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Abstract: We introduce a fully differentiable end-to-end audio transformation network designed to
convert the style of one audio sample to another. This method offers three significant advantages:
(a) it operates without the need for parallel utterances, transcriptions, or time alignment processes;
(b) it utilizes a global conditioning mechanism, making it vocabulary agnostic and capable of
transforming audio styles regardless of the target identity; and (c) it performs one-shot audio
transformations without intermediate phonetic representations, thus eliminating the necessity for
phonetic alignments and speaker-independent ASR networks. We assess our method against
existing approaches in voice conversion and musical style transfer tasks. Subjective evaluations
demonstrate the superiority of our approach. The network employs an encoder-decoder
architecture that integrates neural network models known for their explainability in Natural
Language Processing tasks.

Keywords: Voice Conversion; Musical Style Transfer; Audio Transformations; End-to-End Audio
Pipeline

1. Introduction

Audio transformation deals with the transformation of syntactic, acoustic, and semantic
variations of one audio to another. It includes multiple applications such as voice conversion, timbre
transfer, speaker morphing, emotion transformation, etc [1]. One of the most widely studied
applications of it is Voice Conversion (VC). Voice conversion deals with the transformation of
paralinguistic features of the source audio with that of the target while preserving the linguistic
features.

Most of the early VC approaches have focused upon statistical methods based on Gaussian
Mixture Models (GMM) to convert voice from source to target speaker[2,3]. It has also been
approached with feed-forward Deep Neural Networks [4] and an exemplar-based framework using
non-negative matrix factorization[5,6]. Despite producing good results, these approaches often used
complex feature pipelines consisting of domain-specific features and require parallel time-aligned
source and target speech data, which is difficult and expensive to collect.

Recently there have been some approaches such as [7-9] that overcome the requirement for
parallel time-aligned data by using an attribute label along with the acoustic features to perform local
conditioning to convert an attribute of source speech (e.g., speaker identity) to target attribute. In
general, though the quality of the converted audio obtained with non-parallel methods is usually
limited compared with that of audio obtained through statistical methods using parallel data, these
can eliminate the need for parallel data which is costly to obtain. However, these approaches still
suffer from the limitation of being training vocabulary dependent. These approaches because of the
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use of local conditioning mechanisms can only convert the voice to a target speaker which was
present during the training phase.

There have been some attempts such as [10,11] which overcome the aforementioned limitation
and perform voice conversion for any arbitrary speaker. These approaches use automatic speech
recognition (ASR) systems to convert the input source speech to intermediate phonetic
representations which are further synthesized as output target speech using text-to-speech systems.
Although these systems can perform any-to-any voice conversion, they have some downsides to offer
such as the performance of such methods is heavily dependent upon the accuracy of the ASR system
used. Secondly, these approaches rely on intermediate phonetic transcriptions to train or finetune the
ASR system used which are usually hard to obtain, thus decreasing the portability of such systems
to newer languages or datasets[12]. Lastly, these systems are primarily applicable only to the
application of voice conversion.

Previous study [13] uses pseudo-recurrent structures like self-attention models and quasi
recurrent neural networks to build text-to-speech acoustic models, achieving a 11.2 times synthesis
speedup on CPU and 3.3 times on GPU compared to the purely recurrent baseline model. It also
preserves synthetic speech quality to the same level as the original recurrent model, competitive with
state-of-the-art vocoder-based statistical parametric speech synthesis models. Another study [14]
presents a network that is trained end-to-end, learning to map speech spectrograms into target
spectrograms in another language, corresponding to the translated content (in a different canonical
voice). The study addresses the task of speech-to-speech translation (52ST), which is highly beneficial
for breaking down communication barriers between people who do not share a common language.

Despite their exceptional performance in prediction, machine learning models, as ‘black boxes’,
encounter significant challenges in interpretability and transparency[15]. The reliability of the
predictive results of machine learning models is questionable due to the lack of a physical explanation
for their learning processes and operational principles [16]. Interpretability refers to the extent to
which the behavior and decision-making process of machine learning models and algorithms can be
understood and explained by humans [17]. Explainable Artificial Intelligence (XAI) aims to enhance
understanding of nonlinear machine learning models through two approaches: intrinsic and post-
hoc explainability [18].

