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Heterocyclic Compounds 

Veronika Khairullina 1,*, Yuliya Martynova 1, Matvey Kanevsky 2, Irina Kanevskaya 2,   
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2  Saratov State University, 410012 Saratov, Russia 

*  Correspondence: khajrullinavr@uust.ru; Tel.: +7‐963‐906‐6567 

Abstract:  This  paper  examines  the  quantitative  structure–inhibitory  activity  relationship  of  15‐

lipoxygenase  (15‐LOX)  in  sets  of  100  homo‐  and  heterocyclic  compounds  using  GUSAR2019 

software.  Statistically  significant  valid  models  were  built  to  predict  the  IC50  parameter.  A 

combination of MNA‐ and QNA‐descriptors with three whole molecular descriptors (topological 

length, topological volume, and lipophilicity) was used to develop 18 statistically significant valid 

consensus QSAR models.  These  compounds  had  varying  degrees  of  inhibition  of  the  catalytic 

activity of 15‐LOХ: the range of variation in the pIC50 value was 3.873. The satisfactory coincidence 

between the theoretically calculated and experimentally determined pIC50 values for compounds 

TS1, TS2  and  1–8  suggests  the potential use of models M1–M18  for virtual  screening of virtual 

libraries and databases to find new potentially efficient inhibitors of 15‐LOX. 

Keywords:  inhibitors  of  15‐lipoxygenase;  15‐LOX; QSAR models; GUSAR  2019 program; QNA 

descriptors; MNA descriptors; structure–activity relationships 

 

1. Introduction 

Lipoxygenases (EC 1.13.11.12, LOX) are oxidoreductases with iron or manganese as a cofactor 

and are the most important enzymes in biological systems. They are found in mammals, plants, fish, 

mosses, bacteria, yeasts,  corals,  algae,  and  fungi  [1–13]. LOXs  catalyze  the oxidation of  free  and 

esterified  polyunsaturated  fatty  acids  (PUFAs)  containing  one  or more  (1Z,  4Z)‐penta‐1,4‐diene 

systems into hydroperoxides [1,14], which are then metabolized into various signaling compounds 

such  as  leukotrienes  and  lipoxins  in  animals  [15,16],  prostaglandin‐like molecules  in  corals  [8], 

volatile  substances  of  green  leaves  [17–19],  jasmonic  acids  in  plants  [20,21],  and  lactones  in 

microorganisms [22]. The LOX superfamily is classified based on their regiospecificity into 5‐, 8‐, 9‐, 

10‐, 12‐, 13‐, 15‐, fusion‐, mini‐ and Mn‐LOX. The specificity of LOXs affects the number of the carbon 

atom in the PUFA molecule which is attacked by an oxygen molecule followed by the formation of 

hydroperoxides [2]. Subsequently, the hydroperoxides formed are converted into ketones, aldehydes 

and alcohols by other enzymes [3]. Of the 10 LOX types mentioned above, 5‐, 8‐, 9‐, 10‐, 12‐, 13‐, 15‐ 

LOXs  are  the  so‐called  classic LOXs. Among  these  classical LOXs,  9‐  and  13‐LOXs  are  the most 

important enzymes in plants while 5‐, 12‐ and 15‐LOX are predominantly found in animals [2,23]. 

The catalytic center of all the six families of classical LOXs (5‐, 8‐, 9‐, 10‐, 12‐, 13‐, and 15‐LOX) contains 

ʺnon‐hemeʺ iron Fe(III) in activated state [1]. The mechanism of PUFA oxidation under the action of 

LOXs has been extensively studied and described in the scientific literature, e.g. in [24–26]. 

The relevance of the search for 15‐LOX inhibitors is due to the pathophysiological effect of the 

products of oxidative metabolism of PUFAs under  the action of  this enzyme on  the organism of 
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animals and humans. Thus, arachidonic acid metabolites  formed with participation of 15‐LOX  in 

various types of cells and organs of animals and humans are involved in the development of many 

diseases, including atherosclerosis, hypertension, diabetes, obesity and neurodegenerative disorders 

[27–29]. In addition, 15 LOX inhibitors have been shown to be more efficient than COX inhibitors in 

suppressing the growth of epithelial cancer cells, regardless of the expression status of each enzyme 

[28,30]. 

To date, several types of inhibitors of the catalytic activity of LOX are known: antioxidants and 

free radical acceptors (a); chelating agents (b); non‐competitive redox inhibitors (c); and combinations 

of  chelators  and  reducing  agents  (d)  [31]. All of  these  are used  in biochemistry  and  in  the  food 

industry to regulate the PUFA metabolism under the action of LOX isoforms. However, most of these 

bioactive  agents  are  5‐LOX  inhibitors. Compared  to  5‐LOX  inhibitors,  the  15‐LOX  inhibitors  are 

covered much less in scientific literature. Therefore, the search for 15‐LOX inhibitors is an urgent task 

for the medical and pharmaceutical chemistry. It should be noted that soybean 15‐LOX (15‐sLOX) 

has been used as a model for 5‐hLOX due to their similarity in structure and mechanism of action 

[32,33]. 

Currently, QSAR/QSPR methods are actively used in the development of lead compounds and 

drugs based on them. These methods make it possible to solve a wide range of important tasks: 1) 

unbiased search for potential bioactive compounds in virtual librari es; 2) extension of the scope of 

application of active components of known drugs; 3) evaluation of the side effects and  toxicity of 

potential drugs and new bioactive compounds; 4) molecular design of new potentially low‐toxicity 

bioactive compounds based on the structures of known drugs and hit compounds. 

QSAR/QSPR methods allow for modeling of biological activity and physicochemical properties 

based on a relatively small number of structures in the training sets, which is their major advantage. 

The concept of these methods is based on the fundamental postulate of organic chemistry that states 

that  the  properties  of  chemical  compounds  are  determined  by  their  structures.  The  essence  of 

QSAR/QSPR  methods  lies  in  the  correct  selection  of  various  physicochemical  and  structural 

descriptors which allow an unbiased description of each structure of  the  training sets, as well as 

mathematical  and  statistical  methods  for  building  regression  relationships  based  on  the  most 

informative  descriptors.  The  application  of  QSAR  approaches  at  the  preclinical  phase  can 

significantly reduce the time and material costs in the targeted development of new potential drugs, 

as various researchers repeatedly noted [34–46]. The use of QSAR/QSPR methods to solve the above 

problems is widely reported in scientific literature, including research articles, scientific reviews and 

monographs.  Every  year,  the  well‐known  software  packages  implementing  these  methods  are 

improved and new ones are developed [47–56]. 

