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Abstract: Purpose: This study investigates radiomics efficacy in post-surgical traumatic spinal cord 

injury (SCI), overcoming MRI limitations from metal artifacts to enhance diagnosis, severity 

assessment, and lesion characterization for prognosis and therapy guidance. Background: 

Traumatic spinal cord injury (SCI) causes severe neurological deficits. While MRI allows qualitative 

injury evaluation, standard imaging alone has limitations for precise SCI diagnosis, severity 

stratification, and pathology characterization needed to guide prognosis and therapy. Radiomics 

enables quantitative tissue phenotyping by extracting a high-dimensional set of descriptive texture 

features from medical images. However, the efficacy of postoperative radiomic quantification in the 

presence of metal-induced MRI artifacts from spinal instrumentation has yet to be fully explored. 

Methods: 50 healthy controls and 12 SCI patients post-stabilization surgery underwent 3D multi-

spectral MRI. Automated spinal cord segmentation was followed by radiomic feature extraction. 

Supervised machine learning categorized SCI versus controls, injury severity, and lesion location 

relative to instrumentation. Results: Radiomics differentiated SCI patients (Matthews correlation 

coefficient (MCC) 0.97; accuracy 1.0), categorized injury severity (MCC: 0.95; ACC: 0.98) and 

localized lesions (MCC: 0.85; ACC: 0.90). Combined T1 and T2 features outperformed individual 

modalities across tasks with gradient boosting models showing highest efficacy. Conclusion: The 

radiomic framework achieved excellent performance, differentiating SCI from controls and 

accurately categorizing injury severity. The ability to reliably quantify SCI severity and localization 

could potentially inform diagnosis, prognosis, and guide therapy. Further research is warranted to 

validate radiomic SCI biomarkers and explore clinical integration. 
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1. Introduction 

Traumatic spinal cord injury (SCI) is a devastating condition affecting millions of individuals 

worldwide. SCI profoundly impacts physical, psychological, and socioeconomic well-being [1]. In 

the United States alone, approximately 17,800 new SCI cases occur annually [2]. SCI can damage 

axons, neurons, glia, and blood vessels, resulting in temporary or permanent sensory and motor 

deficits below the lesion level [3]. Most SCIs occur at cervical levels, with common causes being motor 

vehicle collisions, falls, violence, and sports activities [2]. 

Magnetic resonance imaging (MRI) is the preferred modality for visualizing the spinal cord and 

soft tissues [4]. Conventional MRI protocols enable cord compression, signal changes, edema, 

hemorrhage, and morphologic alterations to be detected after injury. However, qualitative image 

evaluation has limitations in providing microstructural and functional details needed to guide SCI 

prognosis and management [5]. 

Quantitative MRI techniques like diffusion tensor imaging, magnetization transfer, and 

functional MRI have demonstrated potential for extracting precise biomarkers of post-traumatic cord 

integrity and function [6]. Still, these methods probe specific physiological phenomena in isolation. 

Radiomics offers a more holistic approach by extracting multiple descriptive features from medical 
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images through high-throughput data characterization [7]. Radiomic methods have shown promise 

for prognosis in oncology [8]. Recently, radiomic techniques have been explored in spinal cord 

studies. Okimatsu et al. developed a radiomic model using T2*-weighted MRI and machine learning 

to predict neurological outcomes after acute cervical SCI [9]. However, a key challenge is that SCI 

frequently requires surgical stabilization involving the implantation of metallic instrumentation. The 

hardware can produce artifacts on conventional postoperative MRI [10] that disrupt quantitative 

radiomic analyses. 

This study aimed to implement a radiomic modeling approach to analyze MRI of the 

instrumented spinal cord in SCI subjects. Multi-spectral imaging sequences were leveraged to 

suppress metal artifacts and thus enable unobstructed radiomic feature extraction at instrumented 

levels [11]. We hypothesized that radiomic signatures could reliably categorize SCI severity and 

lesion location. Successfully quantifying MRI traits in instrumented cords could ultimately enable 

monitoring of traumatic changes to inform SCI diagnosis and therapeutic regimens. 

2. Materials and Methods 

Reporting and analysis in this study followed the CheckList for EvaluAtion of Radiomics 

Research (CLEAR) documentation standard focusing on repeatability, reproducibility, and 

transparency of radiomic studies [12]. 

