

Article

Not peer-reviewed version

Validity and Reliability of Wind Speed Calculated by Notio in Comparison with a Hot-Wire Anemometer

[Manuel Ordinana-Pérez](#)^{*} , [Manuel Mateo](#) , [Ainoa Roldan](#) , [David Barranco-Gil](#) , [Mikel Zabala](#) , [Cristina Blasco-Lafarga](#)^{*}

Posted Date: 5 November 2024

doi: 10.20944/preprints202411.0300.v1

Keywords: CDA; cycling; Pitot-static tube; reliability; validity; wind tunnel

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Validity and Reliability of Wind Speed Calculated by Notio in Comparison With a Hot-Wire Anemometer

Manuel Ordinana-Pérez ^{1,*}, Manuel Mateo-March ^{2,3}, Ainoa Roldan ^{1,4}, David Barranco-Gil ³, Mikel Zabala ⁵ and Cristina Blasco-Lafarga ^{1,4,*}

¹ Physical Education and Sport Department, Faculty of Physical Activity and Sport Sciences, University of Valencia, Valencia, Spain.

² Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Spain.

³ Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.

⁴ Sport Performance and Physical Fitness Research Group (UIRFIDE), University of Valencia, Valencia, Spain.

⁵ Faculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain

* Correspondence: ordinana@alumni.uv.es, m.cristina.blasco@uv.es

Abstract: (1) Background: Notio calculates coefficient of drag area (C_{DA}) considering dynamic pressure data calculated by an integrated Pitot-static tube. Therefore, this study aimed to evaluate the validity and reliability of Pitot-static tube calculations through wind speed (WS) data, against a hot-wire anemometer (HWA); (2) A total of 60 recordings were made, lasting 30 seconds each, in a closed-circuit wind tunnel at 4 different WS (≈ 30 to ≈ 60 km/h), and at five different yaw angles (0° to 20°); (3) Results: Notio showed WS 6.44% higher than HWA. The calibration process recommended by the Notio manufacturer reduced the differences to a non-significant 0.76%. Comparison of the WS of Notio calibrated and HWA only showed significant differences in the WS group of ≈ 60 km/h. There were no significant differences in the comparison of yaw angles groups. The reliability of Notio was worse than that of the HWA; (4) Conclusions: Notio calibrated at a speed close to its use, allows reliable and accurate calculation of WS over a wide range of yaw angles under controlled wind tunnel conditions without the presence of a cyclist and bike. However, due to the influence of WS on aerodynamic drag, small errors in WS could translate into considerable values of C_{DA} for cycling performance.

Keywords: C_{DA} ; cycling; pitot-static tube; reliability; validity; wind tunnel

1. Introduction

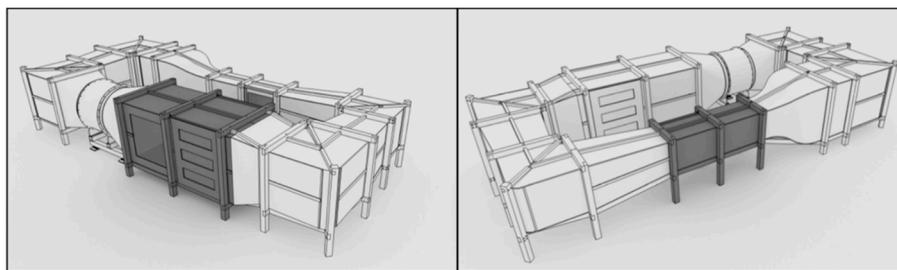
In competitive cycling, aerodynamic resistance constitutes one of the primary factors limiting cyclists' performance, especially at high speeds. Approximately 90% of the total resistance encountered by a cyclist is aerodynamic in nature [1]. Therefore, optimizing the cyclist's position and equipment to reduce this resistance is crucial for enhancing performance and efficiency during competitions.

To assess and improve aerodynamic efficiency, the drag area (C_{DA}) is utilized, representing the combination of drag coefficient and the frontal area. Typically, in cycling, the calculation of C_{DA} in field tests has relied on mathematical models that, in many cases, either disregard wind speed (WS) or depend on data from nearby meteorological stations [2,3]. Alternatively, WS can be measured at a specific point along the route using anemometers, despite these methods often assume a constant wind speed, which can introduce significant errors in C_{DA} calculations due to environmental fluctuations [4].