Among the many QSAR/QSPR methods whose classification is based on the choice of certain 

types of descriptors and machine  learning methods  for constructing mathematical equations  [34–

46,57],  2D‐  and  3D‐QSAR methods  are  the most popular. The  calculation of descriptors  in  these 

methods is based on structural formulae and molecular diagrams of chemical compounds (2D‐QSAR) 

and  on  potentially  bioactive  conformations  of  chemical  structures  (3D‐QSAR)  [34,36,58,59].  The 

choice of one of  these methods depends mainly on  the objectives of a particular study. 2D‐QSAR 

methods,  together with 3D  to 6D‐QSAR methods, can be used  to model biological activity where 

there is a need to find compounds that can either increase or decrease the enzymatic specificity of 

certain  proteins.  The  lack  of  reliable  crystallographic  data  on  potentially  biologically  active 

conformations of organic compounds in the active centres of proteins, such as in the case of 15‐LOX 

inhibitors, increases the demand for 2D‐QSAR methods over all other methods for modeling enzyme 

specificity.  It  should  be  understood  that  the  application  of  2D‐QSAR methods  is  not  limited  to 

modeling  biological  activity.  These  methods  can  be  successfully  applied  to  model  the 

physicochemical properties of organic compounds, as noted in our previous work and in the work of 

others. 

GUSAR 2019  (General Unrestricted Structure Activity Relationships)  is among  the programs 

that allow the calculation of physicochemical and structural descriptors with subsequent selection of 

the  most  significant  ones  and  construction  of  consensus  QSAR/QSPR  models  based  on  them. 
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Previous versions of this program are known such as GUSAR 2013 and GUSAR 2011 [47,48,53,60–

74]. The demo version of the latter can be found at way2drug.com. Regardless of the version, this 

program has proved  its worth  in modeling different  types of biological activity and a number of 

physicochemical properties (lipophilicity, biotransformation factor, antioxidant activity) in a number 

of heterogeneous organic compounds, as reported both by its developers and by us in previous works 

[60–63,67–74]. 

The purpose of the present work was to study the quantitative structure–activity relationship of 

15‐LOX inhibitors in a series of homo‐ and heterocyclic compounds with common structural formulae 

I–XVI (Figure 1) [75–90] using the GUSAR 2019 program and to build statistically significant valid 

prediction models for the pIC50 parameter designed to search for new potentially efficient 15‐LOX 

inhibitors in virtual libraries and databases. 

 

Figure 1. General structural formulas of modeled 15‐LOX inhibitors based on a series of derivatives 

of  phenol  (I),  resorcinol  (II),  anacardic  acid  (III),  dimethoxybenzene  (IV,V),  alkyl  ester  of  2‐(4‐

isobutylphenyl) propionic acid (VI), 1, 3‐diarylprop‐2‐yn‐1‐one (VII), proline (VIII), pyrrole (IX), alkyl 

ester  of  2‐methylfuran‐3‐carbonyl  acid  (X),  ketoprofen  (XI),  naphthalene  (XII),  1,4‐di‐N‐oxide  of 

quinoxaline  (XIII),  isoflavone  (XIV),  4‐hydroxy‐2‐(phenylmethyl)benzofuran  (XV),  and  coumarin 

(XVI) [75–90]. 

2. Results and Discussion 

2.1. Prediction of the Numerical Values of the IC50 Parameter Using the GUSAR 2019 Program 

As a result of QSAR modeling based on the consensus approach implemented in the GUSAR 

2019 software, eighteen consensus models M1–M18 were generated. All of these models are designed 

to predict the numerical values of the pIC50 parameter for LOX inhibitors. The difference between 

these models lies in the choice of different types of descriptors and the number of partial regression 

relationships  constructed  from  them.  The  descriptive  power  characteristics  of  these  consensus 

models are shown in Table 1. They were automatically calculated in GUSAR 2019 software based on 

the  comparison of  experimental values of  the pIC50 parameter  for LOX  inhibitors  and  its values 

predicted by these models. In our previous works [60–63,67–74], we explained that the coefficients of 

determination R2, Q2LMO, values of standard deviation SD and F criterion presented  in Table 1 are 

averages  calculated  taking  into  account  all partial  regression models  included  in  each of  the Mi 

consensus models. 
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Table 1. Statistical parameters and accuracy of the predicted pIC50 values of the compounds included 

in the training sets TrS1–TrS2 within the consensus models M1–M18. pIC50 TrS1 = pIC50 TrS2 = 3.873, pIC50 

TS1 = 3.196; pIC50 TS2 = 3.275. 

Training Set  Method  Model  N 1  NPM  𝑅்௥ௌ௜
2   𝑄௅ெை

2   𝐹  𝑆𝐷  V  A 2 

QSAR models based on the QNA descriptors 

TrS1 
SCR 

M1  84  20  0.825  0.758  10.429  0.485  17  0.067 

TrS2  M10  70  20  0.804  0.714  7.608  0.531  15  0.090 

TrS1 
RBF‐SCR 

M4  84  20  0.997  0.802  14.606  0.437  17  0.195 

TrS2  M13  70  20  0.996  0.753  10.204  0.492  15  0.243 

TrS1 
Both 

M7  84  20  0.962  0.800  13.026  0.443  17  0.162 

TrS2  M16  70  20  0.959  0.759  9.264  0.491  15  0.200 

QSAR models based on the MNA descriptors 

TrS1 
SCR 

M2  84  20  0.798  0.725  8.749  0.517  16  0.073 

TrS2  M11  70  20  0.825  0.741  6.444  0.512  17  0.084 

TrS1 
RBF‐SCR 

M5  84  20  0.985  0.745  11.115  0.495  16  0.240 

TrS2  M14  70  20  0.982  0.725  7.267  0.518  17  0.257 

TrS1 
Both 

M8  84  20  0.955  0.760  10.365  0.486  16  0.195 

TrS2  M17  70  20  0.959  0.759  7.170  0.495  17  0.200 

QSAR models based on both QNA and MNA descriptors 

TrS1 
SCR 

M3  84  320  0.842  0.777  8.747  0.480  17  0.065 

TrS2  M12  70  320  0.842  0.766  7.067  0.499  16  0.076 

TrS1 
RBF‐SCR 

M6  84  320  0.991  0.783  11.373  0.460  17  0.208 

TrS2  M15  70  320  0.99  0.769  9.189  0.480  16  0.221 

TrS1 
Both 

M9  84  320  0.965  0.798  10.443  0.454  17  0.167 

TrS2  M18  70  320  0.966  0.787  8.401  0.474  16  0.179 

1 N is the number of structures in the training set; NPM is the number of regression equations used for 

the consensus model; 𝑅்௥ௌ௜
ଶ   is the coefficient of determination calculated for the compounds of TrSi; 

𝑄௅ெை
ଶ   is the correlation coefficient calculated for the training set by cross‐validation with the exception 

of one;  𝐹  is Fisher’s criterion;  𝑆𝐷  is the standard deviation; V is the number of variables in the final 

regression equation. 2    𝐴 ൌ 𝑅்௥ௌ௜
ଶ െ 𝑄௅ெை

ଶ . 

