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Abstract: We introduce a fully differentiable end-to-end audio transformation network designed to 

convert the style of one audio sample to another. This method offers three significant advantages: 

(a) it operates without the need for parallel utterances, transcriptions, or time alignment processes; 

(b) it utilizes a global conditioning mechanism, making it vocabulary agnostic and capable of 

transforming audio styles regardless of the target identity; and (c) it performs one-shot audio 

transformations without intermediate phonetic representations, thus eliminating the necessity for 

phonetic alignments and speaker-independent ASR networks. We assess our method against 

existing approaches in voice conversion and musical style transfer tasks. Subjective evaluations 

demonstrate the superiority of our approach. The network employs an encoder-decoder 

architecture that integrates neural network models known for their explainability in Natural 

Language Processing tasks. 

Keywords: Voice Conversion; Musical Style Transfer; Audio Transformations; End-to-End Audio 

Pipeline 

 

1. Introduction 

Audio transformation deals with the transformation of syntactic, acoustic, and semantic 

variations of one audio to another. It includes multiple applications such as voice conversion, timbre 

transfer, speaker morphing, emotion transformation, etc [1]. One of the most widely studied 

applications of it is Voice Conversion (VC). Voice conversion deals with the transformation of 

paralinguistic features of the source audio with that of the target while preserving the linguistic 

features. 

Most of the early VC approaches have focused upon statistical methods based on Gaussian 

Mixture Models (GMM) to convert voice from source to target speaker[2,3]. It has also been 

approached with feed-forward Deep Neural Networks [4] and an exemplar-based framework using 

non-negative matrix factorization[5,6]. Despite producing good results, these approaches often used 

complex feature pipelines consisting of domain-specific features and require parallel time-aligned 

source and target speech data, which is difficult and expensive to collect. 

Recently there have been some approaches such as [7–9] that overcome the requirement for 

parallel time-aligned data by using an attribute label along with the acoustic features to perform local 

conditioning to convert an attribute of source speech (e.g., speaker identity) to target attribute. In 

general, though the quality of the converted audio obtained with non-parallel methods is usually 

limited compared with that of audio obtained through statistical methods using parallel data, these 

can eliminate the need for parallel data which is costly to obtain. However, these approaches still 

suffer from the limitation of being training vocabulary dependent. These approaches because of the 
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use of local conditioning mechanisms can only convert the voice to a target speaker which was 

present during the training phase. 

There have been some attempts such as [10,11] which overcome the aforementioned limitation 

and perform voice conversion for any arbitrary speaker. These approaches use automatic speech 

recognition (ASR) systems to convert the input source speech to intermediate phonetic 

representations which are further synthesized as output target speech using text-to-speech systems. 

Although these systems can perform any-to-any voice conversion, they have some downsides to offer 

such as the performance of such methods is heavily dependent upon the accuracy of the ASR system 

used. Secondly, these approaches rely on intermediate phonetic transcriptions to train or finetune the 

ASR system used which are usually hard to obtain, thus decreasing the portability of such systems 

to newer languages or datasets[12]. Lastly, these systems are primarily applicable only to the 

application of voice conversion. 

Previous study [13] uses pseudo-recurrent structures like self-attention models and quasi 

recurrent neural networks to build text-to-speech acoustic models, achieving a 11.2 times synthesis 

speedup on CPU and 3.3 times on GPU compared to the purely recurrent baseline model. It also 

preserves synthetic speech quality to the same level as the original recurrent model, competitive with 

state-of-the-art vocoder-based statistical parametric speech synthesis models. Another study [14] 

presents a network that is trained end-to-end, learning to map speech spectrograms into target 

spectrograms in another language, corresponding to the translated content (in a different canonical 

voice). The study addresses the task of speech-to-speech translation (S2ST), which is highly beneficial 

for breaking down communication barriers between people who do not share a common language. 

Despite their exceptional performance in prediction, machine learning models, as ‘black boxes’, 

encounter significant challenges in interpretability and transparency[15]. The reliability of the 

predictive results of machine learning models is questionable due to the lack of a physical explanation 

for their learning processes and operational principles [16]. Interpretability refers to the extent to 

which the behavior and decision-making process of machine learning models and algorithms can be 

understood and explained by humans [17]. Explainable Artificial Intelligence (XAI) aims to enhance 

understanding of nonlinear machine learning models through two approaches: intrinsic and post-

hoc explainability [18]. 

