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Abstract: Machine learning is revolutionizing the way we work and the field of occupational health and safety
(OHS) has significant knowledge gaps for its implementation. This review synthesizes current applications
across hazard identification, risk assessment, ergonomics, PPE compliance monitoring, and environmental
surveillance, while identifying critical areas for future research. Even with promising advances, challenges
persist in developing machine learning models that work effectively across industries, integrate multi-modal data
streams, and adapt to dynamic work environments. Key limitations include the need for more robust assessment
tools, personalization capabilities, and solutions to data quality and privacy concerns. The field particularly lacks
standardized frameworks for data collection and sharing, as well as clear ethical guidelines for implementing
machine learning in workplace safety contexts. This analysis reveals promising research directions, including the
development of explainable Al systems to support OHS decision-making, learning applications to address data
scarcity, and privacy-preserving learning approaches. The integration of machine learning with internet-of-things
(IoT) and extended reality technologies offers additional avenues for innovation. Advancing these opportunities
requires interdisciplinary collaboration between OHS professionals, computer scientists, lawyers, and subject
matter experts. This review concludes that realizing the full potential of machine learning in OHS depends on
addressing both technical and organizational challenges. A focus on these identified research priorities in this
field can make significant advances toward creating more effective, data-driven tactics to workplace safety and

health management.

Keywords: machine learning; knowledge gaps; safety management

1. Introduction

Machine learning has emerged as a transformative technology that may be utilized in occupational
health and safety (OHS), offering new approaches to risk assessment, hazard identification, and safety
management. Several knowledge gaps and areas for further research exist in the application of
machine learning in OHS. This review explores the current landscape of machine learning in OHS,
with a particular focus on identifying and analyzing knowledge gaps. A total of twelve knowledge
gaps were categorized based upon commonalities within existing literature.

2. Methodology

2.1. Objectives

The primary focus of this research review is to identify gap areas in the implementation of machine
learning within the field of occupational health and safety. Many key performance indicators are
reliant on data that may include variables such as hours worked, total incidents, number of violations,
number of days past-due on training, and so on. Managed correctly, the use of machine learning and
other data science tools can help occupational health and safety professionals conduct anything from
predictive modeling to a more robust root cause analysis.

2.2. Screening Process

The author’s university library was the source for finding existing literature on this subject matter
(Figure 1). Scholarly peer-reviewed articles were searched using the following keywords: accident;

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0003-2875-5301
https://doi.org/10.20944/preprints202411.0464.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2024 d0i:10.20944/preprints202411.0464.v1

2 0f9

analysis; industrial hygiene; machine learning; occupational health; safety; prediction modeling; and
workplace.
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Figure 1. University search engine dialog .

The screened literature (n = 111) was analyzed through a bibliometric network mapping tool [1].
The full list of keywords from these papers (n = 462) were mapped according to connections between
papers and is presented in Figure 2. Like most word mapping algorithms, certain keywords were
truncated but have no meaningful impact on findings.
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Figure 2. Map of keywords extracted from literature.

A PRISMA map is presented in Figure 3 and represents the flow of studies through the different
phases of the literature selection process. PRISMA stands for Preferred Reporting Items for Systematic
Reviews and Meta-Analyses [2]. This is typically structured as a flow chart that shows how studies
were identified, screened, assessed for eligibility, and finally included in the review.
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Figure 3. PRISMA diagram (Haddaway et al., 2022) of literature review.
3. Results

3.1. Applications for Machine Learning in OHS and Associated Knowledge Gaps

3.1.1. Hazard Identification and Risk Assessment

Knowledge Gap 1: Applicability of machine learning models for hazard identification.

Sarkar and colleagues demonstrated the potential of deep learning for predicting workplace
accidents, achieving 85% accuracy in identifying high-risk scenarios [? ]. However, their study was
limited to a single manufacturing plant, highlighting a significant knowledge gap: the generalizability
of machine learning models across different industries and workplace contexts. Very few studies
have been conducted to demonstrate the positive and negative aspects of integrating Al into the risk
assessment process and occupational health surveillance [3]. The researchers believe the integration of
Al in the industry is still in its early stages, with the focus on its impact on immediate safety concerns.

Knowledge Gap 2: Integration of multi-modal data for comprehensive hazard detection.

Several studies have implemented computer vision systems for real-time detection of safety
hazards on construction sites [4-8]. While systems showed promise, they focused primarily on visual
hazards, leaving a gap in the detection of non-visual risks such as exposure to harmful substances,
extreme temperatures, and obstacles. The time of day also has been identified as a factor in hazard
detection. Vision training has almost been exclusively done during daytime (i.e., illuminated) hours and
application of machine learning models based on dimmer lighting have shown underperformance [7].