The data presented in Table 1 allow us to  𝑅்௥ௌ௜
ଶ   conclude that all the QSAR consensus models 

M1–M18 constructed by us feature acceptable stability, since the A parameter for them is smaller than 

the value of 0.3 allowed in scientific literature [44]. Consensus models M1–M3 and M10–M12 have 

the highest stability, as they provide small A values (A < 0.1). The SCR method was used to select the 

descriptors  for  their  construction.  The  consensus  models  M7–M9  and  M16–M18,  which  were 

constructed using the Both method for descriptor selection, show an acceptable level of stability (A 

⩽ 0.2). The consensus models M5–M6 and M13–M15 have the lowest stability, with the exception of 

M4. The selection of descriptors in the construction of these models was performed using the RBF‐

SCR method. Thus,  the data  in Table  1  allow us  to  conclude  that,  in  all  cases,  the nature of  the 

descriptors on which the consensus models M1–M18 were built did not play a decisive role in their 

stability. At the same time, the method of descriptor selection was a significant factor that affected 

the stability of these models. 

It should be noted that the statistical characteristics (average R2 (𝑅ଶ), average Q2 (𝑄ଶ), average F 

(𝐹), average Q2LMO(𝑄௅ெை
ଶ ), average SD (𝑆𝐷)) whose calculation  is provided by GUSAR 2019 do not 
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allow  a detailed  assessment  of  the descriptive  ability  of QSAR models, while  assessment  of  the 

predictive ability of QSAR models is not performed by this program at all. Therefore, metrics based 

on different  types of R2 coefficients of determination  (R2, R20, average R2m (𝑅௠ଶ ), Q2F1, Q2F2, average 

R2mTSi (𝑅௠ଶ ்ௌ௜), CCC) were additionally used to objectively assess the descriptive and predictive ability 

of the M1–M18 QSAR models. In addition, metrics designed to evaluate the prediction errors of pIC50 

values  (RMSE, MAE,  SD) were used  to determine  the  true prediction quality  index  of  the pIC50 

parameter based on  the M1–M18 models  for  the  test  sets TS1–TS2 of compounds  [44–46,57]. The 

calculation of all these criteria was performed using the Xternal Validation Plus 1.2 software [91]. The 

formulae  used  in  this  program  to  calculate  all  the  above  criteria  are  given  in  Table  S1  in  the 

Supplementary Material. The same software was used to check the models for systematic errors.     

The process of  internal and external validation of the developed QSAR models M1–M18 was 

based on the structures of training sets TrS1–TrS2 and external test set TS1, respectively. In addition, 

the  predictive  ability  of  the M10–M18 models was  evaluated  using  the  structures  of  the  LOX 

inhibitors contained in the internal test set TS2. In addition, the predictive ability of the M3, M6, M9, 

M12, M15 and M18 models was evaluated by comparing the experimentally determined (see Section 

2.2) and calculated values of the pIC50 parameter for the structures of LOX inhibitors 1–8 contained 

in the test set TS3. 

Tables  2–3  present  the  threshold  (maximum  and  minimum)  values  of  different  types  of 

coefficients of determination and prediction  errors of  the pIC50 parameter  for  some of  the QSAR 

models we built. These were calculated using Xternal Validation Plus 1.2 software [91] for 100% and 

95% structures of the 15‐LOX inhibitors contained in the training sets TrS1–TrS2 and test sets TS1–

TS2,  respectively. Those QSAR models  for which numerical data  are not  available  in Tables  2–3 

occupied an  intermediate position between  the maximum and minimum values  for all  statistical 

features  listed  in  this  table. The data  in Tables 2–3 allow an objective assessment of  the  range of 

variability of different statistical criteria characterising the descriptive and predictive ability of the 

M1–M18 QSAR models. Tables S2–S6 in the Supplementary Material present the full set of criteria 

calculated  using  Xternal  Validation  Plus  1.2  software  for  the  TrS1–TrS2    and  TS1–TS2  sets, 

considering both 100% and 95% of the 15‐LOX inhibitor structures contained therein. 

Table 2. Range of variability of statistical criteria in assessing the descriptive power of models M1–

M18. 

Criteria 

Code of the Training Set 

TrS1  TrS2 

100% data of TrS1 95% data of TrS1  100% data of TrS2  95% data of TrS2 

max  min  max  min  max  min  max  min 

R2 
М4  М2  М4  М2  М13, М15  М10  М15  М10 

0.990  0.932  0.993  0.942  0.986  0.923  0.991  0.934 

R20 
М4  М2  М4  М2  М13  М10  М15  М10 

0.989  0.920  0.992  0.933  0.985  0.914  0.991  0.934 

R2’0 
М4  М2  М4  М2  М13  М10  М13  М10 

0.989  0.891  0.963  0.786  0.984  0.886  0.9545  0.781 

𝑅2೘ 
М4  М2  М4  М2  М13  М10  М13  М10 

0.964  0.811  0.971  0.837  0.959  0.813  0.969  0.832 

ΔR2m 
М2  М4  М2  М4  М10  М13  М10  М15 

0.067  0.009  0.057  0.006  0.071  0.012  0.062  0.008 

CCC 
М4  М2  М4  М2  М13, М15  М10  М13, М15  М10 

0.993  0.942  0.996  0.962  0.992  0.951  0.995  0.959 

RMSE  М2  М4  М2  М4  М10  М13  М10  М14, М15 
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0.278  0.101  0.244  0.088  0.290  0.120  0.260  0.101 

MAE 
М2  М4  М2  М4  М10  М13  М10  М14 

0.225  0.079  0.201  0.070  0.240  0.092  0.218  0.079 

SD 
М2  М4  М2  М4  М11  М13  М11  М15 

0.165  0.063  0.140  0.053  0.168  0.078  0.147  0.060 

MAE + 3∙SD 
М2  М4  М2  М4  М10  М13  М10  М15 

0.719  0.268  0.620  0.230  0.733  0.326  0.644  0.261 

Table 3. Range of variability of statistical criteria in assessing the predictive ability of models M1–

M18 using test sets TS1–TS2. 

Criteria 

Code of the Test Set 

TS1  TS2 

100% data of TS1  95% data of TS1  100% data of TS2  95% data of TS2 

max  min  max  min  max  min  max  min 

R2 
М14  М9, М12  М10  М3  М13  М11  М13  М11 

0.832  0.776  0.870  0.798  0.849  0.723  0.880  0.730 

R20 
М14  М12  М10  М3  М13  М11  М13  М11 

0.832  0.775  0.870  0.790  0.848  0.721  0.868  0.722 

R2’0 
М14  М9  М1  М12  М13  М11  М16  М11 

0.806  0.711  0.820  0.627  0.809  0.580  0.700  0.583 

𝑅2೘ 
М14  М12  М10 

М3, 

М12 
М13  М11  М13  М11 

0.872  0.832  0.903  0.866  0.894  0.805  0.914  0.843 

�R2m 
М14  М12  М10  М3  М13  М11  М13  М11 

0.828  0.774  0.869  0.783  0.845  0.716  0.868  0.673 

CCC 
М14  М9  М10  М3  М13  М11  М13  М11 

0.761  0.700  0.815  0.732  0.748  0.574  0.742  0.633 

RMSEP 
М1  М18  М12  М1  М11  М13  М11  М13 

0.147  0.040  0.123  0.016  0.204  0.118  0.186  0.104 

MAE 
М14  М9  М10  М3  М13  М11  М13  М11 

0.909  0.873  0.928  0.892  0.915  0.831  0.921  0.836 

SD 
М12  М14  М12  М13  М11  М13  М11  М13 

0.441  0.384  0.406  0.338  0.497  0.367  0.433  0.342 

MAE + 3∙SD 
М3  М13  М12  М16  М11  М13  М11  М13 

0.377  0.326  0.347  0.287  0.411  0.314  0.365  0.291 

The data from Table2 allow us to conclude that all the models M1–M18 showed high predictive 

power. 

