
Article Not peer-reviewed version

Statistical Properties of Superpositions

of Coherent Phase States with Opposite

Arguments

Miguel Citeli de Freitas and Viktor V. Dodonov *

Posted Date: 5 November 2024

doi: 10.20944/preprints202411.0277.v1

Keywords: coherent phase states; even/odd superpositions; Yurke–Stoler superpositions; squeezing; the

Mandel factor; the Robertson–Schrödinger uncertainty product

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1189985
https://sciprofiles.com/profile/829559


Article
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Abstract: We calculate the second-order moments, the Robertson–Schrödinger uncertainty product and the

Mandel factor for various superpositions of coherent phase states with opposite arguments, comparing the results

with similar superpositions of the usual (Klauder–Glauber–Sudarshan) coherent states. We discover that the

coordinate variance in the analog of even coherent states can show the most strong squeezing effect, close to the

maximal possible squeezing for the given mean photon number. On the other hand, the Robertson–Schrödinger

(RS) uncertainty product in superpositions of coherent phase states increases much slower (as function of the

mean photon number) than in superpositions of the usual coherent states. A nontrivial behavior of the Mandel

factor for small mean photon numbers is discovered in superpositions with unequal weights of two components.

An exceptional nature of the even and odd superpositions is demonstrated.

Keywords: coherent phase states; even/odd superpositions; Yurke–Stoler superpositions; squeezing; the Mandel

factor; the Robertson–Schrödinger uncertainty product

1. Introduction

Since the beginning of 1960s, one of the main tools in quantum mechanics and quantum optics is
the Klauder–Glauber–Sudarshan coherent state (CS) [1–3],

|α⟩ = exp
(
−|α|2/2

) ∞

∑
n=0

αn
√

n!
|n⟩, (1)

where the Fock state |n⟩ [4] is the eigenstate of the number operator â† â: â† â|n⟩ = n|n⟩, and α = |α|eiφ

may be an arbitrary complex number. Here, â† and â are the bosonic creation and annihilation operators
satisfying the canonical commutation relation [â, â†] = 1. The coherent state (1) is the eigenstate of the
annihilation operator â:

â|α⟩ = α|α⟩. (2)

Among numerous generalizations of the state (1) (see, e.g., reviews [5–11]), we distinguish
here the family of the coherent phase states (CPS) [12–21] (called also as “harmonious states” [22] and
“pseudothermal states” [23]),

|ε⟩ =
√

1 − |ε|2
∞

∑
n=0

εn|n⟩, ε = |ε|eiφ, |ε| < 1, (3)

introduced as eigenstates of the Susskind–Glogower exponential phase operator [24],

Ê− |ε⟩ = ε |ε⟩ , Ê− =
(

ââ†
)−1/2

â, Ê+ = Ê†
−, (4)

Ê+ |n⟩ = |n + 1⟩ , Ê− |n⟩ = (1 − δn0) |n − 1⟩ . (5)
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Another important family of quantum states, which turned out useful for many applications of
quantum mechanics and quantum information, consists of normalized superpositions of coherent
states |α⟩ and |−α⟩ of the form [7]

|Ψ⟩rα = Nrα(|α⟩+ r |−α⟩), r = |r|eiθ , N2
rα =

[
1 + |r|2 + 2Re(r)χα

]−1
, (6)

χα = ⟨−α|α⟩ = exp
(
−2|α|2

)
. (7)

The most interesting choices of parameter r are related to the values r = ±1, which correspond to the
even and odd coherent states introduced by Dodonov, Malkin and Man’ko [25]. The choice r = i was
made by Yurke and Stoler [26].