To analyze the explainability of LSTMs, a research [19] studies n-gram models to conclude that
LSTMs’ performance improves on characters that require long-range reasoning. Another study [20]
suggested a novel interpretation framework inspired by computation theory. In [21], the authors
develop an inherently interpretable RNN, SISTA-RNN, based on the sequential iterative soft-
thresholding algorithm and the idea of deep unfolding [22]. Researchers [23] proposed a new
explainable convolutional neural network (XCNN) in an end-to-end network architecture. Another
study [24] investigates the possibility of using fine-grained information to help explain the decision
made by an encoder-decoder network using CNNs and LSTMs.

Controversy has accompanied attention mechanisms since their introduction. While some
attention weights can provide reliable explanations [25]; some researchers showed that attention
distributions are not easily interpretable and require further processing [26,27]. In an attempt to
investigate these controversies, a study [28] manually analyzed attention mechanisms on several NLP
tasks. The experiments showed that attention weights are interpretable indeed and are correlated
with feature importance measures capturing several linguistic notions. These methods, however, are
specific to particular domains and linguistic notions and might not be easily extendable to higher-
level knowledge structures.

In this paper, we address some of the limitations mentioned above and propose a fully
differentiable end-to-end audio transformation network which does not require parallel time-aligned
data, is training vocabulary agnostic and achieves one-shot audio transforms without using any
intermediate phonetic representations or ASR systems. Our method operates on acoustic features
such as spectrograms or mel-frequency cepstral coefficients and does not require any domain-specific
complex feature pipelines. We evaluate our method on two audio transformation tasks: (a) voice
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conversion and (b) musical style transfer, and compare the performance of our method with three
existing approaches.

2. Method

We use an encoder-decoder based architecture along with a reference encoder to reconstruct the
input acoustic feature sequence during the training phase and perform audio style transform by
conditioning the input source audio sequence with the target-specific style embeddings computed
from the reference encoder during the testing phase. We also employ a GAN based fine tuning
scheme similar to [29], to get rid of any noisy artifacts and improve upon the naturalness of the
generated audio. The network architecture for our method is shown in Figure 1 and explained below.
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Figure 1. Overview of our method. The encoder network takes acoustic features of the source audio
as input. The reference encoder takes the mel-spectrogram of the source audio during training and of
the target class during the testing phase. The decoder network combines the outputs of encoder and
reference encoder networks to reconstruct or transform audio. A latent discriminator based
adversarial training scheme is employed to learn target independent encoded representations.

2.1. Encoder/Decoder Networks

We use a combination of one-dimensional (1D) convolutional layers with gated linear unit [30]
and bidirectional LSTMs[31] to design the encoder and the decoder networks. The gated
convolutional layers capture the spectral relationship among the input acoustic features sequences
while preserving the temporal characteristics. The bidirectional LSTMs, on the other hand, model the
temporal characteristics of those acoustic sequences. Inspired by recent works [32,33], we also include
residual connections and instance normalization in both the encoder and decoder networks. These
inclusions help in stabilizing the training process and the generation of high-resolution output audio
sequences.

2.2. Reference Encoder

To remove the training vocabulary dependence and the requirement for intermediate phonetic
representations, we train a reference encoder jointly with our encoder-decoder networks. The
reference encoder is trained to capture target specific style embeddings, where target corresponds to
a speaker or a musical instrument in our case.

The reference encoder is designed similar to the encoder network, with the main difference being
the use of unidirectional LSTMs instead of bidirectional LSTMs. We also add a global mean pooling
layer on top of the unidirectional LSTMs to capture the global style specific features from the input
audio while ignoring the local phonetic specific features. The global mean pooling layer ensures that
the learned style embeddings are independent of local features such as phonetic content.

Before training the reference encoder jointly with the encoder-decoder network, we first pre-
train it on a simple classification task to predict the target audio class from the input acoustic feature
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sequences. This pre-training ensures that the reference encoder can learn a mapping from the global
style specific features of the input audio sequence to a fixed length vector, which we denote as audio
style embeddings. These style embeddings are then further fine tuned by jointly training the reference
encoder with the encoder-decoder networks. These target specific style embeddings provide global
conditioning and help in transforming the audio from source to target class.