Figure  2  how  correlations  between  the  experimental  and  calculated  values  of  the  pIC50 

parameter for the 15‐LOX inhibitors contained in the TrS1 set as an example of the high predictive 

power of our QSAR models M1–M9. 
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(a)  (b) 

(c) 

Figure  2.  Comparison  of  experimental  pIC50  values  (pIC50exp) with  those  predicted  (pIC50pred)  by 

models M1 to M9 for 15‐LOX inhibitors contained in the training set TrS1 using three methods: SCR 

(a), RBF‐SCR (b) and Both (c). 

In this case, according to this Table2, the best descriptive ability was provided by the M4, M13, 

and M15 QSAR models built using RBF‐SCR as the descriptor selection method. The lowest accuracy 

in reproducing the experimental data contained in the TrS1–TrS2 sets was demonstrated by the M2 

and M10 models, in which the descriptors were selected using the SCR method. In particular, the M2 

model had the smallest numerical values of different types of coefficients of determination and the 

largest values of prediction errors of the pIC50 parameter for the structures contained in the TrS1 set. 

At the same time, the M4 model showed the largest numerical values of different types of coefficients 

of determination and the smallest error values. This conclusion holds true for both 100% and 95% of 

the data contained in the TrS1 set. 

The conclusions drawn from the analysis of the goodness of fit of the M10–M18 models built on 

the  TrS2  set  are  less  clear.  For  example,  detailed  analysis  of  different  types  of  coefficients  of 

determination  and prediction  errors  shows  small differences  in  the  estimation of  the descriptive 

ability of the M10–M18 models depending on the completeness of inclusion of the experimental data 

(100% and 95% of the data) contained in the TrS2 set. In fact, if 100% of the data in TrS2 are considered, 

the maximum coefficients of determination R20, R2’0,  𝑅௠ଶ   , CCC and the minimum R2m coefficient 

are provided by the M13 model. The same model, based on the data in the tables, is characterised by 

the minimum values of error and standard deviation in the prediction of the pIC50 parameter for the 

structures of the 15‐LOX inhibitors included in the TrS2 set. The maximum value of the R2 coefficient 

is given by the M15 model. 

If  95% data  of  the  training  set TrS2  is  taken  into  account,  the M13 model  showed  the  best 

descriptive power even on the basis of a smaller set of criteria. In fact, it was characterised by the 

largest values of coefficients of determination such as R2, R20, and CCC, along with the minimum 
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value of the R2m coefficient. The M15 model gave the largest values of the coefficients, R2’0, mean 

R2m in combination with the smallest values of the RMSE, B parameter and standard deviation SD. 

At the same time, the minimum value of the MAE error is observed for the M14 model based on 95% 

data of the TrS2 training set. 

The data of Table 3 and Tables S4‐S6 in the Supplementary Material allow us to conclude that 

almost all the QSAR models built by us are characterised by moderate predictive ability and absence 

of systematic errors in predicting the target property for the structures of 15‐LOX inhibitors contained 

in test sets TS1–TS2. The highest numerical values of different types of coefficients of determination 

in predicting the pIC50 parameter for 100% of the 15‐LOX inhibitor structures contained in TS1 were 

demonstrated by the M14 model. The same model had the smallest value of the RMSE error. The 

smallest values  of MAE  error,  SD value  and B parameter  for  100%  of  the data  in  the TS1 were 

provided by the M13 and M17 models, respectively.   

The worst results for all the statistical criteria described above were observed for the M9 and 

M12 models. For example, the M9 model was characterised by the minimum values of the R2, R20,  𝑅௠ଶ  

and CCC criteria. The M12 model gave  the minimum values of  the R2, R20,𝑅௠ଶ   , and CCC criteria, 
while the M12 model provided the minimum values of the R2, R20, Q2F1, and Q2F2 criteria, combined 

with the maximum value of the RMSEP error. However, the M18 model was characterised by the 

maximum value of the R2m coefficient. The highest value of the MAE error in predicting the pIC50 

parameter for 100% of the TS1 structures was demonstrated by the M3 model. The M5 model was 

gave the maximum values of the SD and B parameters. 

The results of evaluating the predictive ability of QSAR models M10–M18 using 100% data of 

the  test  set  TS2  were  more  unambiguous.  The  maximum  values  of  the  different  types  of 

determination  coefficients  along with  the minimum  values  of  the  prediction  errors  of  the  pIC50 

parameter  in  this  case  belonged  to  the M13 model.  The minimum  values  of  the  determination 

coefficients in combination with the maximum values of the prediction errors of the pIC50 parameter 

for the 15‐LOX inhibitors corresponded to the M11 model. 

Removal  of  5%  of  the  data with  the worst  prediction  results  for  pIC50  from  TS1  and  TS2 

contributed  to  a  slight  increase  in  the  numerical  values  of  different  types  of  coefficients  of 

determination and a decrease  in  the numerical values of  the prediction errors  for  this parameter. 

However, the changes in all the statistical criteria were not systematic when the data from both sets 

were manipulated  in  this way.  In  particular,  after  removing  5%  of  data  from  TS1,  the  highest 

numerical  values  of  the  coefficients  of  determination R2, R20, Q2F1,  and Q2F2    and  the  𝑅௠ଶ     were 

obtained  from  the M10 model.  The maximum  value  of  the  R2ʹ0  criterion  in  comparison  of  the 

experimental pIC50 values with the predicted ones was observed for the M1 model. The minimum 

values of RMSE and MAE errors based on 95% of the data of the TS1 set were shown by the M13 and 

M16 models, respectively. The lowest values of SD and B were shown by the M4 model. 

Removing 5% of the data from the TS2 set had almost no effect on the generalizing conclusions. 

In this case, like in the case of 100% data in the TS2, the M13 model provided the largest numerical 

values of different types of coefficients of determination and the smallest values of pIC50 prediction 

errors for the 15‐LOX inhibitors, with the exception of SD whose numerical value was the smallest 

for the M17 model. The minimum numerical values of different types of coefficients of determination 

combined with the maximum values of the pIC50 prediction errors for both 100% and 95% data in the 

TS2 were observed for the M11 model. 

Based on analysis of the numerical values of different validation criteria presented in Tables 1–

3 of this section and in Tables S2‐S6 in the Supplementary Material, we can conclude that almost all 

the models showed high descriptive and moderate predictive power, since they met the internal and 

external validation criteria described in Section 2.3. It should be noted that this condition was met for 

both 100% and 95% of the data contained in the TrS1‐TrS2 and TS1‐TS2 sets. 