In this context, devices such as Notio (Argon 18; Montreal, Canada) have emerged as innovative tools designed to calculate C_{DA} in field tests more accurately and efficiently. Notio integrates multiple sensors, including a Pitot-static tube, which allows for the measurement of dynamic pressure and,

from these data, the calculation of the actual wind speed facing the cyclist. Utilizing a proprietary formula, Notio converts these measurements into $C_{D,A}$ values, providing rapid and practical information that can be used by coaches, cyclists, and sports scientists to optimize the cyclist's position and equipment configuration [5,6].

The operational principle of Notio is based on measuring pressure differentials that, according to Bernoulli's equation, are related to wind speed. The primary advantage of Notio lies in its ability to provide real-time measurements in field conditions, facilitating informed decision-making to improve aerodynamic performance.


Despite its potential, the accuracy and reliability of Notio in measuring wind speed and, consequently, in calculating $C_{D,A}$ have been subjects of debate in the scientific literature. To date, several studies have evaluated Notio's performance under field conditions with varied conclusions [2–5]. However, there is a notable lack of research that specifically examines the validity and reliability of Notio in controlled environments such as wind tunnels, where the device's capabilities can be assessed more precisely under different wind speed and yaw angle conditions.

The objective of this study is to evaluate the validity and reliability of wind speed measurements performed by Notio in comparison with a hot-wire anemometer (HWA) in a closed-circuit wind tunnel. To achieve this, tests were conducted under various wind speed and yaw angle conditions to determine Notio's accuracy in measuring airflow under controlled settings. This study focuses on evaluating Notio by comparing it to a HWA under controlled wind tunnel conditions, without the presence of a cyclist, to establish a solid foundation before proceeding to more complex field validations.

2. Materials and Methods

2.1. Experimental Procedure

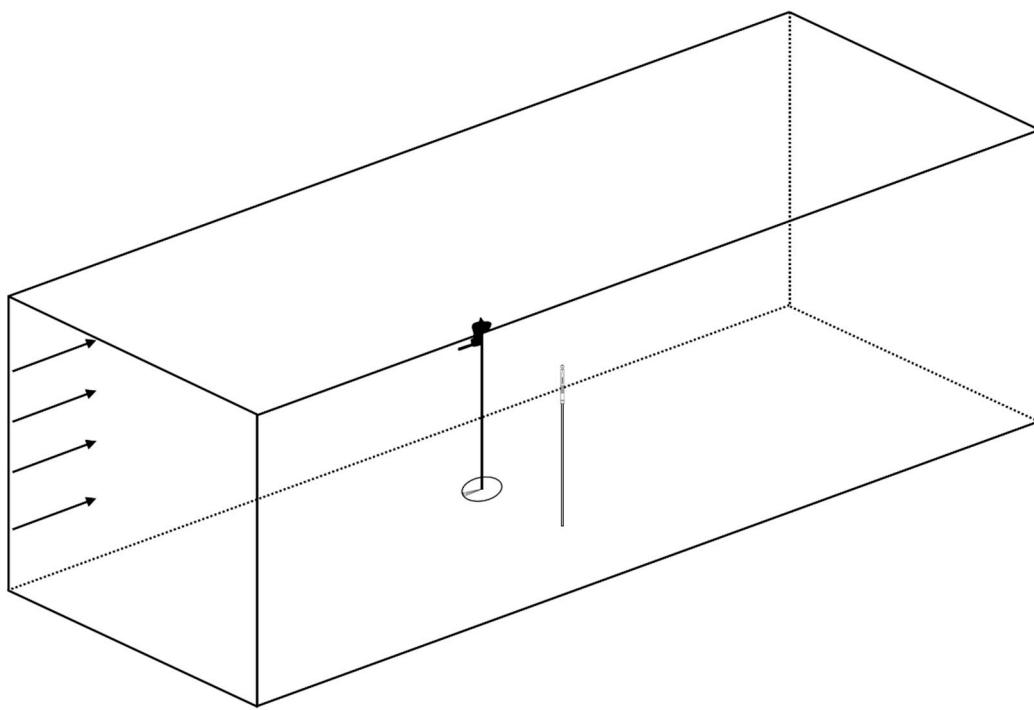

The experiment was conducted in a closed-circuit wind tunnel located at the European University of Madrid, Spain. The wind tunnel comprises two distinct test-sections: a high-speed test-section with dimensions of 0.9 meters in width, 0.9 meters in height, and 3 meters in length, capable of generating airflow velocities up to 150 km/h; and a low-speed test-section measuring 1.8 meters in width, 1.8 meters in height, and 3.8 meters in length, capable of producing airflow velocities up to 50 km/h. The wind tunnel is equipped with a 400-volt fan system controlled by specialized software (Oritia & Boreas), ensuring precise airflow generation. Previous experiments reported a turbulence intensity of 0.3% in the high-speed test-section, indicating a stable and controlled airflow environment.