To analyze the explainability of LSTMs, a research [19] studies n-gram models to conclude that 

LSTMs’ performance improves on characters that require long-range reasoning. Another study [20] 

suggested a novel interpretation framework inspired by computation theory. In [21], the authors 

develop an inherently interpretable RNN, SISTA-RNN, based on the sequential iterative soft-

thresholding algorithm and the idea of deep unfolding [22]. Researchers [23] proposed a new 

explainable convolutional neural network (XCNN) in an end-to-end network architecture. Another 

study [24] investigates the possibility of using fine-grained information to help explain the decision 

made by an encoder-decoder network using CNNs and LSTMs. 

Controversy has accompanied attention mechanisms since their introduction. While some 

attention weights can provide reliable explanations [25]; some researchers showed that attention 

distributions are not easily interpretable and require further processing [26,27]. In an attempt to 

investigate these controversies, a study [28] manually analyzed attention mechanisms on several NLP 

tasks. The experiments showed that attention weights are interpretable indeed and are correlated 

with feature importance measures capturing several linguistic notions. These methods, however, are 

specific to particular domains and linguistic notions and might not be easily extendable to higher-

level knowledge structures. 

In this paper, we address some of the limitations mentioned above and propose a fully 

differentiable end-to-end audio transformation network which does not require parallel time-aligned 

data, is training vocabulary agnostic and achieves one-shot audio transforms without using any 

intermediate phonetic representations or ASR systems. Our method operates on acoustic features 

such as spectrograms or mel-frequency cepstral coefficients and does not require any domain-specific 

complex feature pipelines. We evaluate our method on two audio transformation tasks: (a) voice 
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conversion and (b) musical style transfer, and compare the performance of our method with three 

existing approaches. 

2. Method 

We use an encoder-decoder based architecture along with a reference encoder to reconstruct the 

input acoustic feature sequence during the training phase and perform audio style transform by 

conditioning the input source audio sequence with the target-specific style embeddings computed 

from the reference encoder during the testing phase. We also employ a GAN based fine tuning 

scheme similar to [29], to get rid of any noisy artifacts and improve upon the naturalness of the 

generated audio. The network architecture for our method is shown in Figure 1 and explained below. 

 

Figure 1. Overview of our method. The encoder network takes acoustic features of the source audio 

as input. The reference encoder takes the mel-spectrogram of the source audio during training and of 

the target class during the testing phase. The decoder network combines the outputs of encoder and 

reference encoder networks to reconstruct or transform audio. A latent discriminator based 

adversarial training scheme is employed to learn target independent encoded representations. 

2.1. Encoder/Decoder Networks 

We use a combination of one-dimensional (1D) convolutional layers with gated linear unit [30] 

and bidirectional LSTMs[31] to design the encoder and the decoder networks. The gated 

convolutional layers capture the spectral relationship among the input acoustic features sequences 

while preserving the temporal characteristics. The bidirectional LSTMs, on the other hand, model the 

temporal characteristics of those acoustic sequences. Inspired by recent works [32,33], we also include 

residual connections and instance normalization in both the encoder and decoder networks. These 

inclusions help in stabilizing the training process and the generation of high-resolution output audio 

sequences. 

2.2. Reference Encoder 

To remove the training vocabulary dependence and the requirement for intermediate phonetic 

representations, we train a reference encoder jointly with our encoder-decoder networks. The 

reference encoder is trained to capture target specific style embeddings, where target corresponds to 

a speaker or a musical instrument in our case. 

The reference encoder is designed similar to the encoder network, with the main difference being 

the use of unidirectional LSTMs instead of bidirectional LSTMs. We also add a global mean pooling 

layer on top of the unidirectional LSTMs to capture the global style specific features from the input 

audio while ignoring the local phonetic specific features. The global mean pooling layer ensures that 

the learned style embeddings are independent of local features such as phonetic content. 

