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Abstract: Purpose: This study investigates radiomics efficacy in post-surgical traumatic spinal cord
injury (SCI), overcoming MRI limitations from metal artifacts to enhance diagnosis, severity
assessment, and lesion characterization for prognosis and therapy guidance. Background:
Traumatic spinal cord injury (SCI) causes severe neurological deficits. While MRI allows qualitative
injury evaluation, standard imaging alone has limitations for precise SCI diagnosis, severity
stratification, and pathology characterization needed to guide prognosis and therapy. Radiomics
enables quantitative tissue phenotyping by extracting a high-dimensional set of descriptive texture
features from medical images. However, the efficacy of postoperative radiomic quantification in the
presence of metal-induced MRI artifacts from spinal instrumentation has yet to be fully explored.
Methods: 50 healthy controls and 12 SCI patients post-stabilization surgery underwent 3D multi-
spectral MRI. Automated spinal cord segmentation was followed by radiomic feature extraction.
Supervised machine learning categorized SCI versus controls, injury severity, and lesion location
relative to instrumentation. Results: Radiomics differentiated SCI patients (Matthews correlation
coefficient (MCC) 0.97; accuracy 1.0), categorized injury severity (MCC: 0.95; ACC: 0.98) and
localized lesions (MCC: 0.85; ACC: 0.90). Combined T: and T2 features outperformed individual
modalities across tasks with gradient boosting models showing highest efficacy. Conclusion: The
radiomic framework achieved excellent performance, differentiating SCI from controls and
accurately categorizing injury severity. The ability to reliably quantify SCI severity and localization
could potentially inform diagnosis, prognosis, and guide therapy. Further research is warranted to
validate radiomic SCI biomarkers and explore clinical integration.

Keywords: Radiomics; Spinal cord Injury; Multi-Spectral Imaging; Magnetic Resonance Imaging;
Metal artefact

1. Introduction

Traumatic spinal cord injury (SCI) is a devastating condition affecting millions of individuals
worldwide. SCI profoundly impacts physical, psychological, and socioeconomic well-being [1]. In
the United States alone, approximately 17,800 new SCI cases occur annually [2]. SCI can damage
axons, neurons, glia, and blood vessels, resulting in temporary or permanent sensory and motor
deficits below the lesion level [3]. Most SCIs occur at cervical levels, with common causes being motor
vehicle collisions, falls, violence, and sports activities [2].

Magnetic resonance imaging (MRI) is the preferred modality for visualizing the spinal cord and
soft tissues [4]. Conventional MRI protocols enable cord compression, signal changes, edema,
hemorrhage, and morphologic alterations to be detected after injury. However, qualitative image
evaluation has limitations in providing microstructural and functional details needed to guide SCI
prognosis and management [5].

Quantitative MRI techniques like diffusion tensor imaging, magnetization transfer, and
functional MRI have demonstrated potential for extracting precise biomarkers of post-traumatic cord
integrity and function [6]. Still, these methods probe specific physiological phenomena in isolation.
Radiomics offers a more holistic approach by extracting multiple descriptive features from medical
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images through high-throughput data characterization [7]. Radiomic methods have shown promise
for prognosis in oncology [8]. Recently, radiomic techniques have been explored in spinal cord
studies. Okimatsu et al. developed a radiomic model using T2"-weighted MRI and machine learning
to predict neurological outcomes after acute cervical SCI [9]. However, a key challenge is that SCI
frequently requires surgical stabilization involving the implantation of metallic instrumentation. The
hardware can produce artifacts on conventional postoperative MRI [10] that disrupt quantitative
radiomic analyses.

This study aimed to implement a radiomic modeling approach to analyze MRI of the
instrumented spinal cord in SCI subjects. Multi-spectral imaging sequences were leveraged to
suppress metal artifacts and thus enable unobstructed radiomic feature extraction at instrumented
levels [11]. We hypothesized that radiomic signatures could reliably categorize SCI severity and
lesion location. Successfully quantifying MRI traits in instrumented cords could ultimately enable
monitoring of traumatic changes to inform SCI diagnosis and therapeutic regimens.