2.2. Experimental Determination of the IC50 Parameter Against 15‐LOX for Compounds 1–8 

The results of the in vitro analysis of the inhibitory activity of a series of 2H‐(benzo)pyran‐2‐one 

derivatives 1–8 against 15‐LOX are presented in Table 4 and Figure 3. 
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Table  4.  Experimental  characterisation  of  the  inhibition  of  15‐LOX  activity  in  the  presence  of 

compounds 1–8. 

Сompound  Concentration, μM 
Enzyme activity inhibition, 

% 
IC50, μmol/l 

1 

60  27.62 

72.5 
70  45.25 

80  63.30 

90  81.12 

2 

30  12.99 

48.2 
40  33.61 

50  53.12 

60  74.14 

3 

20  40.679 

30.4 
30  49.593 

40  58.907 

50  66.821 

4 

60  29.47 

70.8 
70  47.37 

80  68.27 

90  88.18 

5 

50  21.78 

69.6 
60  37.64 

70  51.49 

80  63.36 

6 

10  16.2134 

24.9 
20  35.8994 

30  65.0854 

40  83.2714 

7 

40  25.9180 

45.7 
45  46.8465 

50  68.7750 

55  89.7035 

8 

40  13.886 

47.4 
45  36.793 

50  63.700 

55  86.607 

IC50 values were determined by linear interpolation between the points closest to 50% inhibition 

(Figure 3). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2024 doi:10.20944/preprints202411.0466.v1

https://doi.org/10.20944/preprints202411.0466.v1


  10 

 

 

Figure 3. Decrease in 15‐LOX activity as a function of the concentration of inhibitors 1–8. 

The inhibitory activity against 15‐LOX was experimentally determined for compounds 1–8. The 

values of semi‐efficient inhibitory concentration are in the range of 24–73 μmol/l, which allows us to 

classify these compounds as moderate inhibitors of the enzyme.   

As it can be seen from the plot (Figure 3), a sharp change in inhibitory activity was observed in 

a narrow concentration range for compounds 7, 8, which can serve as a basis for the assumption that 

the enzyme is highly sensitive to these inhibitors. 

2.3. Evaluation of the predictive ability of the M3, M6, M9, M12, M15, and M18 models based on 

Compounds 1–8 in the Test Set TS3 

Subsequently, the consensus models M3, M6, M9, M12, M15, and M18 were used to predict the 

numerical values of the pIC50 parameter for compounds 1–8 from the TS3 set. The results of these 

calculations in comparison with the experimental values of the pIC50 exp parameter and the 2ꞏRMSEP 

criterion, which corresponded to 100% and 95% of the data from the TS1 and TS2 sets, respectively, 

for these compounds are shown in Tables 5 and 6. In selecting the numerical values of the 2ꞏRMSEP 

criterion corresponding to the M3, M6, M9, M12, M15, and M18 models for subsequent comparison 

with  the  ΔpIC50  values, which  are  in  fact  equal  to  the modulus  of  the  difference  between  the 

experimental and predicted values of the pIC50 parameter, we focused on the minimum value of this 

parameter (see Table5). It should be noted that all the tested compounds were within the range of 

applicability of the M3, M6, M9, M12, M15, and M18 models. These models were selected  for the 

prediction of  the pIC50 parameter  for  the  15‐LOX  inhibitors  1–8 because  each of  these  consensus 

models included 320 partial regression relationships, which makes it possible to take into account the 

structural characteristics of each of the tested compounds in the most objective and complete way. In 

addition, it was of scientific interest to explore the applicability of these models with satisfactory and 

worst case predictive performance, judging by the statistical criteria derived from TS1–TS2, to predict 

the target property for new compounds not included in the modeling. 
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Table 5. Results of parameter pIC50 prediction for 15‐LOX inhibitors 1–8 by QSAR models M3, M6, 

M9, M12, M15, M18. 

Сompound  pIC50 exp    1 
SCR  RBF‐SCR  Both 

Model  pIC50 pred  �pIC50 2  Model  pIC50 pred  �pIC50  Model  pIC50 pred  �pIC50 

1  4.140 
M3  4.323  0.183  M6  4.313  0.173  M9  4.267  0.127 

M12  4.301  0.161  M15  4.301  0.161  M18  4.249  0.109 

2  4.317 
M3  4.033  0.284  M6  4.063  0.254  M9  3.934  0.383 

M12  4.145  0.172  M15  4.166  0.151  M18  4.054  0.263 

3  4.517 
M3  4.086  0.431  M6  4.119  0.398  M9  4.081  0.436 

M12  4.054  0.463  M15  4.112  0.405  M18  4.052  0.465 

4  4.150 
M3  4.874  0.724  M6  4.836  0.686  M9  4.823  0.673 

M12  4.840  0.690  M15  4.808  0.658  M18  4.813  0.663 

5  4.157 
M3  4.426  0.269  M6  4.389  0.232  M9  4.388  0.231 

M12  4.518  0.361  M15  4.479  0.322  M18  4.493  0.336 

6  4.604 
M3  4.403  0.201  M6  4.373  0.231  M9  4.385  0.219 

M12  4.427  0.177  M15  4.398  0.206  M18  4.429  0.175 

7  4.340 
M3  4.532  0.192  M6  4.450  0.11  M9  4.501  0.161 

M12  4.635  0.295  M15  4.552  0.212  M18  4.613  0.273 

8  4.324 
M3  4.318  0.006  M6  4.290  0.034  M9  4.270  0.054 

M12  4.396  0.072  M15  4.364  0.040  M18  4.362  0.038 

1 The experimental determination of the parameter pIC50 for compounds 1–8 is presented in Section 

III. 2ΔpIC50 = pIC50 pred – pIC50 exp. 

Table 6. Numerical values of error RMSEP and parameter 2ꞏRMSER for models M3, M6, M9, M12, 

M15, M18 estimated using Xternal Validation Plus 1.2 software based on TS1, TS2. 

Model 

RMSEP  2∙RMSEP 

TS1  TS2  TS1  TS2 

100% data 95% data  100% data  95% data 100% data 95% data 100% data 95% data 

M3  0.437  0.389  ‒  ‒  0.874  0.778  ‒  ‒ 

M6  0.431  0.326  ‒  ‒  0.862  0.652  ‒  ‒ 

M9  0.440  0.375  ‒  ‒  0.880  0.750  ‒  ‒ 

M12  0.441  0.406  0.458  0.390  0.882  0.812  0.916  0.780 

M15  0.425  0.365  0.420  0.362  0.850  0.730  0.840  0.724 

M18  0.432  0.381  0.433  0.373  0.864  0.762  0.866  0.746 

The data  in Tables 5 and 6 allow us to conclude that almost all numerical values of pIC50 for 

compounds  1–8  predicted  by  the M3, M6, M9, M12, M15,  and M18 models  fall within  the  95% 

confidence interval equal to ± 2∙RMSE, i.e. the difference between the predicted and experimentally 

determined values of the pIC50 parameter for 15‐LOX inhibitors 1–8 does not numerically exceed the 

minimum value of the 2∙RMSEP criterion for each of the models (see Tables 5 and 6). The M3 model 

showed the highest prediction error by  this criterion when the pIC50 parameter was predicted for 

compound  4,  but  even  in  this  case  the  difference  between  the  experimental  and  theoretically 

predicted values of the pIC50 parameter fell within the    2∙RMSEP range. However, the same model 

(M3) showed the smallest prediction error of the pIC50 parameter for compound 8. This demonstrates 
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the good predictive ability and correctness of our constructed models, as well as the applicability of 

the GUSAR2019 program for modeling 15‐LOX inhibitors. 