In this paper, we study the properties of analogs of states (6), where the usual coherent states are
replaced with the coherent phase states (3):

|Ψ⟩rε = Nrε(|ε⟩+ r |−ε⟩), N2
rε =

[
1 + |r|2 + 2Re(r)χε

]−1
, (8)

χε = ⟨−ε|ε⟩ = 1 − |ε|2
1 + |ε|2 . (9)

If r = exp(iθ), the normalization factor assumes the form

N2
θε =

1 + |ε|2

4
[
cos2(θ/2) + |ε|2 sin2(θ/2)

] , (10)

with the following special values:

N2
0ε =

1 + |ε|2
4

, N2
πε =

1 + |ε|2
4|ε|2 , N2

π/2,ε =
1
2

. (11)

The superpositions (6) and (8) are eigenstates of squares of the corresponding annihilation
operators:

â2 |Ψ⟩rα = α2 |Ψ⟩rα , Ê2
− |Ψ⟩rε = ε2 |Ψ⟩rε .

Even and odd superpositions of the CPS have the following expansions in the Fock basis:

|Ψ⟩1ε =
√

1 − |ε|4
∞

∑
n=0

ε2n|2n⟩, |Ψ⟩−1ε = |ε|−1
√

1 − |ε|4
∞

∑
n=0

ε2n+1|2n + 1⟩. (12)

The states (12) were considered in paper [27]. However, their statistical properties were studied in that
paper for moderate values of parameter ε only, while the most interesting features can be observed in
the limit |ε| → 1, as will be shown in the following sections. Truncated series were considered in [28],
but only for small truncation numbers.

Functions χα and χε characterize the overlaps between the wave functions with opposite ar-
guments. In the case of usual coherent states, these Gaussian functions are rather narrow and well
localized. For this reason, their scalar product decreases exponentially when the distance between two
components of the superposition increases. On the other hand, the non-Gaussian wave functions of the
coherent phase states are rather wide, so that the related overlap integral decays much more slowly as
function of parameter ε. The goal of this paper is to study, what are the physical consequences of these
differences. For example, it is known that usual coherent states have no squeezing of the canonical
position and momentum operators (we assume h̄ = 1),

x̂ =
(

â + â†
)

/
√

2, p̂ =
(

â − â†
)

/(i
√

2), (13)
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for any value of the complex parameter α. On the other hand, we discovered recently [21] that strong
squeezing is possible for the CPS with φ = π/2, when |ε| → 1. Therefore, it is interesting to know,
whether the degree of squeezing can be enhanced even more in the states (8), remembering that small
squeezing was observed in the even coherent states [29]. This question is discussed in Section 3. All
necessary formulas for the mean values, variances and covariances,

σA ≡ ⟨Â2⟩ − ⟨Â⟩2, σAB ≡ 1
2
⟨ÂB̂ + B̂Â⟩ − ⟨ÂB̂⟩,

for the pair of operators (x̂, p̂) in the states (6) and (8), are derived in Section 2.
In Section 4, we compare the Robertson–Schrödinger uncertainty relations [30,31] in the states

(6) and (8). It is known that the Heisenberg product of uncertainties attains the minimal possible
value for all usual coherent states. On the other hand, its generalization – the Robertson–Schrödinger
uncertainty combination – slowly increases logarithmically as |ε| → 1 in the CPS [21]. Therefore, it is
interesting to know the behavior of the RS uncertainty product in the superposition states.

In Section 5, we compare the Mandel factor for two families of superposition states. This factor
equals zero identically for all coherent states. On the other hand, it can be negative for usual odd
coherent states. Now, we study the dependence of this factor on ε and r in the superpositions of
coherent phase states.