Figure 1. 3D Representation of the wind tunnel, with the two test-sections shaded, the low-speed test-section on the left and the high-speed test-section on the right. Original image of the wind tunnel manual with permission (Oritia & Boreas).

Two devices were used to measure wind speed within the high-speed test-section: a hot-wire anemometer (HWA) and the Notio device. The HWA utilized in this experiment was a Kanomax Anemomaster™ 6036-CE model, which had undergone annual calibration with an accuracy of $\pm 1\%$ for the specific unit used. It recorded wind speed (WS) using a telescopic one-dimensional probe inserted into the high-speed test-section through a designated access port. Notio was securely attached to a metal support located at the base of the high-speed test-section, ensuring stability and

consistent positioning throughout the experiment. Both devices were centrally positioned relative to the side walls. The HWA and Notio were placed in the test-section, with both devices positioned centered at Z-axis 150 cm from the beginning, centered at Y-axis 45 cm above the floor, and in the X-axis at 30 cm from the wall with 30 cm separation between devices. The blockage ratio of both devices was below 0.2%. The experimental arrangement was designed to mitigate wall effect and interference between devices to ensure measurement integrity [8,9].

Figure 3. Scaled graphical representation of the arrangement of Notio and hot-wire anemometer in the high-speed test-section of the wind tunnel.

A total of 60 recordings were made in the high-speed test-section, each lasting 30 seconds. These recordings were divided into three equal blocks of 20 recordings each, covering four different fan power settings corresponding to average wind speeds (WS) as measured by the HWA: 21% fan power resulting in 29.52 ± 0.29 km/h, 28% fan power resulting in 39.59 ± 0.25 km/h, 37% fan power resulting in 50.42 ± 0.23 km/h, and 44% fan power resulting in 60.45 ± 0.29 km/h. Each wind speed setting was further tested at five different yaw angles (0° , 5° , 10° , 15° , and 20°) using a 360-degree protractor to precisely adjust the orientation of Notio relative to the airflow. Each recording commenced once the airflow achieved a stable velocity and continued for a duration of 30 seconds.

2.2. WS Calculation by Notio

Notio calculates wind speed using an integrated Pitot-static tube. Airflow enters through the front hole of the Pitot-static tube until stagnation occurs, and the total pressure is recorded. Through the side holes, which are not aligned with the direction of the wind, the static pressure is recorded. A pressure transducer is responsible for converting mechanical signals into electrical signals to be processed by the device. The dynamic pressure is calculated following:

$$q = P_0 - P_s \quad (1)$$

where q is dynamic pressure, P_0 is total pressure, and P_s is static pressure. A specific version of the Golden Cheetah software (v3.5/1.16.1), developed by Notio Technologies Inc., processes the dynamic pressure, temperature, humidity, and atmospheric pressure data recorded from Notio to calculate WS shown in the summary of each record reported by the software, based on the Bernoulli principle defined as:

$$q = \frac{1}{2} \rho U_{\infty}^2 \quad (2)$$

and resolve it like:

$$U_{\infty} = \sqrt{\frac{2q}{\rho}} \quad (3)$$

where ρ is air density, and U_{∞} is free stream velocity [10].

2.3. WS Calculation by HWA

A HWA calculates the WS indirectly based on the principle of convection cooling. It works by heating a thin wire to a constant temperature and then measuring the amount of electrical current needed to keep it at that temperature while the wind cools it. When the wind passes over the hot wire, it carries away the heat and requires more energy to keep it at the same temperature. By measuring the amount of energy necessary to maintain the constant temperature of the wire, the WS can be determined due to the correlation established between the electrical current supplied and the WS, based on the empirical relationship developed through the calibration of the anemometer using air flows of known velocities [11].

Figure 2. Notio on the left and hot-wire anemometer Kanomax Anemomaster 6036-CE on the right. Original images from the manufacturer manuals with permission.