Thus,  all  the QSAR  consensus models M1–M18  are  characterised  by  high  descriptive  and 

moderate predictive power when comparing experimental and predicted values of pIC50 based on 

TrS1 and TrS2 training sets structures, external and internal test sets TS1 and TS2, and compounds 

1–8. These models can be used for virtual screening of virtual libraries and databases to search for 

new 15‐LOX inhibitors in the series of homo‐ and heterocyclic compounds with common structural 

formulae I‐XVI. 

3. Research Methods 

The  simulation procedure was performed  for  the  compounds whose  formulas are  shown  in 

Figure 4. 

3.1. The Methodology of the Computational Experiment 

QSAR modeling of 15‐LOX  inhibitors with general structural  formulae  I–XVI  (Figure 4) was 

performed using the GUSAR 2019 (General Unrestricted Structure Activity Relationships) computer 

program [53,65,66,92–98].   

The QSAR models were built in several steps that are the basis of the operation of this program 

and have been described in detail in our previous work [60–63,67–74]. The stages of QSAR model 

building are shown schematically in Figure 5. 

 

Figure 5. Schematic representation of the GUSAR algorithm. 

3.2. Formation of the Training and Test Sets 

Training set TrS1 and test set TS1 were generated from the structure set S1. The structure set S1 

contained 100 15‐LOX inhibitors with their corresponding pIC50 values. Training set TrS2 and test set 

TS2 were formed based on the structures contained in training set TrS1. Figure 6 shows a scheme that 

clearly illustrates the strategy of forming the training and test sets TrS1–TrS2, TS1–TS2.   

The pIC50 parameter for each compound included in the data set S1 (and the training TrS1–TrS2 

and  test  sets TS1–TS2 generated  from  it) was  calculated as  the negative decimal  logarithm of  its 

corresponding IC50 value (in mol/l). Numerical IC50 values for the 15‐LOX inhibitors being modelled 

were measured experimentally and are given  in  [75–90]. The complete  list of organic compounds 

from which the data set S1 was generated with their corresponding pIC50 characteristics is presented 

in Table S8 in the Supplementary Material. 
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Figure 6. Chart of constructing the training and test sets and design of the QSAR consensus models 

M1–M18 (S denotes “set”, TrS and TS are “training and test sets”, respectively, N is the number of 

compounds included to the corresponding sets and arrays). Designations: (1) S1 are all datasets; (2) 

S2 is the training set TrS1 for models M1–M9; (3) S3 is the external test set TS1 for models M1–M18; 

(4) S4 is the training set TrS2 for models M10–M18; (5) S5 is the internal test set TS2 for models M10–

M18. 

Table 7. Statistical characteristics of the training sets TrS1–TrS2. 

Designation of TrSi 
Code of the Training Set 

TrS1  TrS2 

N  84  70 

𝑝𝐼𝐶50  5.308 

∆pIC50  3.873 

Thresholds used to evaluate modelʹs forecast 

0.10 × ∆pIC50  0.387 

0.15 × ∆pIC50  0.581 

0.20 × ∆pIC50  0.775 

0.25 × ∆pIC50  0.968 

Table 8. Statistical characteristics of the test sets TS1–TS2. 

Designation of TSi 
Code of the Test Set 

TS1  TS2 

N  84  70 

𝑝𝐼𝐶50  4.765  4.678 

∆pIC50  3.196  3.275 

Distribution of the observed response values of test sets TSi around the test mean 

𝑝𝐼𝐶50  ± 0.5, %  37.500  50.000 

𝑝𝐼𝐶50  ± 1.0, %  75.000  78.571 

𝑝𝐼𝐶50± 1.5, %  87.500  85.714 
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𝑝𝐼𝐶50± 2.0, %  93.750  92.857 

Distribution of the observed response values of test sets TSi around the training mean 

𝑝𝐼𝐶50  ± 0.5, %  12.500  14.286 

𝑝𝐼𝐶50  ± 1.0, %  50.000  42.857 

𝑝𝐼𝐶50± 1.5, %  87.500  85.714 

𝑝𝐼𝐶50± 2.0, %  100.000  100.000 

QSAR models M1–M9 were built using the TrS1 training set, which contained 84 structures of 

15‐LOX  inhibitors with  their  corresponding values of  the pIC50 parameter. To  test  the predictive 

ability of the M1‐M9 models, a test set TS1 containing 16 15‐LOX inhibitors with their corresponding 

values of the pIC50 parameter was used. Both sets were obtained by partitioning the data set S1, in 

which all compounds were previously ranked in ascending order of the pIC50 parameter, in 5:1 ratio. 

The structures were partitioned into the training set TrS1 and the test set TS1 by transferring every 

sixth compound from the data set S1 to TS1. The remaining 84 structures of the 15‐LOX inhibitors 

were used to form the training set TrS1. 

The  TrS2  set  contained  70  15‐LOX  inhibitors with  their  corresponding  values  of  the  pIC50 

parameter. It was intended for constructing the QSAR models M10–M18. The validity of the QSAR 

models M10–M18 was tested using the TS2 set. Both sets, TrS2 and TS2, were generated on the basis 

of TrS1. The same principle was used to generate the training set TrS1 and the test set TS1 from the 

data set S1. The characteristics of the training sets TrS1, TrS2 and the test sets TS1, TS2 are shown in 

Tables 7 and 8 respectively. The data in these tables indicate that the compounds of the training and 

test sets are fairly evenly distributed over the entire range of pIC50 variation. At the same time, the 

range of variation of the pIC50 parameter for the 15‐LOX inhibitors included in training sets TrS1–

TrS2  and  test  sets TS1–TS2  exceeds  the pIC50 value of  3  (i.e. pIC50  >  3), which determines  the 

correctness of the further QSAR modeling process [44]. In addition, as it can be seen from Figure 4, 

the training sets are characterised by rather a high degree of molecular diversity. 

The structures of the compounds in the training and test sets TrS1–TrS2, TS1–TS2 were plotted 

in Marvin  Sketch  23.4  software  [99]  and  then  converted  to  SDF  format  using Discovery  Studio 

Visualiser software [100]. 