2. Mean Values and Variances

The mean value of any operator Â in the superposition (8) is a sum of four terms:

⟨Â⟩rε = N2
rε

(
⟨ε| Â |ε⟩+ |r|2 ⟨−ε| Â |−ε⟩+ r ⟨ε| Â |−ε⟩+ r∗ ⟨−ε| Â |ε⟩

)
. (14)

Taking Â = â and Â = â†, we obtain the following expressions for mean values of the creation and
annihilation operators:

⟨â⟩rε = N2
rεε

(
1 − |ε|2

)[
S+1(|ε|)

(
1 − |r|2

)
+ S−1(|ε|)(r∗ − r)

]
, (15)

⟨â†⟩rε = ⟨â⟩∗rε,

S±1(|ε|) =
∞

∑
n=0

(
±|ε|2

)n√
n + 1. (16)

Mean values of the quadrature components (13) are as follows,

⟨x̂⟩rε =
√

2N2
rε

(
1 − |ε|2

)[
S+1(|ε|)

(
1 − |r|2

)
Re(ε) + 2S−1(|ε|)Im(r)Im(ε)

]
, (17)

⟨ p̂⟩rε =
√

2N2
rε

(
1 − |ε|2

)[
S+1(|ε|)

(
1 − |r|2

)
Im(ε)− 2S−1(|ε|)Im(r)Re(ε)

]
. (18)

The most simple expressions arise for the “equal weights” superpositions with |r| = 1. Then,
⟨x̂⟩rε = ⟨ p̂⟩rε = 0 if Im(r) = 0, i.e., for even and odd superpositions, for all values of ε. On the other
hand, these mean values can be nonzero for the Yurke–Stoler superpositions with r = i.

For the second-order mean values, Equation (14) leads to the following formulas:

⟨â2⟩rε = N2
rεε

2
(

1 − |ε|2
)[

S+2(|ε|)
(

1 + |r|2
)
+ S−2(|ε|)(r∗ + r)

]
, (19)

⟨â†2⟩rε = ⟨â2⟩∗rε,

S±2(|ε|) =
∞

∑
n=0

(
±|ε|2

)n√
(n + 1)(n + 2). (20)
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The mean number of quanta, ⟨â† â⟩rε, can be calculated with the aid of Equation (14) and formulas

∞

∑
n=0

xn = (1 − x)−1,
∞

∑
n=0

nxn = x
d

dx

∞

∑
n=0

xn = x(1 − x)−2.

The result is

⟨â† â⟩rε =
N2

rε|ε|2
1 − |ε|2

[
1 + |r|2 − 2Re(r)

(
1 − |ε|2
1 + |ε|2

)2]
. (21)

In particular,

⟨â† â⟩ev =
2|ε|4

1 − |ε|4 , ⟨â† â⟩od =
1 + |ε|4
1 − |ε|4 , ⟨â† â⟩YS =

|ε|2
1 − |ε|2 . (22)

Note that, as a matter of fact, three apparently different expressions in Equation (22) give the same
results in the limit |ε| → 1.

The coordinate and momentum variances in the three special cases are as follows,

σx

σp

}
ev

=
1
2
+

2|ε|4
1 − |ε|4 ± 1

2
|ε|2

(
1 − |ε|4

)
cos(2φ)[S+2(|ε|) + S−2(|ε|)], (23)

σx

σp

}
od

=
1
2
+

1 + |ε|4
1 − |ε|4 ± 1

2

(
1 − |ε|4

)
cos(2φ)[S+2(|ε|)− S−2(|ε|)], (24)

σx

σp

}
YS

=
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
−1(|ε|)

± |ε|2
(

1 − |ε|2
)

cos(2φ)
[
S+2(|ε|) +

(
1 − |ε|2

)
S2
−1(|ε|)

]
. (25)

For r = 0 we have

σx

σp

}
r=0

=
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
+1(|ε|)

± |ε|2
(

1 − |ε|2
)

cos(2φ)
[
S+2(|ε|)−

(
1 − |ε|2

)
S2
+1(|ε|)

]
. (26)

In all four special cases, the coordinate variances attain minimal values for φ = π/2. The explicit
formulas in this case are as follows,

σmin
x,ev =

1
2
+

2|ε|4
1 − |ε|4 − 1

2
|ε|2

(
1 − |ε|4

)
[S+2(|ε|) + S−2(|ε|)], (27)

σmin
x,od =

1
2
+

1 + |ε|4
1 − |ε|4 − 1

2

(
1 − |ε|4

)
[S+2(|ε|)− S−2(|ε|)], (28)