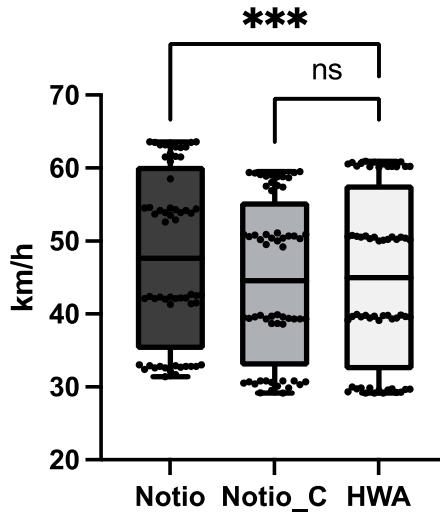
2.4. Notio Calibration Process

Notio requires calibration before each use for correct operation, a process also common in Pitot-static tube systems installed on aircraft. This process corrects for possible pressure measurement errors due to local flow disturbances [12]. This is a one-point calibration process, in which Notio takes a reference value, from which it compares its initial reading and adjusts its calculation for subsequent measurements. Notio is a device designed for use in the field, so in this case the calibration process, although based on the same principle of the reference value as an adjustment point for subsequent measurements, differs from the usual calibration process.

To calibrate Notio in a field test with the bike, a ride of between 1600 and 3000 meters must be completed in the case of performing the test on an indoor track, or two rides of the same distance mentioned, one going and one returning along the same route and consecutively, in the case of performing the procedure outdoors. The reference value in the case of the indoor procedure comes from the speed sensor installed on the bike, since in this case it assumes that there is no wind in indoor track, and therefore the wind recorded by Notio will correspond exactly with the speed of ride. For outdoor calibration, the reference value is based on the assumption that the wind experienced on the going route is equal in magnitude but opposite in direction to that on the return route, resulting in the wind speed considered by Notio being on average zero. The manufacturer recommends repeating this calibration process whenever there is a change in the cyclist's position.

with respect to Notio since the particular shape of the cyclist in each position will produce specific flow disturbances.

Notio calibration process in this experiment was based on the reference value given by the HWA. A first recording was carried out simultaneously with the Notio and the HWA in the high-speed test-section, as described in the experimental procedure, with a fan power of 21% (≈ 30 km/h), and 0° yaw angle. The WS value recorded by the HWA was setup with the Golden Cheetah software responsible for interpreting the data recorded by Notio. With this reference value, the software compares the first record and calculates the calibration factor to correct this first record and the following ones, and obtain the calibrated Notio (Notio_C) WS data.


By utilizing the HWA as a precise reference instrument under controlled, clean-air conditions, the calibration process established a reliable baseline for Notio_C. This calibration is based on the same underlying assumption as the manufacturer-recommended process, where both methods require a reference wind speed. However, in this experiment, the reference was directly obtained from the HWA measurements in a controlled environment, whereas in field calibrations, it is derived from the assumption of zero average wind speed over two consecutive sections. Extending this calibration to include cyclist-induced flow disturbances is crucial for validating Notio's performance in dynamic and variable field environments.