3.3. Building QSAR Models 

The M1‐M18 QSAR models were built on the basis of two types of substructural descriptors of 

atomic  neighborhoods:  QNA  (Quantitative  Neighborhoods  of  Atoms)  and  MNA  (Multilevel 

Neighborhoods  of  Atoms)  [47,48,53,60–68],  and  three  types  of  whole  molecule  descriptors 

(topological  length,  topological  volume,  and  lipophilicity).  These  types  of  descriptors  were 

automatically  calculated  by  the GUSAR  2019  program. At  the  same  time,  the QNA  and MNA 

descriptors  are unique  characteristics of molecules,  and  their  calculation  is  available  in different 

versions of the GUSAR software (GUSAR 2011, GUSAR 2013, and GUSAR 2019). The  ideology of 

calculating QNA and MNA descriptors was proposed by Professor V.V. Poroikovʹs research team. It 

is  described  in  detail  in  the Appendix  and  in  a  number  of  articles  [47,64,65,92–97].  The  rather 

complicated  mathematical  apparatus  used  for  calculating  QNA  descriptors  complicates  their 

physical  interpretation.  Therefore,  they  are  not  explicitly  displayed  in  the  section  dealing with 

calculations. 

The  MNA  descriptors  are  computed  using  the  PASS  (Prediction  of  Activity  Spectra  for 

Substances)  algorithm  [53,66], which predicts  approximately  6,400  “biological  activities” with  an 

accuracy threshold of an average prediction of at least 95%. These descriptors are generated based on 

the structural formulae of the chemical compounds without using any pre‐compiled list of structural 

fragments [47,53,66,92]. They are generated as a recursively defined sequence: 

 Zero‐level MNA descriptor for each atom is the mark A of the atom itself; 
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 Any next‐level MNA descriptor for the atom  is the substructure notation A (D1D2 … Di …), 

where Di is the previous‐level MNA descriptor for i–th immediate neighbor of the atom A. 

The neighbor descriptors D1 D2 … Di … are arranged  in a unique manner. This may be, for 

example, a lexicographic sequence. The MNA descriptors are generated using an iterative procedure, 

which  results  in  the  formation  of  structural  descriptors  that  include  the  first,  second,  etc. 

neighborhoods of each atom. The label contains not only information about the type of atom, but also 

additional information about whether it belongs to a cyclic or acyclic system, etc. 

Three  methods  were  used  to  reduce  the  descriptor  space  and  select  the  most  significant 

descriptors: 

1. Self‐consistent regression (SCR) method; 

2. The method of combining self‐consistent regression with radial basis functions (RBF‐SCR); 

3. The Bath method, which combines  the simultaneous use of SCR and RBF‐SCR methods  in a 

unique way. 

All three of these unique methods were also developed by Professor Poroikovʹs research team 

and implemented in the GUSAR 2019 program for selecting the most appropriate options. A more 

detailed description of each method can be found in the Appendix and in the relevant papers [66]. 

The  stability of  the models was  tested by using  a  sliding  control procedure, with  a  20‐fold 

randomized release of 20% of the compounds from the training samples TS1 and TS2. Both of these 

procedures are automatically implemented in the GUSAR 2019 program [47,48,53,60–68]. 

Each of  the eighteen  final QSAR M1‐M18 models was based on a  consensus approach. This 

approach  involves  combining  several  regression  equations  into  one  model,  which  is  done 

automatically based on the similarities between the equations. 

Each of  the  final QSAR models M1‐M2 and M4‐M5, M7‐M8, M10‐M11, M13‐M14, M16‐M17 

included 20 partial regression dependences. At the same time, the M1, M4, M7, M10, M13, and M16 

models were based on QNA descriptors and three additional descriptors that describe the topological 

length,  topological volume, and  lipophilicity of  the modeled 15‐LOX  inhibitors. The M2, M5, M8, 

M11, M14, and M17 models were built on a similar principle, but they were based on NA descriptors, 

with automatic addition of the three whole molecule descriptors described above. The M3, M6, M9, 

M12, M15, and M18 models each included 320 partial regression dependences. At the same time, each 

of these 320 particular models was built independently of each other based on the three descriptors 

of the entire molecule described above, with addition of the QNA or MNA descriptors. 

Due to the specifics of the calculation process, which is described in detail in the Supplemental 

Material, QNA  and MNA descriptors  are not  amenable  to unambiguous physical  interpretation. 

Therefore,  the  regression equations based on  these descriptors are not explicitly displayed  in  the 

GUSAR 2019 program. 

3.4. Evaluation of the Descriptive and Predictive Ability of QSAR Models 

The  descriptive  ability  of  the M1‐M18 models was  evaluated  using  several metrics.  These 

included metrics based on the coefficients of determinations R2, R20, average R2m and CCC, as well 

as metrics  estimating  errors  in predicting pIC50  values  (RMS  error  (RMSE), mean  absolute  error 

(MAE), and standard deviation (SD). The parameters of the predictive ability of the M1‐M18 models 

also included metrics based on the coefficients of determination R2, R20,  𝑅௠ଶ   , CCC, Q2F1 and Q2F2 , as 

well as metrics estimating errors in predicting pIC50 values (RMS error (RMSE), mean absolute error 

(MAE), standard deviation (SD)). 

These statistical parameters were calculated using the External Validation Plus 1.2 software for 

100% and 95% of the data (to account for errors) contained in the training and test samples [100]. The 

Supplemental Material contains formulas for automatically calculating these criteria in this program. 

The internal verification of the M1‐M6 models was performed using LMO cross‐validation (Q2LMO), 

with 20% of compounds excluded from the training sets. 
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The  threshold values of  the validation criteria  for  the above parameters, based on which  the 

descriptive and predictive ability of the QSAR M1‐M18 models was evaluated, are presented in Table 

8. 

Table 9. Criteria for evaluating the descriptive and predictive ability of QSPR M1‐M18 models. 

Model quality 
High descriptive and 

predictive ability 

Moderate descriptive and 

predictive ability 

Low descriptive and 

predictive ability 

Criteria based on R2 

R2 →   R20 > 0.8  R2 →   R20 ≤ 0.8  R2 →   R20 ≤ 0.6 

𝑅20> 0.8  𝑅20≤ 0.6  𝑅20> 0.5 

𝑅2௠≤ 0.15  𝑅2௠< 0.2  𝑅2௠< 0.2 

CCC > 0.8  CCC ≤ 0.8  CCC → 0.7 

Q2LMO > 0.70  Q2LMO ≤ 0.70  Q2LMO< 0.60 

Q2F1 > 0.70  Q2F1 ≤ 0.70  Q2F1 < 0.60 

Q2F2 > 0.70  Q2F2 ≤ 0.70  Q2F2 < 0.60 

А* < 0.3  А* ≤ 0.3  А* > 0.3 

MAE  MAE ≤ 0.387  MAE = (0.387;0.581]  MAE > 0.581 

Criteria B**  B ≤ 0.775  B = (0.775; 0.968]  B > 0.968 

*  The  symbol  of  the  parameter  characterizing  the  stability  of  the model.  It  is  calculated  as  the 

difference between the average values of the coefficients R2 and Q2LMO (A = R2‐Q2LMO) ** Criteria B are 

calculated based on the values MAE and SD (B=MAE+3SD). 