σmin
x,YS =

1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)
S+2(|ε|)− 2|ε|2

(
1 − |ε|2

)2
S2
−1(|ε|), (29)

σmin
x,r=0 =

1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)
S+2(|ε|). (30)

The following expressions are obtained for the coordinate-momentum covariance:

σev
xp =

1
2
|ε|2

(
1 − |ε|4

)
sin(2φ)[S+2(|ε|) + S−2(|ε|)], (31)
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σod
xp =

1
2

(
1 − |ε|4

)
sin(2φ)[S+2(|ε|)− S−2(|ε|)], (32)

σYS
xp = |ε|2

(
1 − |ε|2

)
sin(2φ)

[
S+2(|ε|) +

(
1 − |ε|2

)
S2
−1(|ε|)

]
, (33)

σr=0
xp = |ε|2

(
1 − |ε|2

)
sin(2φ)

[
S+2(|ε|)−

(
1 − |ε|2

)
S2
+1(|ε|)

]
. (34)

Approximate analytical expressions can be obtained for the series S±2 if one uses the expansion

√
(n + 1)(n + 2) = (n + 1)

√
1 +

1
n + 1

= (n + 1)
[

1 +
1

2(n + 1)
− 1

8(n + 1)2 + . . .
]

≈ n +
3
2
− 1

8(n + 1)
. (35)

The three-term approximate equality (35) is quite reasonable even for n = 0, and its accuracy improves
significantly for bigger values of n. Then, using the exact formula

∞

∑
n=0

xn

n + 1
= x−1

∫ x

0
dy

∞

∑
n=0

yn = − ln(1 − x)
x

,

we obtain the following approximate analytical expressions:

S±2(|ε|) =
3/2

1 ∓ |ε|2 ± |ε|2

(1 ∓ |ε|2)2 ±
ln
(
1 ∓ |ε|2

)
8|ε|2 . (36)

2.1. Usual Coherent States

For superposition (6) of usual coherent states, mean values have the same form (14), where ε is
replaced with α. In this case, all calculations can be performed explicitly, due to Equation (2) and the
known scalar product ⟨±α|α⟩ = exp

[
(±1 − 1)|α|2

]
. The following relations hold:

⟨â⟩rα = N2
rαα

[
1 − |r|2 + exp

(
−2|α|2

)
(r∗ − r)

]
, (37)

⟨â†⟩rα = ⟨â⟩∗rα,

⟨â2⟩rα = α2, ⟨â†2⟩rα = α∗2, (38)

⟨â† â⟩rα = N2
rα|α|2

[
1 + |r|2 − 2Re(r) exp

(
−2|α|2

)]
, (39)

N2
0α =

[
2
(

1 + e−2|α|2
)]−1

, N2
πα =

[
2
(

1 − e−2|α|2
)]−1

, N2
π/2,α =

1
2

, (40)

⟨â† â⟩ev = |α|2 tanh
(
|α|2

)
, ⟨â† â⟩od = |α|2 coth

(
|α|2

)
, ⟨â† â⟩YS = |α|2, (41)

σx

σp

}
ev

=
1
2
+ |α|2 tanh

(
|α|2

)
± |α|2 cos(2φ), (42)

σx

σp

}
od

=
1
2
+ |α|2 coth

(
|α|2

)
± |α|2 cos(2φ), (43)

σx

σp

}
YS

=
1
2
+ |α|2

(
1 − e−4|α|2

)
± |α|2 cos(2φ)

(
1 + e−4|α|2

)
, (44)

σev
xp = σod

xp = |α|2 sin(2φ), (45)

σYS
xp = |α|2 sin(2φ)

[
1 + exp

(
−4|α|2

)]
. (46)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 November 2024 doi:10.20944/preprints202411.0277.v1

https://doi.org/10.20944/preprints202411.0277.v1


6 of 13

3. Squeezing

Formulas for the variances of the coordinate and momentum operators obtained in Section 2 show
that the coordinate variance attains minimal values for the phase φ = π/2, both for superpositions of
usual coherent states and superpositions of coherent phase states. However, concrete minimal values
are quite different for these two kinds of superpositions.