2.3. Training Process

During the training phase, we use the acoustic features of the ground truth audio, i.e., Mel-
Frequency Cepstral Coefficients and Mel Spectrograms, as input to the encoder and the reference
encoder networks. The reference encoder compresses the input acoustic features into a fixed-length
vector, style embeddings. These style embeddings are concatenated along with the latent
representation obtained from the encoder network and are fed to the decoder to reconstruct the input
acoustic features of the input audio sequence.

We use a combination of Mean Absolute Error (MAE) and Pearson Correlation Coefficient ryy as
our reconstruction loss function as given in (1). The value of ryy ranges from -1 to 1, with 1 being a
perfect correlation. Since we want to maximize 1yy, we, therefore, minimize the negative of it.

Lrec(®) = X0 |lyi = ¥il| = 5 a)

2.4. Latent Discriminator

We employ a latent discriminator based adversarial training scheme to ensure that the encoder
learns target class independent latent representations. We use an auxiliary classifier as our
discriminator, to predict the target class from the encoded representation of an input audio utterance.
The objective of the latent discriminator is to minimize the negative log-likelihood of the target class,
while on the other hand, the encoder aims to fool the discriminator by maximizing the negative log-
likelihood of the target class. Equation (2) and (3) gives the loss functions that both the discriminator
and encoder try to optimize.

Liat(8) = X1_, ~log(pe (ilenc(x) (2)
Lae(0) = Lyec(8) — BLiat(6) 3)

We devise the latent discriminator using a bank of gated convolutional layers along with
instance normalization and dropout layers. The discriminator takes the encoded latent
representations of an acoustic feature sequence as input and predicts the probability distribution over
the target class. This latent discriminator based adversarial training scheme is essential since it
enforces a regularization over the encoded latent representations and ensures that the learned
representations are target class independent.

2.5. WGAN Based Fine Tuning

We also apply an adversarial based fine tuning scheme to remove any noisy artifacts and buzzy
sound effects present in the generated audio and to improve upon its naturalness. Since GAN is
notoriously hard to train, we use a variant of it, WGAN with gradient penalty[34], which is relatively
stable to train and easy to converge. We use the decoder of our network as the generator in this fine-
tuning scheme. For the discriminator, we devise it using a bank of two dimensional (2D)
convolutional layers to distinguish a real input acoustic feature sequence from one generated by our
model. The output of the discriminator network is a scalar indicating how real an input feature
sequence x is, the larger the scalar value; the more real is x. The discriminator is trained to maximize
the adversarial loss, while on the other hand the generator is trained to fool the discriminator by
minimizing both the adversarial and the reconstruction loss.

2.6. Process of Conversion

During the inference phase, audio transformation can be achieved by feeding the acoustic
features of the target audio whose style is to be transferred as an input to the reference encoder while
feeding the acoustic features of the source audio as input to the base encoder. The output from the
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decoder is the transformed audio sequence with local phonetic specific features from the source audio
and global style specific features from the target audio respectively.

3. Experiments
3.1. Datasets

We evaluate our method on two audio transformation tasks: voice conversion and musical style
transfer. For voice conversion, we use two datasets, CMU Arctic[35] and L2 Arctic[36]. The CMU
Arctic consists of around 1150 utterances spoken by seven speakers from US English accents as well
as other accents. The L2 Arctic is an extension to the CMU Arctic, which consists of recordings from
twenty non-native speakers of English whose first languages (L1s) are Hindi, Korean, Mandarin,
Spanish, and Arabic. Each speaker speaks the same set of utterances that were recorded in the CMU
Arctic dataset. For musical style transfer, we use the IRMAS dataset[37]. It consists of musical audio
excerpts of ten different musical instruments, such as cello, acoustic guitar, piano, etc. We select a
subset of 12 speakers, six females and six males, across six different nationalities, i.e., English, Hindji,
Korean, Mandarin, Spanish, and Arabic respectively for voice conversion task. While for musical
style transfer, we select a subset of 6 musical instruments, namely piano, saxophone, violin, flute,
trumpet, and acoustic guitar respectively. The dataset is randomly split into training and testing sets
in a 5:1 split ratio for each task.