Before training the reference encoder jointly with the encoder-decoder network, we first pre-

train it on a simple classification task to predict the target audio class from the input acoustic feature 
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sequences. This pre-training ensures that the reference encoder can learn a mapping from the global 

style specific features of the input audio sequence to a fixed length vector, which we denote as audio 

style embeddings. These style embeddings are then further fine tuned by jointly training the reference 

encoder with the encoder-decoder networks. These target specific style embeddings provide global 

conditioning and help in transforming the audio from source to target class. 

2.3. Training Process 

During the training phase, we use the acoustic features of the ground truth audio, i.e., Mel-

Frequency Cepstral Coefficients and Mel Spectrograms, as input to the encoder and the reference 

encoder networks. The reference encoder compresses the input acoustic features into a fixed-length 

vector, style embeddings. These style embeddings are concatenated along with the latent 

representation obtained from the encoder network and are fed to the decoder to reconstruct the input 

acoustic features of the input audio sequence. 

We use a combination of Mean Absolute Error (MAE) and Pearson Correlation Coefficient ryy′ as 

our reconstruction loss function as given in (1). The value of ryy′ ranges from −1 to 1, with 1 being a 

perfect correlation. Since we want to maximize ryy′, we, therefore, minimize the negative of it. 

����(�) = � �|�� −  ��
�|� −  ����

�

���
   (1) 

2.4. Latent Discriminator 

We employ a latent discriminator based adversarial training scheme to ensure that the encoder 

learns target class independent latent representations. We use an auxiliary classifier as our 

discriminator, to predict the target class from the encoded representation of an input audio utterance. 

The objective of the latent discriminator is to minimize the negative log-likelihood of the target class, 

while on the other hand, the encoder aims to fool the discriminator by maximizing the negative log-

likelihood of the target class. Equation (2) and (3) gives the loss functions that both the discriminator 

and encoder try to optimize. 

����(�) = � −���(��(��|���(��))
�

���
 (2) 

���(�) = ����(�) −  �����(�)    (3) 

We devise the latent discriminator using a bank of gated convolutional layers along with 

instance normalization and dropout layers. The discriminator takes the encoded latent 

representations of an acoustic feature sequence as input and predicts the probability distribution over 

the target class. This latent discriminator based adversarial training scheme is essential since it 

enforces a regularization over the encoded latent representations and ensures that the learned 

representations are target class independent. 

2.5. WGAN Based Fine Tuning 

We also apply an adversarial based fine tuning scheme to remove any noisy artifacts and buzzy 

sound effects present in the generated audio and to improve upon its naturalness. Since GAN is 

notoriously hard to train, we use a variant of it, WGAN with gradient penalty[34], which is relatively 

stable to train and easy to converge. We use the decoder of our network as the generator in this fine-

tuning scheme. For the discriminator, we devise it using a bank of two dimensional (2D) 

convolutional layers to distinguish a real input acoustic feature sequence from one generated by our 

model. The output of the discriminator network is a scalar indicating how real an input feature 

sequence x is, the larger the scalar value; the more real is x. The discriminator is trained to maximize 

the adversarial loss, while on the other hand the generator is trained to fool the discriminator by 

minimizing both the adversarial and the reconstruction loss. 

2.6. Process of Conversion 

During the inference phase, audio transformation can be achieved by feeding the acoustic 

features of the target audio whose style is to be transferred as an input to the reference encoder while 

feeding the acoustic features of the source audio as input to the base encoder. The output from the 
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decoder is the transformed audio sequence with local phonetic specific features from the source audio 

and global style specific features from the target audio respectively. 

3. Experiments 

3.1. Datasets 

We evaluate our method on two audio transformation tasks: voice conversion and musical style 

transfer. For voice conversion, we use two datasets, CMU Arctic[35] and L2 Arctic[36]. The CMU 

Arctic consists of around 1150 utterances spoken by seven speakers from US English accents as well 

as other accents. The L2 Arctic is an extension to the CMU Arctic, which consists of recordings from 

twenty non-native speakers of English whose first languages (L1s) are Hindi, Korean, Mandarin, 

Spanish, and Arabic. Each speaker speaks the same set of utterances that were recorded in the CMU 

Arctic dataset. For musical style transfer, we use the IRMAS dataset[37]. It consists of musical audio 

excerpts of ten different musical instruments, such as cello, acoustic guitar, piano, etc. We select a 

subset of 12 speakers, six females and six males, across six different nationalities, i.e., English, Hindi, 

Korean, Mandarin, Spanish, and Arabic respectively for voice conversion task. While for musical 

style transfer, we select a subset of 6 musical instruments, namely piano, saxophone, violin, flute, 

trumpet, and acoustic guitar respectively. The dataset is randomly split into training and testing sets 

in a 5:1 split ratio for each task. 