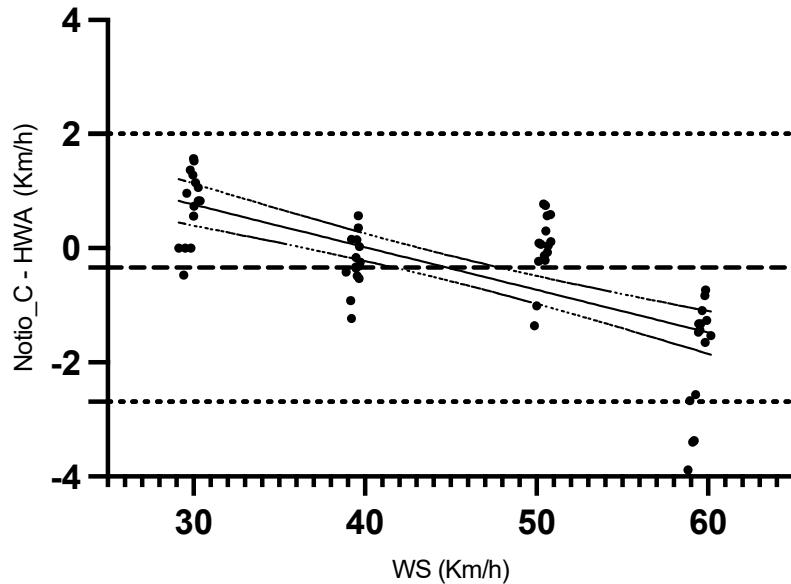
2.5. Statistical Analysis

Data are presented as Mean \pm SD. The normality and variance of each variable were checked in each of the tests that required it. A repeated measures ANOVA test was performed to study the validity WS of Notio and Notio_C against HWA. Post-hoc mean comparisons were analysed to find differences between WS of Notio_C and HWA for each group of different yaw angles and WS. The mean difference (MD) and its 95% confidence intervals (CI95), the significance value (p), as well as Cohen's d as a measure of the effect size (ES) and its CI95 were reported. Agreement WS for Notio_C with HWA was determined using a Bland Altman plot with limits of agreement (LoA) presented as a bias of $\pm 1.96 \times$ SD. The proportional bias line was drawn using a linear regression of the differences between the methods in the average of the measurements, as well as their confidence interval [13]. Absolute reliability for Notio_C and HWA was reported using the standard error of measurement (SEM) and its CI95 (SEM95). To measure relative reliability, the coefficient of variation expressed as a percentage of SEM (CV%), the intraclass correlation index (ICC), and its CI95 were used. ICC and its CI95 were calculated based on the mean score ($k = 3$), absolute agreement, and the two-way random effects model [14]. Statistical analyses were performed with specific statistical software [15] setting the alpha of significance at 0.05 with Bonferroni correction.

3. Results

Repeated measures ANOVA confirmed significant differences between WS for Notio and HWA with a MD=2.89, CI95: [2.47, 3.32], $p < 0.001$, ES=5.36, CI95: [0.21, 10.51]. No significant differences were found between Notio_C and HWA with a MD=-0.34, CI95: [-0.76, 0.08], $p = .117$, ES=-0.63, CI95: [-1.62, 0.36] (Figure 1, Table 1).

Figure 1. Comparative boxplot between Notio, Notio_C, and HWA wind speed (WS), including medians, interquartile ranges, and outliers, with statistical significance analysis: ns, non-significant; *** $p < 0.001$. Created with GraphPad Prism 10.


Table 1. Analysis of the mean wind speed registered by HWA, Notio and Notio_C.

	HWA (Km/h)	Notio (Km/h)			Notio_C (Km/h)			
		Mean \pm SD	Mean \pm SD	p-Value	ES	Mean \pm SD	p-Value	ES
Fan Power (%)	21%	29.52 \pm 0.29	32.57 \pm 0.47	<0.001***	5.65	30.28 \pm 0.59	0.101	1.41
	28%	39.59 \pm 0.25	42.11 \pm 0.42	<0.001***	4.68	39.34 \pm 0.40	1.000	-0.46
	37%	50.42 \pm 0.23	54.23 \pm 1.31	<0.001***	7.06	50.44 \pm 0.54	1.000	0.04
	44%	60.45 \pm 0.29	62.65 \pm 0.90	<0.001***	4.06	58.55 \pm 0.85	<0.001***	-3.52
Yaw Angle (°)	0 °	44.94 \pm 12.09	47.68 \pm 11.88	<0.001***	5.06	44.37 \pm 11.38	1.000	-1.06
	5 °	45.20 \pm 12.22	47.78 \pm 11.67	<0.001***	4.77	44.66 \pm 10.90	1.000	-1.01
	10 °	44.94 \pm 12.06	48.69 \pm 12.41	<0.001***	6.94	45.19 \pm 11.37	1.000	0.47
	15 °	44.95 \pm 12.08	48.03 \pm 12.08	<0.001***	5.70	44.87 \pm 11.30	1.000	-0.15
	20 °	44.95 \pm 12.09	47.28 \pm 11.94	<0.001***	4.33	44.18 \pm 11.20	0.825	-1.41

Abbreviations: SD, standard deviation; ES: Effect size. Significant differences compared to HWA: *** $p < 0.001$.

The post-hoc analysis between Notio_C and HWA for each yaw angle group did not show significant differences in any group, which supports the hypothesis that the yaw angle does not affect the WS calculation in Notio. On the other hand, a post-hoc analysis between Notio_C and HWA between the different groups of WS, revealed significant differences for the group with the highest WS (≈ 60 km/h) with a MD=-1.90, CI95: [-2.72, -1.07], $p < 0.001$, ES=-3.52, CI: [-7.77, 0.73].

Bland-Altman plot for the degree of agreement between WS of Notio_C and HWA revealed a low bias of -0.342, with a standard deviation of 1.20. LoA [-2.687, 2.003] shows that most individual differences are within this range, suggesting acceptable agreement between measurements. Regarding the proportional bias line, a non-constant systematic bias is observed, with a negative trend in the differences as the magnitude of the measured variable increases. This suggests that the discrepancies between measurements tend to widen as WS increases. These results point out an acceptable agreement between measurements, despite it is important to consider the presence of systematic biases that could be relevant in certain contexts (Figure 2).