3.2. Audio Formats

We use Mel-frequency cepstral coefficients (MFCCs) and Mel spectrograms in case of voice
conversion and Mel spectrograms for musical style transfer as the input acoustic features. All the
acoustic features are computed using the parameters given in Table 1. Audio is synthesized from the
predicted Mel spectrograms using Griffin-Lim algorithm [38].

Table 1. Parameters used for computation of Acoustic Features.

Parameter Value
Sample Rate 16000
Frame Length 50 ms
Frame Shift 12.5 ms
n-FFTs 2048
# Mels 128
# MFCCs 40

3.3. Training Details

We train the network using Adam optimizer with learning rate Ir = 0.001, f1=0.9, f2=0.999 and
with a batch size of 32. The network is trained for 100 epochs with a 30 epoch pre-training for the
reference encoder. Finally, a 20 epoch GAN based fine tuning is performed.

3.4. Baselines

We compare the performance of our method with three different baselines. First two baselines
are conditional variational autoencoder (CVAE)[8] and conditional sequence-to-sequence network
(CSeq2Seq)[39], which use a local conditioning mechanism to perform audio transforms. The third
baseline is an any-to-any voice conversion network proposed in [10] which uses an SI-ASR system to
compute intermediate phonetic transcriptions for performing audio transforms.

3.5. Evaluation Metrics

To evaluate the performance of our method with the baselines, we compute the mean opinion
score (MOS), the higher, the better. We compute the score for both seen (speakers or musical
instruments present in the training set) and unseen (speakers or musical instruments not present in
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the training set) targets. In addition to MOS, for the voice conversion task, we also evaluate the
naturalness of the generated audio for four cases:

e Intra-Gender voice conversions.
o Inter-Gender voice conversions.
e Intra-Nationality voice conversions.
e Inter-Nationality voice conversions.

4. Results and Discussion

In Table 2, we report the subjective evaluations (MOS) of all the baselines and our method for
both the tasks. To compute the mean opinion score, we follow the standard procedure of rating the
audio generated by our method and the baselines on a 5-point numeric scale: 1. bad, 2. poor, 3. fair,
4. good, and 5. excellent. Audios generated for all the experiments were rated by five normal-hearing
human raters.

Table 2. Mean opinion score (MOS) for both seen and unseen targets on voice conversion and musical
style transfer tasks. Higher MOS is better.

Method MOS
Seen Target Voice Conversion Musical Style Transfer
Ground Truth 4.53 4.07
CVAE 3.31 3.08
C-Seq25eq 3.50 3.26
MSVC 3.77 -
Our Method 3.72 3.50
Unseen Target Voice Conversion Musical Style Transfer
MSVC 3.51 -
Our Method 3.44 3.36

The results show that our method performs better than the conditional baselines for seen target
identity and performs competitively well with the third baseline for both seen and unseen target
identity. Though the third baseline, which uses an intermediate ASR system to do audio
transformation, performs better than our method, it has some major disadvantages to offer such as
lack of portability to a newer set because of the requirement for intermediate phonetic transcriptions
which are usually costly to obtain. Our method, on the other hand, relies only on the acoustic features
of the input audio sequence which can be obtained easily for any set. Our method thus offers the
advantage of being able to perform any-to-any audio transformations without using any intermediate
ASR system. Our model can capture both the fundamental phonetic properties and the style and
identity of each speaker or instrument and apply these properties to the novel, previously unseen
words, pitches or even target speaker or musical instruments with very less degradation in the quality
of resultant audio.

In addition to the subjective evaluation, we also show a set of examples generated by our method
in Figure 2, to observe the sharpness of the spectra generated by our proposed approach.
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Figure 2. MFCC and Spectrogram plots for source audio, target audio and generated audio, for Voice
Conversion and Musical Style Transfer.