3.2. Audio Formats 

We use Mel-frequency cepstral coefficients (MFCCs) and Mel spectrograms in case of voice 

conversion and Mel spectrograms for musical style transfer as the input acoustic features. All the 

acoustic features are computed using the parameters given in Table 1. Audio is synthesized from the 

predicted Mel spectrograms using Griffin-Lim algorithm [38]. 

Table 1. Parameters used for computation of Acoustic Features. 

Parameter Value 

Sample Rate 16000 

Frame Length 50 ms 

Frame Shift  12.5 ms 

n-FFTs  2048 

# Mels  128 

# MFCCs  40 

3.3. Training Details 

We train the network using Adam optimizer with learning rate lr = 0.001, β1 = 0.9, β2 = 0.999 and 

with a batch size of 32. The network is trained for 100 epochs with a 30 epoch pre-training for the 

reference encoder. Finally, a 20 epoch GAN based fine tuning is performed. 

3.4. Baselines 

We compare the performance of our method with three different baselines. First two baselines 

are conditional variational autoencoder (CVAE)[8] and conditional sequence-to-sequence network 

(CSeq2Seq)[39], which use a local conditioning mechanism to perform audio transforms. The third 

baseline is an any-to-any voice conversion network proposed in [10] which uses an SI-ASR system to 

compute intermediate phonetic transcriptions for performing audio transforms. 

3.5. Evaluation Metrics 

To evaluate the performance of our method with the baselines, we compute the mean opinion 

score (MOS), the higher, the better. We compute the score for both seen (speakers or musical 

instruments present in the training set) and unseen (speakers or musical instruments not present in 
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the training set) targets. In addition to MOS, for the voice conversion task, we also evaluate the 

naturalness of the generated audio for four cases: 

 Intra-Gender voice conversions. 

 Inter-Gender voice conversions. 

 Intra-Nationality voice conversions. 

 Inter-Nationality voice conversions. 

4. Results and Discussion 

In Table 2, we report the subjective evaluations (MOS) of all the baselines and our method for 

both the tasks. To compute the mean opinion score, we follow the standard procedure of rating the 

audio generated by our method and the baselines on a 5-point numeric scale: 1. bad, 2. poor, 3. fair, 

4. good, and 5. excellent. Audios generated for all the experiments were rated by five normal-hearing 

human raters. 

Table 2. Mean opinion score (MOS) for both seen and unseen targets on voice conversion and musical 

style transfer tasks. Higher MOS is better. 

Method  MOS 

Seen Target  Voice Conversion  Musical Style Transfer 

Ground Truth 4.53  4.07 

CVAE  3.31  3.08 

C-Seq2Seq  3.50  3.26 

MSVC  3.77  - 

Our Method  3.72  3.50 

Unseen Target  Voice Conversion  Musical Style Transfer 

MSVC  3.51  - 

Our Method  3.44  3.36 

The results show that our method performs better than the conditional baselines for seen target 

identity and performs competitively well with the third baseline for both seen and unseen target 

identity. Though the third baseline, which uses an intermediate ASR system to do audio 

transformation, performs better than our method, it has some major disadvantages to offer such as 

lack of portability to a newer set because of the requirement for intermediate phonetic transcriptions 

which are usually costly to obtain. Our method, on the other hand, relies only on the acoustic features 

of the input audio sequence which can be obtained easily for any set. Our method thus offers the 

advantage of being able to perform any-to-any audio transformations without using any intermediate 

ASR system. Our model can capture both the fundamental phonetic properties and the style and 

identity of each speaker or instrument and apply these properties to the novel, previously unseen 

words, pitches or even target speaker or musical instruments with very less degradation in the quality 

of resultant audio. 

