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Abstract: We present a synchronization transition study of the locally coupled Kuramoto model on
extremely large graphs. We compare regular 405 and 1004 lattice results with those of 12 0002 lattice
substrates with power-law decaying long links (ll). The latter heterogeneous network exhibits ds > 4
spectral dimensions. We show strong corrections to scaling and mean-field type of criticality at d = 5,
while logarithmic corrections at d = 4. Contrary, the ll model exhibits a non-mean field smeared
transition, with oscillating corrections, suggesting the network heterogeneity is relevant, causing
frustrated synchronization, akin to Griffiths effects.
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1. Introduction

Synchronization phenomena are abundant in nature ranging from brain science [1] to power
grids [2]. Describing them via toy models has a long history, for recent reviews see [3,4]. One of the
simplest and well known is introduced by Kuramoto [5]. In its original form it is a fully coupled system
defined on a full graph. The synchronization transitions of the locally coupled versions were studied
on finite dimensional lattices [6]. In homogeneous systems the Kuramoto model exhibits dc = dl = 4,
that means real phase transition can happen above d ≥ dl = 4 and it is mean-field type. Entrainment
transition of frequency variables can be non-mean-field like for 2 < d < 4.

On heterogeneous, random graphs the phase transition remains mean-field like [7] according
to the annealed heterogeneous mean-field approximation, however care must be taken even in
dense-network systems, particularly in the disordered phase [8]. By studying the dynamical scaling
of Kuramoto on Erdős Rényi graphs non-monotonic corrections to scaling hindered to see clearly
mean-field criticality even on very large systems [9]. Note the disorder here is different from other
‘disordered’ Kuramoto models studied in the literature, where the disorder arises from independent
random positive and negative couplings, which add frustration to the system and can lead to glassy
dynamics [10].

In lower dimensional, simplicial complex model of manifolds complexes [11] and on hierarchical
modular networks [12,13] a so-called frustrated synchronization transition was reported for spectral
dimension ds < 4. Ref [14] showed that synchronized phase can only be thermodynamically stable
for spectral dimensions above four and that phase entrainment of the oscillators can only be found
for spectral dimensions greater than two. Very recently Ref. [15] studied one-dimensional long-range
random ring networks, where any two nodes on the network are connected with a probability
proportional to a power law of the distance between the nodes and confirmed the results of [14] for
the Kuramoto model.

On a large, weighted human connectome network, containing 804 092 nodes, the topological
dimension is d < 4, a real synchronization phase transition is not possible in the thermodynamic
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limit, still a transition between partially synchronized and desynchronized states could be found,
with non-universal coupling dependent dynamical scaling [16]. On the other hand on the infinite
dimensional “2dll” random long link model of lateral size L = 6000 Kuramoto calculations, starting
from states with oscillators of fully random phases the growth exponent at the synchronization
transition point was found to be η = 0.55(10), away from the mean-field expectations by scaling
relations: η = 0.75 [17]. It was suspected that finite size scaling and corrections hid the true mean-field
behavior numerically in [16] as well as in [17]. Here we provide a more extended numerical study
with the aim of clarifying this .

2. Materials and Methods

The model introduced by Kuramoto [5] is one of the most studied for oscillatory systems. Besides
the original global coupled system one can define a locally coupled version on graphs [3], in which
phases θi(t), located at the N nodes of a network, follow the dynamical equation

θ̇i(t) = ω0
i + K ∑

j
Aij sin[θj(t)− θi(t)] . (1)

The global coupling K is the control parameter, by which one can tune the system between
asynchronous and synchronous states. The summation is performed over the nearest neighboring
nodes, with connections described by the adjacency matrix Aij and ω0

i denotes the quenched self
frequency of the i-th oscillator, chosen from a Gaussian distribution, with zero mean and unit variance.
When Aij describes a full graph, the dynamical behavior is mean-field type [18]. The critical dynamical
behavior has been explored on various random graphs [16,17]. In regular lattices synchronization
phase transition can happen only above the lower critical dimension d−l = 4 [6]. In lower dimensions, a
true, singular phase transition in the N → ∞ limit is not possible, but partial synchronization emerges
with a smooth crossover if the oscillators are coupled strongly.