Further in our study, to confirm the validity of the representations encoded by the reference
encoder, in Figure 3, we show the learned style embeddings for both voice conversion and musical
style transfer tasks. The style embeddings are visualized using the t-SNE algorithm with
perplexity=30 and number of iterations=300 respectively. The t-SNE plots show that the reference
encoder is successfully able to cluster sounds belonging to same target identity classes together, thus
confirming that the reference encoder can capture and encode the global style specific features and
the target identity in the style embeddings.

B -
- P+
-t s Y gk v
8 .
> ]
e’ Vel ¢y o
. .o .
y ¢35 Ve o “: -
aa W . = .
0, < D, Al -
np o° r,) - e
o™ ?
b ad = . —t
%,
o = D - . N A0S —-
2 . *2e," —_—
YA e %
| feo &t
’ " &
,_\-‘.n.'o\ ¢,
Bgdes by e ’

Figure 3. Learned Style Embeddings. We visualize the learned style embeddings using two-
dimensional t-SNE plots for six random speakers (three females and three males) on left and for four
random musical instruments on right.

In Figure 4, we show the MOS for naturalness, calculated on both seen and unseen speakers to
evaluate our method over cross-gender and cross-nationality audio transformations. The results
indicate that our method is able to generate intelligible and natural speech across gender as well as
nationality.
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Mean Opinion Score

Figure 4. MOS on naturalness. Computed for the following cases, (a) Intra Gender, (b) Inter Gender,
(c) Intra-Nationality, and (d) Inter-Nationality.

Finally, to ensure that the latent representations from the encoder are independent of the target
identity after the latent discriminator based adversarial training, we train a target class verification
system that takes the latent representations from the encoder as input to predict the target class
identity. The verification accuracies for both the tasks, with and without the latent adversarial
training are reported in Table 3. The drop-in verification accuracies after latent discriminator based
adversarial training confirm that the encoder is able to learn latent representations which are
independent of the target identity.

Table 3. Target verification accuracies before and after the latent adversarial training. L.A.: Latent

Adversarial.
Task Acc. w/o L.A. Training (%) Acc. w/ L.A. Training (%)
Voice Conversion 93.2 57.15
Musical Style Transfer 86.34 69.1

ExAl in NLP is mostly focused on understanding the inner workings of the underlying models
rather than understanding a particular output of classification. Authors [40] summarizes the work
done on the interpretability of word embeddings, inner workings of RNNs and transformers, the
model’s decision, and the different visualization methods while highlighting the interconnections
between the different methods. LSTMs and CNNs are relatively more inherently interpretable, and
further analysis is required for complete transparency in attention-based models.

This work can find applications where audio transformation is made accessible to everyone.
Like, in voice conversion, our proposed method would allow easy voice changes without needing
special datasets or complex alignments, which are usually hard to get and use. This would facilitate
for example, creation of personalized voice assistants, dubbing for movies, and tools for people with
speech difficulties. In music, the proposed method would help change the style of songs, allowing
musicians and producers to experiment with new genres and creative ideas. Also, this could be find
applicability in entertainment industry, like making video games and virtual environments more
realistic with better voice and sound changes. By removing the need for specialized tools, the
proposed method can lead to improving user experience by making audio technologies more
accessible and personalized.
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5. Conclusions

In conclusion, this paper introduces a fully differentiable end-to-end method for one-shot audio
transformations, addressing the challenges in voice conversion and musical style transfer. Our
approach is vocabulary agnostic, capable of transforming audio for both seen and unseen target
classes by learning target-specific audio style embeddings. Crucially, it operates without the need for
parallel data or intermediate phonetic representations, bypassing the limitations of speaker-
independent ASR networks. Subjective evaluations confirm the high quality of audio generated by
our method.

Furthermore, our encoder-decoder network integrates neural network models known for their
explainability in natural language processing tasks, contributing to the growing field of explainable
Al By enhancing the interpretability of machine learning models in audio processing, our work not
only advances theoretical understanding but also offers practical implications across various
applications in artificial intelligence.

Acknowledgments: We would like to thank students of the Computer Department, NSUT for participating in
subjective experiments.
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