3.1.2. Ergonomics and Biomechanics

Knowledge Gap 3: Robustness of machine learning-based ergonomic assessment in varied and
dynamic work environments.
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Wearable sensors and machine learning algorithms have been used to analyze worker postures [9].
Questions about the effectiveness of such systems in the real-world, dynamic work settings have been
raised since the study was conducted in a controlled environment. The lack of diversified workplace
settings has also been raised, since the majority of studies have focused more on construction sites and
not as much on warehouse or manufacturing environments [10]. It has been suggested that the costs
of using and maintaining wearable sensors has been an obstacle for the implementation of them in
safety systems [11].

Knowledge Gap 4: Personalization of machine learning models for individual worker characteris-
tics and adaptation over time.

Hernandez and colleagues developed an machine learning-based fatigue prediction model for
manual material handling [12]. While promising, their model did not account for individual differ-
ences in physiology or long-term adaptations to work tasks. Variables such as age and sex have been
identified as individual characteristics that impact models, particularly with prediction of muscu-
loskeletal disorders [13]. Findings for safety behavior in agricultural settings has been skewed with an
oversampling of older male workers [14].

3.1.3. Personal Protective Equipment Compliance

Knowledge Gap 5: Assessment of PPE effectiveness beyond mere presence/absence.

Nath and colleagues achieved high accuracy in detecting PPE usage using deep learning algo-
rithms [15]. This system was limited to visual detection and did not address the proper use or fit of
PPE. Availability of data for unsafe behaviors on construction sites is very limited, which in turn does
not allow for the development of an unsupervised machine learning system [16].

Knowledge Gap 6: Long-term feasibility and ethical implications of smart PPE systems.

Edirisinghe proposed a framework for smart PPE with embedded machine learning capabili-
ties [17]. While innovative, this concept raises questions about the long-term durability and cost-
effectiveness of such technology, as well as potential privacy concerns. When there is continuous
monitoring of a worker, they may feel that they are being watched too closely and remove the wearable
or even give it to a colleague [18].

3.1.4. Environmental Monitoring

Knowledge Gap 7: Integration of human factors and process dynamics in environmental monitor-
ing models.

Researchers have developed an machine learning-based system for air quality forecasting in
industrial settings [19]. While effective, their system did not account for the potential impact of worker
behavior or process changes on air quality. Patton and colleagues [20] suggest that personal monitoring
devices are mainly worn by high exposure workers and overestimations of air concentrations will
skew algorithm responses.

Knowledge Gap 8: Development of machine learning models for predicting and mitigating
multiple environmental hazards simultaneously (e.g., air quality, noise, temperature, vibration).

Different machine learning techniques (i.e., regression modeling, clustering analysis, and con-
fusion matrices) have been proposed and used in environmental studies [21-28] as well as in health
and safety research [13,29-35], but the models typically focus on one specific outcome. The ability to
predict multiple outcomes will strengthen current safety management systems.

3.2. Challenges, Limitations, and Associated Knowledge Gaps

3.2.1. Data Quality and Availability

Knowledge Gap 9: Development of standardized frameworks for OHS data collection and sharing.
Tixier highlighted the challenge of data quality and availability in applying machine learning
to OHS [36]. This issue points to a significant knowledge gap in understanding how to effectively
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collect, standardize, and share safety data across organizations and industries. Accident reports are
often prepared in an unstructured format, so searching for trends in an industry become cumbersome
[37]. A web-crawler algorithm has been developed to predict and understand construction incidents
through accident reports [38] but still requires data improvement and scalability for true effectiveness.

3.2.2. Privacy Concerns and Ethical Considerations

Knowledge Gap 10: Ethical frameworks for machine learning implementation in OHS that protect
worker privacy while maximizing safety benefits.

Bodie explored the legal and ethical implications of using machine learning for worker monitoring
[39]. However, there remains a lack of consensus on best practices for balancing safety benefits with
worker privacy rights. Digital tools such as smartphones, smartwatches, and cameras are the more
common implementations that workers feel infringe on their privacy [40]. Cagno and colleagues warn
that “it is crucial to establish clear guidelines for maintaining compliance with privacy regulations.”
Recent advancements have shown early success in incorporating blockchain technology into privacy
preservation, while calling for the need to develop more comprehensive privacy algorithms [41].

3.2.3. Integration with Existing OHS Management Systems

Knowledge Gap 11: Strategies for harmonizing machine learning-based safety systems with
existing OHS management frameworks.