To investigate the relaxation to the steady state, we measured

z(tk) = r(tk) exp[iθ(tk)] = 1/N ∑
j

exp [iθj(tk)] , (2)

where 0 ≤ r(tk) ≤ 1 gauges the overall coherence and θ(tk) is the average phase at discrete sampling
times tk, which was chosen to follow an exponential growth: tk = 1 + 1.08k to spare memory space.

The sets of equations (1) were solved numerically for 103 − 104 independent initial conditions,
initialized by different ω0

i -s and random initial phases θi(0) were used. Then sample averages for the
phases and the frequencies give rise to the Kuramoto order parameter

R(tk) = ⟨r(tk)⟩ , (3)

which is non-zero above the critical coupling strength K > Kc, tends to zero for K < Kc as R ∝
√

1/N,
or exhibits a growth at Kc as

R(t, N) = N−1/2tη f↑(t/N z̃) , (4)

in case of an incoherent initial state, with the dynamical exponents z̃ and η. We also measured the
variance of the frequencies

Ω(t) =
1
N

N

∑
j=1

(ω(t)− ωj(t))2 , (5)

which is expected to exhibit an asymptotic decay law Ω(t) ∝ t−d/2 in the ordered phase, by linear
approximation [17], and is also confirmed numerically in the nonlinear regime [17,19].

The Kuramoto differential equation system (1) was solved using the adaptive Bulirsch–Stoer
stepper [20] implemented with support for CUDA GPUs boost::odeint [21] via the VexCL library [22].
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Node and edge information of sparse random graphs were stored using a memory layout optimized for
the efficient parallel evaluation of the Kuramoto computation of interaction term. This implementation
allowed the numerical treatment of large systems with N = 12 0002 nodes and containing up to
∼ 6 · 108 edges, while sampling thousands of realizations per graph type on a small GPU cluster.

2.1. The power-Law Decaying Long Range Graph (ll)

Graphs with variable topological and spectral dimension can be generated by the addition of
long-range connections with probability decaying with the distance l algebraically as

pl ∝ βl−s, (6)

parametrized by the exponent s, see for example [23]. We used this method by the addition of links to
two dimensional lattices, with periodic boundary conditions and linear sizes L = 12 000. For s < 4,
infinite graph dimensions are obtained. The probability of long-range links decreases as s increases and
for s > 4, any long-range links are suppressed to simply give the original underlying two-dimensional
lattice. This construction provides the possibility to generate systems with their dimensionalities vary
from 2 to ∞ at s = 4 by tuning β. As for the spectral dimension the situation is different as we will
show it in Sect. 3.1

2.2. Spectral Analysis

The spectrum of the Laplacian matrix of a complex network encapsulate vital information about
the network’s structural properties, such as its connectedness and connectivity, its ability to synchronize
or conduct diffusion processes, and its resilience to structural perturbations, etc [24]. In particular it is
related to the linearized Kuramoto equation, which describes a random walk. Such spectra were also
shown to encode the dimensionality information of a network [25]. Following Refs. [11,14], we adopt
the normalized Laplacian L with elements

Lij = δij − Aij/ki (7)

for unweighted networks, where ki denotes the degree of node i. The normalized Laplacian has real
eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN that form a spectrum, the density of which is characterized by
the following scaling behavior [11,25]

ρ(λ) ≃ λds/2−1 (8)

for λ ≪ 1, where ds is the spectral dimension. The cumulative density is then given by

ρc(λ) =
∫ λ

0
dλ′ρ(λ′) ≃ λds/2. (9)

Note, that the smallest nonzero eigenvalue λ2 or the Fiedler value quantifies the connectivity of
the network. In connected networks with finite spectral dimensions, the dimension ds is an overall
measure for the local connectivity, while as the system size N increases, the resulting larger network
will also have more room for disconnection, giving rise to a smaller λ2. Therefore, λ2 depends on both
ds and N. By imposing ρc(λ2) = 1/N (the cumulative density of this smallest nonzero eigenvalue
over N eigenvalues), λ2 then scales with the network size according to the following power law [14].