2.1. Study Cohorts 

This study involved 12 subjects with traumatic SCI who underwent MRI scans 1-14 months 

(mean 7.08 ± 4.03) following surgical stabilization at cervical levels using metallic instrumentation. 

SCI severity was graded using the American Spinal Injury Association (ASIA) Impairment Scale 

(AIS). The study also included 50 healthy controls with no SCI or cord disorders history. Informed 

consent was obtained from all participants per our Institutional Review Board protocol. Table 1 

summarizes the cohort demographics. 

Table 1. Characteristics of the study cohorts. 

Cohorts Gender Count Age BMI ASIA: A ASIA: B ASIA: C ASIA: D 

Healthy Female 25 47.52 ± 15.23 27.22 ± 7.18 0 0 0 0 

 Male 26 48.50 ± 16.92 27.84 ± 4.67 0 0 0 0 

 Total 51 48.02 ± 15.96 27.54 ± 5.98 0 0 0 0 

SCI Female 6 59.50 ± 18.62 25.57 ± 5.90 0 1 2 3 

 Male 6 48.50 ± 21.95 23.52 ± 2.68 2 1 1 2 

 Total 12 54.00 ± 20.24 24.54 ± 4.50 2 2 3 5 

Imaging was performed at 3T (GE Signa Premier) using a 21-channel neurovascular coil. Multi-

spectral 3D fast spin echo MRI was acquired to suppress metal artifacts [11]. Isotropic 1.2 mm 

resolution T1 and T2-weighted volumes were obtained with 8 spectral bins. Imaging parameters were 

TR/TE: T1 - 750/8 ms, T2 - 2100/60 ms, ARC 2x2 acceleration. 

2.2. Image Analysis 

The spinal cord was automatically segmented on T1 and T2 volumes using the Spinal Cord 

Toolbox deep learning model [13], followed by refinements to handle residual artifacts (Figure 1) 

[14]. Radiomic feature extraction was performed within cord segmentation using PyRadiomics [15]. 

A total of 1374 features describing intensity, shape, and texture patterns were generated from original 

and filtered images, including (wavelet, square, square root, logarithm, exponential, gradient, and 

local binary pattern). 
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Figure 1. The flowchart depicts the processing pipeline for segmenting the spinal cord as suggested 

in [14]. First, N4 bias field correction is applied to the images to remove shading. Then, the SCT deep 

learning model segments the spinal cord individually on T1 and T2 volumes. However, these 

segmentations exhibit intermittent failures caused by metal implant artifacts. To mitigate these 

failures, the T1 data is registered to the T2 space. Then, a radial basis function algorithm integrates the 

T1 and T2 segmentations, thereby correcting the intermittent failures. Finally, the improved 

segmentation is used by SCT to label the vertebral levels automatically. 

2.3. Classification Framework 

The radiomic feature sets were input into a supervised machine-learning pipeline to differentiate 

SCI subjects from controls and categorize injury severity and cord location relative to the injury 

site. The dataset was divided into training (70%), validation (15%), and testing (15%) subsets. An 

automated modeling framework (H2O AutoML) evaluated various classifiers (random forest, 

XGBoost, neural networks, etc.) using 5-fold cross-validation on the training data [16]. The best model 

for each target was selected, and performance was assessed on the independent test set. 

Three classification tasks were: 1) Differentiating SCI cases from healthy controls, 2) SCI severity 

(severe AIS A-B vs. non-severe AIS C-D), and 3) Lesion zone (above, at, or below instrumentation 

level). For each target, models were trained using T1, T2, or combined T1+T2 radiomic features to 

compare performance. Evaluation metrics were accuracy, Matthew’s correlation coefficient (MCC), 

F1-score, and the area under the ROC (receiver operating characteristic) curve (AUC). 

3. Results 

Figure 2 depicts sample T1 and T2 weighted MRI images and the segmented cord on an 

instrumented slice. 

 

Figure 2. Sagittal (a) T2-weighted and (b) T1-weighted 3D-MSI MRI images of an instrumented 

damaged spinal cord. Axial sections, reformatted at the level of the dashed green line from (a) and 

(b), are shown in (c) and (d) respectively. The spinal cord is outlined in red in all images. 