Acceptable values of different types of determination coefficients, based on R2, as well as ranges 

of variation in MAE and RMSD values and criterion B for assessing the descriptive and predictive 

ability  of QSAR models M1‐M18 were  calculated  taking  the  recommendations  from  the  leading 

scientists in the field of QSAR modeling [44–46,57] into account. 

Thus, the permissible range of variation for the MAE parameter was estimated considering the 

range of variability in the pIC50 parameter for the compounds in training sets TrS1 and TrS2, using 

the following formulas: 

MAE < 0.1 pIC50 — if the criterion is met, then the models are characterized by a high predictive 

ability 

MAE = [0.1; 0.15} pIC50 —if the criterion is met, then the models are characterized by a moderate 

predictive ability 

MAE > 0.15 pIC50 — if the criterion is met, then the models are characterized by a low predictive 

ability 

The permissible range of variation of criterion B, where B=MAE+3SD, was estimated using the 

formulas: 

B < 0.2 pIC50 — if the criterion is met, then the models are characterized by a high predictive 

ability 

B = [0.2; 0.25] pIC50 — if the criterion is met, then the models are characterized by a moderate 

predictive ability 

B > 0.25 pIC50 — if the criterion is met, then the models are characterized by a low predictive 

ability 

Additionally, the predictive ability of the QSAR M1‐M18 models was evaluated by comparing 

the predicted pIC50 values with the experimental values of the same parameter for the new promising 

15‐LOX inhibitors 1‐8 contained in the TS3 test set (Figure 4). These compounds were missing in the 

S1 data set and, accordingly, did not participate in the consensus models. 
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Figure 7. Structural formulas 1‐8 of experimental 15‐LOX inhibitors included in the TS3 data set. 

3.5. The Technique of the Biochemical Experiment to Measure Inhibitory Activity 

Biological  tests  of  inhibitors  15‐LOX  1‐8  (Figure  4)  were  performed  at  the  Federal  State 

Budgetary Educational Institution of Higher Education ʺSaratov National Research State University 

named  after N.G. Chernyshevskyʺ  under  the  supervision  of  Professor O.V. Fedotova  [101].  The 

inhibition  of  the  catalytic  activity  of  15‐lipoxygenase  by  the  substances  studied was  evaluated 

according to the procedure reported elsewhere [102–104]. Quercetin, a well‐known inhibitor of 15‐

LOX, was employed as the positive control. 

For  biological  tests,  Lipoxidase/15‐lipoxygenase  (Sigma  Aldrich,  Germany,  lyophilizate,  15 

million Units, CAS Number: 9029‐60‐1) was used. The study was carried out in borate buffer (0.2 M, 

pH 9.0). Linoleic acid (Sigma Aldrich, Germany, purity ≥ 95.0%, CAS Number: 60‐33‐3) was used as 

the  oxidation  substrate.  The  activity  of  15‐LOG  in  the  presence  of  the  compounds  studied was 

evaluated  by  spectrophotometric  recording  of  changes  in  the  concentration  of  13‐

hydroperoxylinoleic acid, the product of oxidative transformation of linoleic acid [105], using a LEKI 

SS2110UV two‐beam scanning spectrophotometer (CJSC LOIP, Russia).   

The initial concentration of lipoxygenase in the sample was 167 U/ml. Its final concentration in 

the sample was 134 μM. In order to study the inhibitory activity of compounds, they were added to 

the sample as solutions in DMSO. 

To conduct the experiment, 1400 μl of a substrate solution was placed in a cell, along with 24 μl 

of a sample in DMSO (for the prototype) or DMSO (for the control sample). Immediately after adding 

76 μl of the enzyme solution, the timer was turned on. After 90 seconds, the optical density (λ = 234 

nm) was recorded. 

The activity value obtained  from  the control experiment was used as a baseline, or 100%, of 

enzyme activity. It was measured with only the enzyme solution and solvent (DMSO) present in the 

cell, without any active substance. 

The percentage of activity inhibition by compounds 1‐8 was determined as a relative decrease 

in the optical density of the solution, using the formula (1): 

𝐼 ൌ
஽೎ି஽೟
஽೎

ൈ 100%,  (1)

where  𝐷௖   is  the optical density  index of  the control sample 90  seconds after  the  start of  the 

reaction; 𝐷௧  is the optical density index of the sample containing the test compound 90 seconds after 

the start of the reaction. 

The range of working concentrations of compounds 1‐8 was 1‐100 μM. 

The IC50 values of compounds 1‐8 were determined using linear interpolation between the points 

closest  to  50%  inhibition  by means  of Microsoft  Excel  2016.  Enzyme  activity  experiments were 

performed in triplicate. The values are expressed as means ±SD. Student’s t‐test was employed for 
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determination of statistical significance, using a P value of 0.05 or less as a criterion for significant 

inhibition. 

4. Conclusion 

Using  the  QSAR  methodology  implemented  in  the  GUSAR  2019  program,  a  quantitative 

structure‐inhibitory activity relationship has been found for a series of 100 15‐LOX inhibitors based 

on a series of derivatives of phenol, resorcinol, anacardic acid, dimethoxybenzene, alkyl ester of 2‐(4‐

isobutylphenyl)propionic  acid,  1,3‐diarylprop‐2‐yn‐1‐one,  proline,  pyrrole,  alkyl  ester  of  2‐

methylfuran‐3‐carbonyl acid, ketoprofen, naphthalene, 1,4‐di‐N‐oxide of quinoxaline, isoflavone, 4‐

hydroxy‐2‐(phenylmethyl)benzofuran and coumarin with general structural formulas I–XIV. These 

compounds had various degrees of inhibition of the catalytic activity of 15‐LOX. The variation range 

of the pIC50 parameter was 3.873 (pIC50=3.873). Based on a combination of MNA and QNA descriptors 

with  three  whole  molecule  descriptors  including  topological  length,  topological  volume,  and 

lipophilicity, eighteen statistically significant and valid consensus models (M1‐M18) were generated.   

All models  reproduced  the experimental data contained  in  the  training samples with a high 

degree  of  accuracy. Cross‐validation with  20‐fold  deletion  of  20%  of  the data  from  the  training 

samples also showed good results. The reliability of the prediction of the pIC50 parameter based on 

the  evaluation  of  this  parameter  for  compounds  of  two  test  samples  and  ten  subsequently 

experimentally  studied  compounds  showed  a moderate  predictive  ability  of  the QSAR M1‐M18 

models. 

The  satisfactory match  of  the  theoretically  calculated  pIC50pred  values with  the  experimental 

pIC50exp  values  for  compounds  of  test  sets  TS1‐TS2  and  compounds  1‐8  opens  up  prospects  for 

application of M1‐M18 models in virtual screening of virtual libraries and databases in the search for 

new potentially efficient 15‐LOG inhibitors in these sources. 

Supplementary Materials: The  following  supporting  information  can be downloaded at  the website of  this 
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