2. Materials and Methods

Reporting and analysis in this study followed the CheckList for EvaluAtion of Radiomics
Research (CLEAR) documentation standard focusing on repeatability, reproducibility, and
transparency of radiomic studies [12].

2.1. Study Cohorts

This study involved 12 subjects with traumatic SCI who underwent MRI scans 1-14 months
(mean 7.08 + 4.03) following surgical stabilization at cervical levels using metallic instrumentation.
SCI severity was graded using the American Spinal Injury Association (ASIA) Impairment Scale
(AIS). The study also included 50 healthy controls with no SCI or cord disorders history. Informed
consent was obtained from all participants per our Institutional Review Board protocol. Table 1
summarizes the cohort demographics.

Table 1. Characteristics of the study cohorts.

Cohorts Gender Count Age BMI ASIA: A ASIA: B ASIA: C ASIA:D
Healthy  Female 25  47.52+15.232722+7.18 0 0 0 0
Male 26 48.50+16.92 27.84 +4.67 0 0 0 0
Total 51  48.02+15.96 27.54 +5.98 0 0 0 0
SCI Female 6 59.50 + 18.62 25.57 + 5.90 0 1 2 3
Male 6 48.50 + 21.95 23.52 + 2.68 2 1 1 2
Total 12 54.00 +£20.24 24.54 +4.50 2 2 3 5

Imaging was performed at 3T (GE Signa Premier) using a 21-channel neurovascular coil. Multi-
spectral 3D fast spin echo MRI was acquired to suppress metal artifacts [11]. Isotropic 1.2 mm
resolution T1 and T>-weighted volumes were obtained with 8 spectral bins. Imaging parameters were
TR/TE: T1 - 750/8 ms, T2 - 2100/60 ms, ARC 2x2 acceleration.

2.2. Image Analysis

The spinal cord was automatically segmented on T: and T2 volumes using the Spinal Cord
Toolbox deep learning model [13], followed by refinements to handle residual artifacts (Figure 1)
[14]. Radiomic feature extraction was performed within cord segmentation using PyRadiomics [15].
A total of 1374 features describing intensity, shape, and texture patterns were generated from original
and filtered images, including (wavelet, square, square root, logarithm, exponential, gradient, and
local binary pattern).
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Figure 1. The flowchart depicts the processing pipeline for segmenting the spinal cord as suggested
in [14]. First, N4 bias field correction is applied to the images to remove shading. Then, the SCT deep
learning model segments the spinal cord individually on T: and T2 volumes. However, these

segmentations exhibit intermittent failures caused by metal implant artifacts. To mitigate these
failures, the T1 data is registered to the T2 space. Then, a radial basis function algorithm integrates the
T1 and T: segmentations, thereby correcting the intermittent failures. Finally, the improved
segmentation is used by SCT to label the vertebral levels automatically.

2.3. Classification Framework

The radiomic feature sets were input into a supervised machine-learning pipeline to differentiate

SCI subjects from controls and categorize injury severity and cord location relative to the injury
site. The dataset was divided into training (70%), validation (15%), and testing (15%) subsets. An
automated modeling framework (H20 AutoML) evaluated various classifiers (random forest,
XGBoost, neural networks, etc.) using 5-fold cross-validation on the training data [16]. The best model
for each target was selected, and performance was assessed on the independent test set.

Three classification tasks were: 1) Differentiating SCI cases from healthy controls, 2) SCI severity
(severe AIS A-B vs. non-severe AIS C-D), and 3) Lesion zone (above, at, or below instrumentation
level). For each target, models were trained using Ti, T2, or combined Ti+T2 radiomic features to
compare performance. Evaluation metrics were accuracy, Matthew’s correlation coefficient (MCC),
F1-score, and the area under the ROC (receiver operating characteristic) curve (AUC).

3. Results

Figure 2 depicts sample T: and T2 weighted MRI images and the segmented cord on an
instrumented slice.

Figure 2. Sagittal (a) T>-weighted and (b) Ti-weighted 3D-MSI MRI images of an instrumented
damaged spinal cord. Axial sections, reformatted at the level of the dashed green line from (a) and
(b), are shown in (c) and (d) respectively. The spinal cord is outlined in red in all images.