Figure 2. Agreement between Notio_C and HWA wind speed (WS) Bland–Altman plot. Created with GraphPad Prism 10.

Finally, the analysis of the reliability of the Notio_C and the HWA, reflects low variability in both cases, although the results indicate better results for the HWA. The relative reliability for Notio_C show $CV\% = 1.02$, $ICC = 0.998$, and $CI95: [0.996, 0.999]$, and for HWA show $CV\% = 0.59$, $ICC = 1$, and $CI95: [0.999, 1.000]$. Regarding absolute reliability, Notio_C outcomes were $SEM = \pm 0.455 \text{ km/h}$ and $SEM95 = \pm 0.891 \text{ km/h}$, whilst HWA shows $SEM = \pm 0.261 \text{ km/h}$ and $SEM95 = \pm 0.511 \text{ km/h}$.

4. Discussion

To our knowledge, this is the first study to analyse the validity and reliability of the WS calculated by Notio, compared to a HWA in a wide range of WS and yaw angles. As the main finding, we observed significant differences in the WS between Notio and HWA, with the WS calculated by Notio being 6.44% higher than that calculated by HWA. Conversely, there were no significant differences between the WS of Notio_C and HWA in which case a difference of 0.76% is observed, in this case, the WS of Notio being lower than that of the HWA. In absolute terms, the WS of the Notio was higher than that of the HWA by 2.90 km/h. Carrying out the calibration process reduced the differences, in this case, Notio being 0.34 km/h lower than the HWA. The differences ranged between 0.12 and 8.17 km/h before calibration, and 1.57 and -3.88 km/h after, indicating that Notio, after the calibration process, may underestimate or overestimate the WS but with smaller differences, confirming the need to carry out the calibration process previously recommended by the manufacturer to guarantee the validity of the measurement.

About speed, Notio showed a similar error range with the HWA in the ≈ 30 , ≈ 40 , and ≈ 50 km/h groups, which was 2.04, 1.8, and 2.14 km/h respectively, but greater in the ≈ 60 km/h group, with an error of 4.61 km/h. Although the methodology used was different and the validation device they used, or its specifications are not mentioned, we find it interesting to mention the study by Van Erp et al. [16]. Our results contrast with theirs, which show that the differences between the WS calculated by Notio, and the reference device were not influenced by speed. However, they follow a very similar dynamic to those also reported in this study, by a device based also in a Pitot-static tube called Aeropod™, in which they observed that the error increased at speeds lower or higher than the calibration speed. In this sense, our data suggest that calibrating at a WS of ≈ 30 km/h will not allow us to accurately calculate the WS at ≈ 60 km/h, therefore the calibration process should be carried out at speeds close to those of the aerodynamic evaluation.

It should be noted, as already mentioned, that the calibration process in this wind tunnel experiment is specific and differs from that recommended in the CDA evaluation with bike in the

field, although it is based on the same principle. Since the reference value of Notio calibration process in this experiment was the exact WS recording of the HWA, this process could be more accurate than that performed during a field test, since the assumptions that there is no wind in an indoor track, and the average wind for the go-back outdoor calibration ride is zero, may not be met.

About the yaw angle, our results are also contradictory with what was found by Van Erp et al. [16]. In his study, Notio could not accurately calculate the WS at 4 different yaw angles from 5 to 20°. However, we did not find significant differences between the WS calculated by Notio and that calculated by the HWA for each yaw angle group from 0 to 20°. Several studies have analysed the behaviour of the Pitot tube in crosswind conditions. For example, Walchner [17] reported results for a Pitot tube with a hemispherical head design, in the same Notio shape, that at yaw angles up to 15°, only an error of 1% was measured, and less than 2% for 20°. Other authors also showed pressure coefficients close to 1 at yaw angles up to 20°, supporting this finding [18].

Concerning what has been mentioned, improving the aerodynamic position is especially relevant for events in which we compete alone, such as time trials. Due to the aerodynamic drag dependence of the WS, the aerodynamic evaluation must be performed under specific speed conditions. The mean speed of the winner of 55 time trials in 2023 in the men's professional cycling category, was greater than 50 km/h, and in 7 of them, it was greater than 55 km/h (ProCyclingStats, 2023). In addition to this average riding speed, the headwind that the cyclist may encounter must be added. In this context, the probability of reaching a yaw angle greater than 20° at a speed of 48 km/h is only 5% [19]. Therefore, our data support that Notio would be valid for an aerodynamic assessment in specific speed situations, in which it will be difficult to find yaw angles beyond 20°.