3.1. Usual Coherent States

Equations (42)-(44) show that a moderate squeezing can be achieved for the even and Yurke–Stoler
superpositions with φ = π/2:

σev
x =

1
2
+ |α|2

[
tanh

(
|α|2

)
− 1

]
, σYS

x =
1
2
− 2|α|2e−4|α|2 . (47)

For |α| ≪ 1, a stronger squeezing is observed for the YS-superpositions. However, the minimal
absolute squeezing is attained for the even superpositions. The concrete minimal values in two
superpositions are as follows:

σev
x ||α|≈0.80 ≈ 0.2215, σYS

x

∣∣∣
|α|=1/2

=
1
2

(
1 − e−1

)
≈ 0.316.

When |α| → ∞ and φ = π/2, all coordinate variances tend to the asymptotic value 1/2. Two functions
of Equation (47) are illustrated in Figure 1.

0 1 2 3 4 5
| |2

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

=
/2

x

r = i
r = 1

Figure 1. Variances σx as functions of |α|2 in the even and YS superpositions of the usual coherent
states with φ = π/2.

3.2. Coherent Phase States

On the contrary, the coordinate variances in the superpositions of coherent phase states go to zero
when |ε| → 1 and φ = π/2. This behavior is shown in Figure 2.
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0.0 0.2 0.4 0.6 0.8 1.0
| |2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

=
/2

x

r = 1
r = 0
r = i
r = 1

0 2 4 6 8 10
n

0.0

0.1

0.2

0.3

0.4

0.5

=
/2

x

Even
Squeezed

Figure 2. Left: Variances of x̂ as functions of |ε|2 in the superpositions of the coherent phase states
with φ = π/2. Right: Variances of x̂ as functions of ⟨n̂⟩ in the even superposition of the coherent
phase states with φ = π/2, compared with the variances (50) in the ideal vacuum squeezed state. All
numeric results were obtained taking into account 10, 000 terms in series S±1 and S±2.

Equations (29) and (30) show that the minimal variance in the Yurke–Stoler superpositions is
always smaller than in the coherent phase state (when r = 0). Moreover, the squeezing in the YS-
superpositions is the strongest for small values of |ε|2, as can be seen in the first terms of the Taylor
expansions of exact formulas (23)-(26):

σr=0
x ≈ 1

2
− (

√
2 − 1)|ε|2, σev

x ≈ 1
2
−
√

2|ε|2, σYS
x ≈ 1

2
− (

√
2 + 1)|ε|2.

However, if |ε| > 1/2, the strongest squeezing is observed in the even superpositions. The
variances σmin

x,YS and σmin
x,r=0 practically coincide for the values of |ε| close to unity, because the sign-

variable series S−1(|ε|) in Equation (29) remains limited when |ε| → 1. The behavior of the minimal
variances for small differences 1 − |ε|2 can be described analytically with the aid of Equation (36). The
leading terms of asymptotical forms of all functions (27)-(30) at |ε|2 → 1 are as follows :

σmin
x,r ≈

(
1 − |ε|2

)[
−1

8
ln
(

1 − |ε|2
)
− rS

]
=

ln(1 + ⟨n̂⟩)− 8rS
8(1 + ⟨n̂⟩) , (48)

S ≡ S−2(|ε|)|ε|=1 =
1
2
− 1

8
ln(2) ≈ 0.413 ≈

√
2 − 1, r = ±1, 0. (49)

A thorough analysis and the comparison of (48) with a similar result of paper [21] for r = 0 show that
the approximation (48) is valid for extremely high values of the mean photon number ⟨n̂⟩, namely,
under the condition ln(1 + ⟨n̂⟩) ≫ 1.