λ2 ∼ N−2/ds . (10)

More generally, in order for the spectrum to display the power-law behavior (8) and (9), each eigenvalue
should follow the similar leading-order scaling [26]

λi ∼ N−2/ds . (11)
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3. Results

3.1. Spectral Analysis Results

Equations (8)-(11) all suffice for the estimation of the spectral dimension. However, since ds values
obtained from Equations (8) and (9) may depend on how many low-lying eigenvalues are chosen, these
two scaling relations are not very reliable. In practice, it is more apt to utilize the finite-size scaling
relations (10) and (11) to obtain ds by observing how the scaling exponents converge as N → ∞. In
Figure 1, we applied Equation (10) to estimate the dependence of ds on N for different s values, which
shows that the scaling form Equation (10) only gives a consistent, reliable ds value by extrapolating to
the thermodynamic limit N → ∞. It also shows that the intended upper critical dimension dsc = 4 for
this study corresponds to choosing s ≈ 3.
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s=4

s=5
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Figure 1. Dependence of the estimated spectral dimension ds on the system size N for s = 2.5, 2.8, 3, 4,
and 5. For each system size N = L2 (L = 10, 15, 20, 30, 40, 50, 80, 100, 120, and 150), Equation (10) is
applied with respect to three vicinal system sizes, ⌊L/b⌋2, L2, and ⌈bL⌉2, where b = 1.12. All results
are averaged over 4000 random realizations.

To more systematically determine how ds varies with s in the thermodynamic limit, we may
estimate ds according to Equation (11) with respect to several eigenvalues for large enough system
sizes. From the results of Figure 1, taking N = 1402, 1602, 1802, and 2002 should give reasonable
estimations, while pushing the lateral size L to even larger values will be rather computing resource
demanding for eigenvalue calculations. The resulting Figure 2 (see the caption for the calculation
details) shows that ds decreases monotonously with respect to s and tends to the dimensionality of the
underlying two-dimensional lattice for large s, as expected according to Section 2.1. This figure further
justifies that ds ≈ 4 for s = 3 and ds ≈ 2 for s = 4 in agreement with the relevancy of the long links. In
Section 3.3, we shall take s ≤ 3 as we intend to study synchronization dynamics on networks with
ds ≳ 4.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 November 2024 doi:10.20944/preprints202411.0382.v1

https://doi.org/10.20944/preprints202411.0382.v1


5 of 10

◇

◇

◇

◇

◇
◇

◇
◇ ◇ ◇ ◇ ◇ ◇ ◇

3 4 5
0

2

4

6

8

10

s

d
s

Figure 2. Dependence of ds on s. For each s value, the 10 smallest non-zero eigenvalues λ2 . . . λ11 are
obtained with respect to N = 1402, 1602, 1802, 2002 for the large system size limit. Each eigenvalue λi

permits an estimation of ds according to Equation (11), averaged over 2000 realizations. The eventual
estimation of ds for each s value is then obtained by averaging over these 10 ds values. Note that the
magnitudes of the error bars are hardly discernible as compared to the size of the plotted points.

3.2. Regular Lattice Kuramoto Order Parameter Behavior

First we solved Equation (1) in case of 5 dimensional lattices, where the mean-field type of
behavior is expected. We initialized the solver by random initial phases and followed the evolution
of R(t) up to tmax = 4000 time steps. We performed these calculations for L = 32, 40 linear sizes, for
thousands of independent random initial conditions. Here we show the results of L = 40 on Figure 3,
because for L = 32 the cutoff happens at earlier times. Using a local slope analysis, defined by the
logarithmic derivatives of the growth Equation (4) at the discrete time-steps tk, near the transition
point

ηeff =
ln R(tk+4)− ln R(tk)

ln(tk+4)− ln(tk)
, (12)

we estimated Kc as well as the exponent η. After selecting a proper rescaling of the horizontal axis, we
can observe a linear infelxion curve at K = Kc = 2.046(1), separating the up and down veering curves,
corresponding to super and sub-critical cases and we can extrapolate to η = 0.77(2) in the t → ∞ limit.
The initial growth ∝ t1/2 behavior, similar as in [17], leads to a strong corrections to scaling. Note, that
simple power-law fit on the R(t) would provide a smaller growth exponent. Our results is the first
one to show clearly the expected asymptotic mean-field scaling, because analyses on smaller sizes
hindered to see it due to the corrections and early time cutoff.
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Figure 3. Evolution of the Kuramoto order parameter from phase asynchronous initial state in d = 5
lattice of linear size L = 40 near the phase transition point (coupling values are in the legends). The
inset shows the corresponding local slopes.
We repeated this analysis for d = 4, but here the expected logarithmic corrections at d = dc make

the scaling even more complex. We show only the effective exponents for the calculations of 1004