As shown in Figure 3, a combined T1 and T2 feature set achieved strong performance in 

discriminating between healthy controls and SCI patients, with 0.97 MCC, 0.98 F1 score, 1.00 

Accuracy, and 1.00 AUC. For predicting injury severity, the T1+T2 model again achieved robust 

performance with 0.95 MCC, 0.98 F1 score, 0.98 Accuracy, and 0.99 AUC. The T2 model achieved 0.86 
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MCC and 0.94 Accuracy. For lesion zone classification, the T1+T2 model performed best with 0.85 

MCC, 0.90 F1 score, 0.90 Accuracy, and 0.98 AUC. The T2 model achieved 0.81 MCC and 0.88 

Accuracy. 

 

Figure 3. Comparison of accuracy, F1 score, area under the curve (AUC-ROC), and mean per-class 

error across radiomic classification tasks using T1, T2, and combined T1/T2 feature sets. The tasks 

include categorizing cohorts into healthy or spinal cord injury (SCI) groups, determining injury 

severity levels, and distinguishing between cord zones relative to the injury site. 

Gradient boosting machine (GBM) models achieved the top performance for most tasks. The 

only exception was the zone classification task using T1 features, for which XGBoost was optimal. 

Overall, the combined T1+T2 models outperformed individual modalities across tasks. The 

models demonstrated excellent discrimination for SCI vs. controls and good predictive performance 

for injury severity. Results were strong but comparatively lower for the more challenging 3-class zone 

classification task. 

4. Discussion 

This study demonstrates the potential of a radiomic modeling approach for instrumented spinal 

cord MRI analysis in traumatic SCI. A key advance was the use of multi-spectral imaging to suppress 

instrumentation artifacts that can distort quantitative feature extraction. Radiomic SCI 

characterization could offer advantages over qualitative evaluation alone or standard 

diffusion/functional MRI methods that assess specific microstructural or physiological properties in 

isolation. The high-throughput radiomic feature set provides a more comprehensive phenotypic 

profiling of overall cord tissue traits linked to injury. 

The radiomic framework reliably differentiated severe and non-severe SCI categories, achieving 

robust classification performance. This ability to determine injury severity, which has significant 

implications for prognosis and therapy, demonstrates clinical utility. 

While global accuracy metrics were relatively high across tasks, lower MCC and F1 scores imply 

some degree of inter-class imbalance likely exists in the dataset. This imbalance means majority 

classes were more successfully predicted than minority classes. Techniques such as oversampling of 

minority classes or cost-sensitive learning could address this and improve MCC and F1 metrics. 

Additionally, discrimination power was weaker for more nuanced tasks like severity level or subtle 

zone differences. These findings warrant focused efforts on feature engineering and model tuning 

targeting MCC and F1 improvements. 

When assessing the advantages of combined T1 and T2 features versus prolonged scan times, the 

MCC is particularly informative in the presence of class imbalance. For cohort differentiation, the 
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MCC increase from 0.92 to 0.97 with combined features is substantial. However, the 0.92 baseline 

already indicates robust predictive power. In efficiency-focused clinical settings, marginal T1+T2 

benefits may not outweigh longer scans, especially for resource optimization. 

For severity classification, the MCC rose slightly from 0.86 to 0.95 with combined features. While 

showing an increase, the 0.86 T2 baseline is respectable. The slight absolute MCC increase may have 

limited utility depending on clinical use. T2 could suffice when efficiency is critical and acceptable 

severity discrimination is achievable. However, for applications where severity subtleties carry high 

stakes, the T1+T2 approach may provide value despite a longer scan time. 

For multiclass zone classification, the more substantial MCC boost from 0.81 to 0.85 with T1+T2 

features could justify extra scan time. While context-dependent, this degree of performance lift may 

warrant dual-acquisition protocols. 

In summary, T1+T2 improved performance metrics across tasks. However, clinical value versus 

efficiency tradeoffs depends on the classification specifics and performance requirements. 

Further feature engineering or integrating other imaging modalities could refine model 

performance. More extensive longitudinal studies are essential to fully explore clinical utility. 

Overall, radiomic modeling shows promise for quantitative SCI MRI, potentially guiding diagnosis 

and management. 
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