Remember that the coordinate variance in the ideal pure vacuum squeezed (Gaussian) state,
σx = (1/2)e−2r with ⟨n̂⟩ = sinh2(r), as function of the mean number of quanta ⟨n̂⟩, is given by the
known formula

σ
sqz
x =

1
2

[
1 + 2⟨n̂⟩+ 2

√
⟨n̂⟩(⟨n̂⟩+ 1)

]−1
. (50)

This is the minimal possible value of σx for the fixed mean photon number ⟨n̂⟩ [8,32,33]. In the right-
hand side of Figure 2 we compare functions (27) and (50) for moderate values of the mean photon
number ⟨n̂⟩. The asymptotic form of function (50),

σ
sqz
x ≈ [4(1 + 2⟨n̂⟩)]−1 for⟨n̂⟩ ≫ 1,
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shows that the squeezing effect in the coherent phase states and their superpositions is only slightly
weaker than in the squeezed vacuum states when ⟨n̂⟩ ≫ 1.

4. The Robertson–Schrödinger Uncertainty Products

The Robertson–Schrödinger uncertainty relation has the form

D ≡ σxσp − σ2
xp ≥ 1/4. (51)

The equality D ≡ 1/4 holds for Gaussian pure states, including the usual coherent states with arbitrary
values of parameter α. Since D > 1/4 for non-Gaussian states, it is interesting to know, how this
generalized uncertainty product depends on parameters α, ε and r.

4.1. Usual Coherent States

Equations (42)-(46 result in the following expressions:

Dev = 1/4 + |α|2 tanh
(
|α|2

)
− |α|4/ cosh2

(
|α|2

)
, (52)

Dod = 1/4 + |α|2 coth
(
|α|2

)
+ |α|4/ sinh2

(
|α|2

)
, (53)

DYS = 1/4 + |α|2
(

1 − e−4|α|2
)
− 4|α|4e−4|α|2 . (54)

For |α| ≪ 1 we see a small growth:

Dev ≈ 1/4 + 2|α|8/3, DYS ≈ 1/4 + 8|α|6, Dod ≈ 9/4 + 2|α|8/45.

If |α| ≫ 1, the difference D − 1/4 grows as |α|2, with exponentially small corrections. In the most
general case, the asymptotic formula is

D ≈ 1/4 +
2|r|2|α|2
1 + |r|2 , |α| ≫ 1.

4.2. Coherent Phase States

The following expressions hold for the superpositions of coherent phase states:

Dev =

(
1
2
+

2|ε|4
1 − |ε|4

)2

− 1
4
|ε|4

(
1 − |ε|4

)2
[S+2(|ε|) + S−2(|ε|)]2, (55)

Dod =

(
1
2
+

1 + |ε|4
1 − |ε|4

)2

− 1
4

(
1 − |ε|4

)2
[S+2(|ε|)− S−2(|ε|)]2, (56)

DYS =

[
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
−1(|ε|)

]2

− |ε|4
(

1 − |ε|2
)2[

S+2(|ε|) +
(

1 − |ε|2
)

S2
−1(|ε|)

]2
, (57)

Dr=0 =

[
1
2
+

|ε|2
1 − |ε|2 − |ε|2

(
1 − |ε|2

)2
S2
+1(|ε|)

]2

− |ε|4
(

1 − |ε|2
)2[

S+2(|ε|)−
(

1 − |ε|2
)

S2
+1(|ε|)

]2
. (58)
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In Figure 3, we compare the RS uncertainty products in the superpositions of usual coherent
states and coherent phase states, plotting these quantities as functions of the argument n0 = ⟨n̂⟩r=0.
This means that n0 = |ε|2/(1 − |ε|2) in the right-hand side, whereas n0 = |α|2 in the left-hand side.