As shown in Figure 3, a combined Ti1 and T2 feature set achieved strong performance in
discriminating between healthy controls and SCI patients, with 0.97 MCC, 0.98 F1 score, 1.00
Accuracy, and 1.00 AUC. For predicting injury severity, the Ti+T2 model again achieved robust
performance with 0.95 MCC, 0.98 F1 score, 0.98 Accuracy, and 0.99 AUC. The T> model achieved 0.86
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MCC and 0.94 Accuracy. For lesion zone classification, the Ti+T> model performed best with 0.85
MCC, 0.90 F1 score, 0.90 Accuracy, and 0.98 AUC. The T2 model achieved 0.81 MCC and 0.88
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Figure 3. Comparison of accuracy, F1 score, area under the curve (AUC-ROC), and mean per-class
error across radiomic classification tasks using Ti, T2, and combined Ti/T2 feature sets. The tasks
include categorizing cohorts into healthy or spinal cord injury (SCI) groups, determining injury
severity levels, and distinguishing between cord zones relative to the injury site.

Gradient boosting machine (GBM) models achieved the top performance for most tasks. The
only exception was the zone classification task using T1 features, for which XGBoost was optimal.

Overall, the combined Ti+T2 models outperformed individual modalities across tasks. The
models demonstrated excellent discrimination for SCI vs. controls and good predictive performance
for injury severity. Results were strong but comparatively lower for the more challenging 3-class zone
classification task.

4. Discussion

This study demonstrates the potential of a radiomic modeling approach for instrumented spinal
cord MRI analysis in traumatic SCI. A key advance was the use of multi-spectral imaging to suppress
instrumentation artifacts that can distort quantitative feature extraction. Radiomic SCI
characterization could offer advantages over qualitative evaluation alone or standard
diffusion/functional MRI methods that assess specific microstructural or physiological properties in
isolation. The high-throughput radiomic feature set provides a more comprehensive phenotypic
profiling of overall cord tissue traits linked to injury.

The radiomic framework reliably differentiated severe and non-severe SCI categories, achieving
robust classification performance. This ability to determine injury severity, which has significant
implications for prognosis and therapy, demonstrates clinical utility.

While global accuracy metrics were relatively high across tasks, lower MCC and F1 scores imply
some degree of inter-class imbalance likely exists in the dataset. This imbalance means majority
classes were more successfully predicted than minority classes. Techniques such as oversampling of
minority classes or cost-sensitive learning could address this and improve MCC and F1 metrics.
Additionally, discrimination power was weaker for more nuanced tasks like severity level or subtle
zone differences. These findings warrant focused efforts on feature engineering and model tuning
targeting MCC and F1 improvements.

When assessing the advantages of combined T: and T2 features versus prolonged scan times, the
MCC is particularly informative in the presence of class imbalance. For cohort differentiation, the
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MCC increase from 0.92 to 0.97 with combined features is substantial. However, the 0.92 baseline
already indicates robust predictive power. In efficiency-focused clinical settings, marginal Ti+T>
benefits may not outweigh longer scans, especially for resource optimization.

For severity classification, the MCC rose slightly from 0.86 to 0.95 with combined features. While
showing an increase, the 0.86 T2 baseline is respectable. The slight absolute MCC increase may have
limited utility depending on clinical use. T2 could suffice when efficiency is critical and acceptable
severity discrimination is achievable. However, for applications where severity subtleties carry high
stakes, the T1+T2 approach may provide value despite a longer scan time.

For multiclass zone classification, the more substantial MCC boost from 0.81 to 0.85 with T1+T:
features could justify extra scan time. While context-dependent, this degree of performance lift may
warrant dual-acquisition protocols.

In summary, Ti+T2 improved performance metrics across tasks. However, clinical value versus
efficiency tradeoffs depends on the classification specifics and performance requirements.

Further feature engineering or integrating other imaging modalities could refine model
performance. More extensive longitudinal studies are essential to fully explore clinical utility.
Overall, radiomic modeling shows promise for quantitative SCI MRI, potentially guiding diagnosis
and management.
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