOX inhibitors 1-8 contained in the TS3 test set (Figure 4). These compounds were missing in the
S1 data set and, accordingly, did not participate in the consensus models.
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Figure 7. Structural formulas 1-8 of experimental 15-LOX inhibitors included in the TS3 data set.

3.5. The Technique of the Biochemical Experiment to Measure Inhibitory Activity

Biological tests of inhibitors 15-LOX 1-8 (Figure 4) were performed at the Federal State
Budgetary Educational Institution of Higher Education "Saratov National Research State University
named after N.G. Chernyshevsky" under the supervision of Professor O.V. Fedotova [101]. The
inhibition of the catalytic activity of 15-lipoxygenase by the substances studied was evaluated
according to the procedure reported elsewhere [102-104]. Quercetin, a well-known inhibitor of 15-
LOX, was employed as the positive control.

For biological tests, Lipoxidase/15-lipoxygenase (Sigma Aldrich, Germany, lyophilizate, 15
million Units, CAS Number: 9029-60-1) was used. The study was carried out in borate buffer (0.2 M,
pH 9.0). Linoleic acid (Sigma Aldrich, Germany, purity = 95.0%, CAS Number: 60-33-3) was used as
the oxidation substrate. The activity of 15-LOG in the presence of the compounds studied was
evaluated by spectrophotometric recording of changes in the concentration of 13-
hydroperoxylinoleic acid, the product of oxidative transformation of linoleic acid [105], using a LEKI
552110UV two-beam scanning spectrophotometer (CJSC LOIP, Russia).

The initial concentration of lipoxygenase in the sample was 167 U/ml. Its final concentration in
the sample was 134 pM. In order to study the inhibitory activity of compounds, they were added to
the sample as solutions in DMSO.

To conduct the experiment, 1400 ul of a substrate solution was placed in a cell, along with 24 ul
of a sample in DMSO (for the prototype) or DMSO (for the control sample). Immediately after adding
76 ul of the enzyme solution, the timer was turned on. After 90 seconds, the optical density (A = 234
nm) was recorded.

The activity value obtained from the control experiment was used as a baseline, or 100%, of
enzyme activity. It was measured with only the enzyme solution and solvent (DMSO) present in the
cell, without any active substance.

The percentage of activity inhibition by compounds 1-8 was determined as a relative decrease
in the optical density of the solution, using the formula (1):

DD,
I = D—Ct X 100%, (1)
where D, is the optical density index of the control sample 90 seconds after the start of the
reaction; D is the optical density index of the sample containing the test compound 90 seconds after
the start of the reaction.

The range of working concentrations of compounds 1-8 was 1-100 uM.

The ICsovalues of compounds 1-8 were determined using linear interpolation between the points
closest to 50% inhibition by means of Microsoft Excel 2016. Enzyme activity experiments were
performed in triplicate. The values are expressed as means +SD. Student’s t-test was employed for
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determination of statistical significance, using a P value of 0.05 or less as a criterion for significant
inhibition.

4. Conclusion

Using the QSAR methodology implemented in the GUSAR 2019 program, a quantitative
structure-inhibitory activity relationship has been found for a series of 100 15-LOX inhibitors based
on a series of derivatives of phenol, resorcinol, anacardic acid, dimethoxybenzene, alkyl ester of 2-(4-
isobutylphenyl)propionic acid, 1,3-diarylprop-2-yn-1-one, proline, pyrrole, alkyl ester of 2-
methylfuran-3-carbonyl acid, ketoprofen, naphthalene, 1,4-di-N-oxide of quinoxaline, isoflavone, 4-
hydroxy-2-(phenylmethyl)benzofuran and coumarin with general structural formulas I-XIV. These
compounds had various degrees of inhibition of the catalytic activity of 15-LOX. The variation range
of the pICso parameter was 3.873 (pICs0=3.873). Based on a combination of MNA and QNA descriptors
with three whole molecule descriptors including topological length, topological volume, and
lipophilicity, eighteen statistically significant and valid consensus models (M1-M18) were generated.

All models reproduced the experimental data contained in the training samples with a high
degree of accuracy. Cross-validation with 20-fold deletion of 20% of the data from the training
samples also showed good results. The reliability of the prediction of the pICso parameter based on
the evaluation of this parameter for compounds of two test samples and ten subsequently
experimentally studied compounds showed a moderate predictive ability of the QSAR M1-M18
models.

The satisfactory match of the theoretically calculated pICsorred values with the experimental
pICsop values for compounds of test sets TS1-TS2 and compounds 1-8 opens up prospects for
application of M1-M18 models in virtual screening of virtual libraries and databases in the search for
new potentially efficient 15-LOG inhibitors in these sources.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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