0 1 2 3 4 5
| |2

1

2

3

4

5

D

r = 1
r = i
r = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n0

0.0

0.5

1.0

1.5

2.0

2.5

D

r = 1
r = i
r = 1
r = 0

Figure 3. The Robertson–Schrödinger uncertainty product D for superpositions of coherent states (left)
and coherent phase states (right), as functions of the mean number of quanta n0 in the states with r = 0.
All numeric results were obtained taking into account 10, 000 terms in series S±1 and S±2.

All expressions, (52)-(58), do not contain the phase φ of the complex arguments α and ε. This
fact can be understood, if one takes into account the equivalence between the phase change and time
evolution. Indeed, the time evolution of states (1) and (3) of a quantum harmonic oscillator with
frequency ω is reduced to the linear evolution of phases of complex parameters α and ε: φ(t) =

φ(0) − ωt. On the other hand, the quantity D is the simplest quantum universal invariant, which
preserves its value during the time evolution governed by any quadratic one-dimensional Hamiltonian
[34,35].

Finding exact numeric values of functions Dev(|ε|) ≡ D1(|ε|) and Dod(|ε|) ≡ D−1(|ε|) is rather
difficult task, when |ε| is close to unity. Indeed, using Equations (55)-(56), one has to find the small
difference of very big numbers. The main difficulty is to calculate the slowly convergent series S+2(|ε|)
with high precision. For example, if |ε|2 = 0.99999 (i.e., ⟨n̂⟩ ≈ 105), we have tn = n|ε|2n < 0.001 if only
n > 2.2 × 106. However, an approximate asymptotical behavior of functions (55) and (56) can be easily
found, if one takes into account that a consequence of Equations (23)-(24) and (55)-(56) is the formula

D(|ε|) = σmin
x (|ε|)σmax

x (|ε|). (59)

On the other hand, for r = ±1, when ⟨x̂⟩ = ⟨ p̂⟩ = 0, we have the relations

σmin
x (|ε|) = 1

2
+ ⟨n̂⟩ −

∣∣∣⟨â2⟩
∣∣∣, σmax

x (|ε|) = 1
2
+ ⟨n̂⟩+

∣∣∣⟨â2⟩
∣∣∣. (60)

Since σmin
x (|ε|) → 0 when |ε| → 1, in this limit we can write

1
2
+ ⟨n̂⟩ ≈

∣∣∣⟨â2⟩
∣∣∣, σmax

x (|ε|) ≈ 1 + 2⟨n̂⟩.

Taking into account Equation (48), we arrive at the following asymptotic expression:

Dr(|ε|) ≈
1
4

ln(1 + ⟨n̂⟩)− 2rS, r = ±1, ln(1 + ⟨n̂⟩) ≫ 1. (61)

The difference ∆D = Dod − Dev remains finite when ⟨n̂⟩ → ∞ (contrary to the case of usual coherent
states): ∆D ≈ 4rS ≈ 1.6.
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5. The Mandel Factor

The Mandel factor [36]

Q =
σn − ⟨n̂⟩

⟨n̂⟩ =
⟨â†2 â2⟩ − ⟨â† â⟩2

⟨â† â⟩ (62)

can be easily calculated analytically, both for superpositions (6) and superpositions (8).

5.1. Usual Coherent States

For superpositions (6) we obtain

Qrα =
4Rχα|α|2
1 − R2χ2

α
, R =

2Re(r)
1 + |r|2 , (63)

where χα is defined in Equation (7). Note the (anti)symmetry property Qrα = −Q−rα. The Mandel
factor equals zero not only for the coherent states, but for their Yurke–Stoler superpositions as well.
Asymptotically, Qrα ≈ 4R|α|2 exp

(
−2|α|2

)
for |α| ≫ 1. If |α| ≪ 1, then Qrα ≈ 4R|α|2/

(
1 − R2),

provided R2 ̸= 1. For the exceptional even and odd superpositions we have another behavior:
Q±1α ≈ ±

(
1 − 2

3 |α|4
)

at |α| ≪ 1. All these features are clearly seen in the left-hand side of Figure 4.
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Figure 4. The Mandel factors of superpositions of coherent states (left) and coherent phase states
(right), as functions of the mean number of quanta n0 = |α|2 in the original coherent state (1) and
n0 = |ε|2/

(
1 − |ε|2

)
in the original coherent phase state (3), for different values of parameter r.