Regarding the reliability analysis, the one in which records were compared under the same conditions, Notio showed a good value with a CV% of 1.02 and an SEM of ± 0.455 km/h, although it was almost 50% worse than that shown by the HWA (CV% = 0.59, SEM of ± 0.261 km/h). Reliability in an aerodynamic evaluation process is usually a preferable factor even over precision, since the usual objective is to compare positions and materials to choose the most aerodynamic one, and not so much to know the real and precise value of the C_{DA} .

This research is not without limitations. It should be noted that the study is based on the validation of WS with Notio in a wind tunnel with a homogeneous flow, which has a limited practical application, since the stability of the flow, especially in outdoor conditions, can be affected by factors such as wind gusts, turbulence generated by natural and artificial obstacles, atmospheric variations inherent to climate and topography, and the complex particularity of the atmospheric boundary layer. This means that additional testing in an outdoor environment is essential to fully understand the response to the dynamic conditions that the Notio Pitot-static tube will face in practical use.

On the other hand, although the study is based on the analysis of WS calculated by Notio, and we assume that the Pitot-static tube data must be of key importance, we do not know the C_{DA} calculation formula and therefore, we cannot ensure the percentage of the error that a specific error in the precision and reliability of the Pitot-static tube will represent in the C_{DA} calculation. Furthermore, because energy dissipation occurs at a speed proportional to the square of the fluid speed, small error values could condition its practical application. Along these lines, it should be noted that to calculate the C_{DA} , Notio requires other internal and external sensors, so errors in these sensors will also condition the results in the C_{DA} calculation.

Moreover, the calibration conducted in this study does not account for pressure disturbances introduced by a cyclist and bike, as the calibration was performed without these elements present. In real-world applications, the presence of a cyclist affects airflow around the device, creating an overpressure zone that can influence wind speed measurements. Consequently, Notio_C derived from this calibration may not fully represent performance under typical field conditions where a cyclist is present.

5. Conclusions

According to the results, Notio can accurately calculate wind speed in a wide range of yaw angles after a calibration process under controlled conditions without the presence of a cyclist on the

bike, but there are certain limitations. The data obtained indicate the need to calibrate at speeds close to those of the aerodynamic evaluation to obtain precise data. Notio's reliability was good, but it was worse than that of the hot-wire anemometer.

In conclusion, Notio calibrated at a speed close to the used, incorporates a precise and reliable wind speed value in its CdA calculation formula. However, small errors can impact in the practical field of aerodynamic evaluation. Furthermore, the absence of information on the CdA calculation formula, as well as the possible influence of errors in other internal and external sensors necessary for its calculation, leave a margin of uncertainty regarding the percentage of error that this could represent in the determination of aerodynamic resistance. Therefore, further research is required to fully understand the capabilities and limitations of Notio in aerodynamic evaluation in cycling.

Author Contributions: Conceptualization, Manuel Ordiñana, Manuel Mateo and David Barranco; methodology, Manuel Ordiñana and Manuel Mateo; validation, Manuel Ordiñana; formal analysis, Ainoa Roldán and Manuel Ordiñana; investigation, Manuel Ordiñana; resources, Manuel Ordiñana, Manuel Mateo and David Barranco; data curation, Manuel Ordiñana; writing—original draft preparation, Manuel Ordiñana; writing—review and editing, Manuel Ordiñana and Cristina Blasco; visualization, Manuel Ordiñana; supervision, Cristina Blasco and Mikel Zabala; project administration, Manuel Ordiñana and Cristina Blasco. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Due to the particularity of the wind speed calculation process at the wind tunnel, different from the usual use of Notio, and which required a development application provided by the manufacturer, a confidentiality agreement was required for the raw data.