In addition to the subjective evaluation, we also show a set of examples generated by our method 

in Figure 2, to observe the sharpness of the spectra generated by our proposed approach. 
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Figure 2. MFCC and Spectrogram plots for source audio, target audio and generated audio, for Voice 

Conversion and Musical Style Transfer. 

Further in our study, to confirm the validity of the representations encoded by the reference 

encoder, in Figure 3, we show the learned style embeddings for both voice conversion and musical 

style transfer tasks. The style embeddings are visualized using the t-SNE algorithm with 

perplexity=30 and number of iterations=300 respectively. The t-SNE plots show that the reference 

encoder is successfully able to cluster sounds belonging to same target identity classes together, thus 

confirming that the reference encoder can capture and encode the global style specific features and 

the target identity in the style embeddings. 

 

Figure 3. Learned Style Embeddings. We visualize the learned style embeddings using two-

dimensional t-SNE plots for six random speakers (three females and three males) on left and for four 

random musical instruments on right. 

In Figure 4, we show the MOS for naturalness, calculated on both seen and unseen speakers to 

evaluate our method over cross-gender and cross-nationality audio transformations. The results 

indicate that our method is able to generate intelligible and natural speech across gender as well as 

nationality. 
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Figure 4. MOS on naturalness. Computed for the following cases, (a) Intra Gender, (b) Inter Gender, 

(c) Intra-Nationality, and (d) Inter-Nationality. 

Finally, to ensure that the latent representations from the encoder are independent of the target 

identity after the latent discriminator based adversarial training, we train a target class verification 

system that takes the latent representations from the encoder as input to predict the target class 

identity. The verification accuracies for both the tasks, with and without the latent adversarial 

training are reported in Table 3. The drop-in verification accuracies after latent discriminator based 

adversarial training confirm that the encoder is able to learn latent representations which are 

independent of the target identity. 

Table 3. Target verification accuracies before and after the latent adversarial training. L.A.: Latent 

Adversarial. 

Task  Acc. w/o L.A. Training (%) Acc. w/ L.A. Training (%) 

Voice Conversion  93.2  57.15 

Musical Style Transfer  86.34  69.1 

ExAI in NLP is mostly focused on understanding the inner workings of the underlying models 

rather than understanding a particular output of classification. Authors [40] summarizes the work 

done on the interpretability of word embeddings, inner workings of RNNs and transformers, the 

model’s decision, and the different visualization methods while highlighting the interconnections 

between the different methods. LSTMs and CNNs are relatively more inherently interpretable, and 

further analysis is required for complete transparency in attention-based models. 

This work can find applications where audio transformation is made accessible to everyone. 

Like, in voice conversion, our proposed method would allow easy voice changes without needing 

special datasets or complex alignments, which are usually hard to get and use. This would facilitate 

for example, creation of personalized voice assistants, dubbing for movies, and tools for people with 

speech difficulties. In music, the proposed method would help change the style of songs, allowing 

musicians and producers to experiment with new genres and creative ideas. Also, this could be find 

applicability in entertainment industry, like making video games and virtual environments more 

realistic with better voice and sound changes. By removing the need for specialized tools, the 

proposed method can lead to improving user experience by making audio technologies more 

accessible and personalized. 
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5. Conclusions 

In conclusion, this paper introduces a fully differentiable end-to-end method for one-shot audio 

transformations, addressing the challenges in voice conversion and musical style transfer. Our 

approach is vocabulary agnostic, capable of transforming audio for both seen and unseen target 

classes by learning target-specific audio style embeddings. Crucially, it operates without the need for 

parallel data or intermediate phonetic representations, bypassing the limitations of speaker-

independent ASR networks. Subjective evaluations confirm the high quality of audio generated by 

our method. 

Furthermore, our encoder-decoder network integrates neural network models known for their 

explainability in natural language processing tasks, contributing to the growing field of explainable 

AI. By enhancing the interpretability of machine learning models in audio processing, our work not 

only advances theoretical understanding but also offers practical implications across various 

applications in artificial intelligence. 
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