Badri examined the challenges of integrating machine learning within the context of Industry
4.0 [42]. Their work revealed a gap in understanding how to effectively combine machine learning-
driven insights with traditional safety management practices. Adding machine learning into current
health and safety management systems would enhance the continuous improvement model and
create positive outcomes on productivity, risk prioritization, and organization within the management
system.

3.2.4. Interpretability of Complex Machine Learning Models

Knowledge Gap 12: Development of user-friendly interfaces and explanation methods for complex
machine learning models in OHS applications.

Molnar [43] discussed the importance of interpretable machine learning in high-stakes decision-
making contexts like OHS. However, there is still a lack of research on how to make complex machine
learning models truly understandable to safety professionals and workers. Natural language process-
ing and large language models have shown high precision (>97%) in automated compliance checking
of building code [44]. As rules and regulations often change, this technique stays up to date and may
require little oversight.

3.3. Future Directions and Research Opportunities

3.3.1. Integration of Machine Learning with Internet of Things (IoT)

Alam [45] reviewed the potential of augmented and virtual reality combined with IoT for safety
monitoring. However, the integration of these technologies with machine learning for comprehensive
OHS management is still in its infancy. Real world accident scenarios can be “re-lived” in a virtual
reality environment so that workers can revisit the scene of an incident to get insights into the events
(Pedro et al., 2024). The technology is readily available to introduce this tool into the workplace with
just a capable computer, an account with virtual reality building software (such as Unity), and practice.
Unmanned aerial vehicles (UAV) usage on construction sites continues to grow and allows for UAV
pilots to view high risk areas without the need to send in crews [46].

4. Discussion

This review highlights both the promise and challenges of implementing machine learning
technologies within occupational health and safety contexts. Machine learning applications have
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demonstrated potential to enhance occupational health and safety in hazard identification, risk assess-
ment, ergonomic evaluation, personal protective equipment (PPE) compliance, and environmental
monitoring (Figure 4), but limitations do exist (Figure 5 ).

eApplicability of ML models for hazard identification
Risk Assessment eIntegration of multi-modal data for comprehensive hazard
detection

*Robustness of ML-based ergonomic assessment in varied
and dynamic work environments

ePersonalization of ML models for individual worker
characteristics and adaptation over time

eAssessment of PPE effectiveness beyond mere
presence/absence

Ergonomics

PPE - - N
eLong-term feasibility and ethical implications of smart PPE

systems

e|ntegration of human factors and process dynamics in
environmental monitoring models

eDevelopment of ML models for predicting and mitigating
multiple environmental hazards simultaneously

Monitoring

Figure 4. Identified knowledge gaps of machine learning applications.
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Figure 5. Challenges and limitations.

One of the primary findings concerns the limited generalizability of current machine learning
models across different industries and environments. Most models are developed and tested in
specific contexts—such as manufacturing or construction—which limits their applicability in diverse
workplace settings.

The review reveals challenges in applying machine learning for ergonomic assessments, particu-
larly in dynamic and unpredictable environments. Most current machine learning applications are
restricted to controlled environments, limiting their effectiveness in real-world settings. Furthermore,
personalization features remain underdeveloped, with existing models often failing to account for
individual worker characteristics such as age, body type, and task adaptations over time.

Privacy concerns remain a significant barrier to the widespread adoption of machine learning
in occupational health and safety. Continuous monitoring and data collection, particularly through
wearable devices, may be perceived as intrusive by employees. This perception can hinder machine
learning adoption and effectiveness, as some workers may choose not to comply or misuse the
technology.
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Unstructured data sources, like accident reports, pose challenges for consistency and scalability.
Developing standardized frameworks for data collection and sharing across industries is essential to
improve machine learning model accuracy and reliability.

5. Conclusions

While machine learning has shown great promise in enhancing occupational health and safety
practices, this review has identified several significant knowledge gaps that require further research.
These gaps span technical challenges, such as model generalizability and multi-modal data integration,
to broader issues like ethical considerations and integration with existing safety management systems.

Addressing these knowledge gaps will require interdisciplinary collaboration between data
scientists, safety professionals, ethicists, and policymakers. Future research should focus on developing
more robust, interpretable, and adaptable machine learning models that can account for the complex
and dynamic nature of workplace environments. Additionally, there is a pressing need for standardized
frameworks for data collection and sharing, as well as ethical guidelines for the implementation of
machine learning in occupational health and safety contexts.

As the field of machine learning in occupational health and safety continues to evolve, tackling
these knowledge gaps will be crucial in realizing the full potential of these technologies to create safer
and healthier workplaces. The identified research opportunities offer promising directions for future
studies that could significantly advance our understanding and application of machine learning in
occupational health and safety.

Conflicts of Interest: The author declares no conflicts of interest.
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