Acknowledgments: Special thanks to Simon Demers, and Jose Antonio Caballero, for the technical support provided.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Martin, J. C., Gardner, A. S., Barras, M., & Martin, D. T. (2006). Modeling sprint cycling using field-derived parameters and forward integration. *Medicine and Science in Sports and Exercise*, 38(3), 592–597. <https://doi.org/10.1249/01.mss.0000193560.34022.04>
2. Millour, G., Plourde-Couture, F., & Domingue, F. (2022). Cycling modelling under uncontrolled outdoor conditions using a wearable sensor and different meteorological measurement methods: <https://doi.org/10.1177/17479541221106386>. <https://doi.org/10.1177/17479541221106386>
3. Kordi, M., Galis, G., Erp, T. van, & Terra, W. (2021). Reliability and sensitivity of the Notio to quantify coefficient of drag area in elite track cyclists. *European Journal of Sport Science*, 0, 1–15. <https://doi.org/10.1080/17461391.2021.1891296>
4. Ordiñana-Pérez, M., Mateo-March, M., Monteagudo, P., Zabala, M., & Blasco-Lafarga, C. (2021). Validity of a novel device for indoor analysis of cyclists' drag area. <https://doi.org/10.1080/17461391.2021.2012264>. <https://doi.org/10.1080/17461391.2021.2012264>
5. Valenzuela, P. L., Alcalde, Y., Gil-Cabrera, J., Talavera, E., Lucia, A., & Barranco-Gil, D. (2020). Validity of a novel device for real-time analysis of cyclists' drag area. *Journal of Science and Medicine in Sport*, 23(4), 421–425. <https://doi.org/10.1016/j.jsams.2019.10.023>
6. Brownlie, L. W. (2019). Wind Tunnels: Design Considerations in Wind Tunnel Testing of Cyclists. In *Biomechanical Principles and Applications in Sports* (pp. 57–86). Springer International Publishing. https://doi.org/10.1007/978-3-030-13467-9_4
7. Carlton, J. S. (2007). Marine Propellers and Propulsion. In *Marine Propellers and Propulsion*. Elsevier. <https://doi.org/10.1016/B978-0-7506-8150-6.X5000-1>
8. Grosser, W.I. (1997). Factors Influencing Pitot Probe Centerline Displacement in a Turbulent Supersonic Boundary Layer. *NASA Technical Memorandum* 107341.
9. Stainback, P.C., & Nagabushana, K.A. (1997). Review of Hot-Wire Anemometry Techniques and the Range of their Applicability for Various Flows. In *Le Méhauté, B. (1976). The Bernoulli Equation. An Introduction to Hydrodynamics and Water Waves*, 101–115. https://doi.org/10.1007/978-3-642-85567-2_10
10. Le Méhauté, B. (1976). The Bernoulli Equation. *An Introduction to Hydrodynamics and Water Waves*, 101–115. https://doi.org/10.1007/978-3-642-85567-2_10
11. Gatski, T. B., & Bonnet, J.-P. (2009). Measurement and analysis strategies. *Compressibility, Turbulence and High Speed Flow*, 79–116. <https://doi.org/10.1016/B978-0-08-044565-6.00009-9>

12. 12. Foster, J., & Cunningham, K. (2010). A GPS-Based Pitot-Static Calibration Method Using Global Output Error Optimization. <https://doi.org/10.2514/6.2010-1350>
13. 13. Datta, D. (2017). Blandr: a Bland-Altman Method Comparison package for R. Zenodo. DOI:10.5281/zenodo.824514 <https://github.com/deepankardatta/blandr>
14. 14. Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. *Journal of Chiropractic Medicine*, 15(2), 155. <https://doi.org/10.1016/j.jcm.2016.02.012>
15. 15. The jamovi project (2023). *jamovi*. (Version 2.4) [Computer Software]. Retrieved from <https://www.jamovi.org>.
16. 16. Van Erp, T., Galis, G., & Kordi, ; Mehdi. (2021). Validity of bicycle mounted pitot tubes for real-time analysis of cyclists' drag area for outdoor testing. *Journal of Science and Cycling*. <https://www.jsc-journal.com/index.php/JSC/article/view/684>
17. 17. Walchner, O. (139). The effect of compressibility on the pressure reading of a Prandtl pitot tube at subsonic flow velocity. *NACA Technical Memorandum*, 917.
18. 18. Beck, T., Payne, G., & Heitman, T. (2010). The Aerodynamics Of The Pitot Static Tube And Its Current Role In Non Ideal Engineering Applications. *2010 Annual Conference & Exposition Proceedings*, 15.1204.1-15.1204.16. <https://doi.org/10.18260/1-2--16733>
19. 19. Cooper, K. R. (2003). Truck Aerodynamics Reborn - Lessons from the Past. In *SAE Transactions* (Vol. 112, pp. 132–142). SAE International. <https://doi.org/10.2307/44718756>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.