5.2. Coherent phase states

The general formula for superpositions (8) has the form

Qrε =
n0

[
1 + R2χ4

ε + 2Rχε

(
1 + χε + χ2

ε

)]
(1 − Rχ2

ε )(1 + Rχε)
. (64)

Here, χε was defined in Equation (9). It can be written also in terms of the mean number of quanta in
the coherent phase state

χε =
1

1 + 2n0
, n0 =

|ε|2
1 − |ε|2 . (65)

We see that Qrε = n0 (as for the thermal states), if R = 0 (in particular, for the single coherent phase
states and the Yurke–Stoler superpositions). The asymptotical behavior for n0 ≫ 1 is given by the
formula Q ≈ n0 + R/2. For n0 ≪ 1, we obtain Qev ≈ 1 + 2n2

0 if R = 1, while Qod ≈ −1 + 4n2
0 if
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R = −1. If |R| ̸= 1, the Mandel factor goes to zero when n0 → 0. However, its behavior is different for
positive and negative values of parameter R. If Im(r) = 0 and |r| ̸= 1, then,

Qrε ≈ n0

[
2
(

1 + r
1 − r

)2
−

(
1 − r
1 + r

)2
]

, n0 ≪ 1. (66)

Illustrations of the function Qrε(n0) are given in the right-hand side of Figure 4.

6. Conclusions

We have compared the most popular measures of “non-classicality” – the degree of squeezing
and the Mandel factor – in two families of quantum superposition states. The strongest squeezing can
be observed in the even superpositions. In the case of coherent phase states, the minimal quadrature
variance goes to zero in all three basic kinds of superpositions: even, odd and Yurke–Stoler ones, when
the mean number of quanta goes to infinity. For small mean numbers of quanta, the squeezing effect is
stronger for the Yurke–Stoler superpositions, both for the usual and coherent phase states.

Significant differencies are observed also in the behavior of the Mandel factor. In the case of usual
coherent states, the type of statistics (sub- or super-Poissonian) does not depend on the mean photon
number in the initial coherent state n0, and the Q-factor tends to zero with an exponential accuracy
when n0 → ∞, for all superpositions. On the other hand, the sub-Poissonian statistics of superpositions
of the coherent phase states is observed for odd superpositions with small mean photon numbers.
For high mean photon numbers, the statistics is super-Poissonian for all kinds of superpositions. It
is interesting that the difference Qev − Qod tends to the nonzero (unit) value if n0 → ∞. In this limit,
Q ∼ n0, almost as in the thermal quantum states. Another interesting feature of the Q-factor is that
this factor tends to zero when α → 0 or ε → 0 for all superpositions, except for two distinguished
special cases: Q(0) = ±1 for r = ±1. If the coefficient r is close to ±1, the functions Qr(α) or Qr(ε)

rapidly become very close to the corresponding exceptional functions Q±1(α) or Q±1(ε). If r is a pure
imaginary number, the photon statistics in superpositions coincides with that of the initial coherent
states (or coherent phase states).

In the case of superpositions of usual coherent states, each component is described by the
Gaussian wave function. It is known that the Robertson–Schrödinger uncertainty product does not
depend on the argument α for all Gaussian states. However, this product increases approximately
as ⟨n̂⟩ = |α|2 in the case of superpositions with |α|2 ≫ 1. On the other hand, the RS uncertainty
product in superpositions of coherent phase states (where each component is non-Gaussian) grows
much more slowly (approximately logarithmically) as the function of the mean number of quanta
⟨n̂⟩ ∼

(
1 − |ε|2

)−1.
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