lattices on Figure 4, again after a sample average of 1000-5000 independent initial conditions. By
rescaling the horizontal axis on the logarithmic scale we can see an inflexion curve at K ≃ 4 that may
indicate the expected behavior at d = dc, but care must be taken due to unknown finite size cutoff.
Thus we just claim that our numerical results canconfirm the mean-field behavior, with logarithmic
corrections.
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Figure 4. Local slopes of the evolution of the Kuramoto order parameter from phase asynchronous
initial state in d = 4 lattice of linear size L = 100 near the phase transition point (coupling values are in
the legends). We plotted the slopes as logarithmic corrections to scaling is expected.
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3.3. The ll Graph Order Parameter Results

Now we show our results for the ll graph, where we used large two dimensional base lattices,
with maximum linear sizes L = 12 000 and added PL decaying random long links with exponent s = 3,
corresponding to ds ≥ 4, according to the spectral analysis shown in Section 3.1. Thus, one would
expect to see a simple mean-field behavior, instead as Figure 5 shows, we find a smeared transition,
without any clear separatrix extrapolating to the mean-field value η = 0.75 in the infinite time limit.
Unlike in the regular lattice cases the local slope curves seem to saturate in the region 0.85 < K < 0.98
and 0.3 < 1/t < 0.03 before the finite time cutoff. But the curves also exhibit wavy modulations,
which persist even after averaging over 2000 independent samples, and which prohibits to extend the
calculations further.
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Figure 5. Local slopes of the evolution of the Kuramoto order parameter from phase asynchronous
initial state on the ll graph with s = 3 and linear size L = 12 000 near the phase transition point
(coupling values are in the legends). The inset shows R(t) of the same.

Such wavy modulations, non-monotonic corrections in the local exponents were also present
in case of Kuramoto on random Erdős-Rényi graphs [9], where the authors could not clearly justify
relevant deviations from the mean-field behavior, which is present here. Solving Kuramoto on ll
graphs with smaller s values runs into rapidly increasing computational difficulties, as it requires
larger memory and the communication via long links becomes slow.

We have also obtained results for s = 2.9 resulting in a higher spectral dimension, where the
deviations from the mean-field are even more obvious as shown on Figure 6.
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Figure 6. Local slopes of the evolution of the Kuramoto order parameter from phase asynchronous
initial state on the ll graph with s = 2.9 and linear size L = 12 000 near the phase transition point
(coupling values are in the legends). The inset shows the evolution of frequency spread Ω(t)t2.6 for
s = 2.8 for L = 6000.

Although we have results for a limited number of couplings, and the corrections are wavy, the
results suggest a critical point at Kc ≈ 1.8, with the corresponding exponent η = 1.18(3), far away
from the mean-field value ηMF = 0.75. This resolution of data does not allow us to see a stretched
(smeared) dynamical critical region as in case of s = 3.

For s = 2.8 the scaling region of R(t) is even more narrow, instead of that we show in the inset of
Figure 6 the evolution of the frequency spread, multiplied by t2.6 in system with with L = 6000, for
which PL decay can be found in case of K = 1.6. The linear approximation predicts Ω(t) ∝ t−d/2 for
Euclidean lattices, below dc [17], and the observed behavior agrees well with the spectral dimension
ds ≈ 5, in case of s = 2.8 and contradicts with the mean-field behavior Ω(t) ∝ t−2 again.

4. Discussion

In conclusion we have compared the synchronization transition of the Kuramoto model at and
above the upper critical dimension and found numerical evidence that the quenched topological
disorder is relevant and a smeared, frustrated phase transition seems to emerge instead of the
mean-field behavior. This appears even more clearly on lattices of the ds ≥ 4 spectral dimensions. Note,
however that an oscillating correction to scaling is also present in the effective exponents, which makes
it more difficult to analyze data even if we consider very large sizes and averages over thousands
of independent initial conditions. Previously such oscillations were also shown in earlier numerical
results of the dynamical Kuramoto [17] model on lattices, as well as on random graphs [9]. To show the
dimensional equivalence we determined the spectral dimension on ll graphs, but note that topological
and graph dimensions are expected to be equal on regular graphs. The graph dimension of the s ≤ 3 ll
graphs considered here is infinite. The existence of such frustrated phase transition at high dimension
is crucial for understanding models of the brain and warrants further investigations in this direction.
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