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Abstract: Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining operations,
affecting tool life, surface quality, and overall process efficiency. While ML models trained on simulated data have
shown promise in detecting chatter, their real-world applicability remains uncertain due to discrepancies between
simulated and actual machining environments. This study bridges the gap by validating a ML-based chatter
detection system using both simulated and real-world data. We apply a Random Forest classification model
trained on over 140,000 simulated machining datasets, incorporating techniques like Operational Modal Analysis
(OMA), Receptance Coupling Substructure Analysis (RCSA), and Transfer Learning (TL) to adapt the model for
real-world operational data. The model is validated against 1,600 real-world machining datasets, achieving an
accuracy of 86.1%, with strong precision and recall scores. Our results demonstrate the model’s robustness and
potential for practical implementation in industrial settings, highlighting challenges such as sensor noise and
variability in machining conditions. This work advances the use of predictive analytics in machining processes,

offering a data-driven solution to improve manufacturing efficiency through more reliable chatter detection.

Keywords: real world; predictive analytics; vibration analysis; chatter; stability; additive manufacturing

1. Introduction

Chatter, a self-excited vibration phenomenon occurring during machining processes, poses
significant challenges to manufacturing efficiency and product quality [1,2]. It manifests as unwanted
oscillations between the cutting tool and the workpiece, leading to poor surface finishes, dimensional
inaccuracies, increased tool wear, and potential damage to machine components [3]. Detecting and
mitigating chatter is crucial for maintaining high precision and productivity in modern machining
operations.

Traditional methods for chatter detection have relied on analytical models and signal processing
techniques, which often require extensive domain knowledge and are limited by the assumptions
inherent in their formulations [4]. These methods may not generalize well across different machining
setups or accommodate the variability present in real-world operations [5].

In recent years, machine learning (ML) has emerged as a powerful tool for chatter detection,
offering data-driven approaches that can learn complex patterns from vast amounts of data [6]. ML
models, such as Random Forest classifiers and neural networks, have shown promise in identifying
chatter by analyzing vibration signals and other sensor data [7]. These models can adapt to different
machining conditions and provide real-time monitoring capabilities, enhancing predictive maintenance
strategies [8].

In our previous work [9], we developed a Random Forest classifier trained on extensive sim-
ulated machining datasets to predict chatter occurrences. The model demonstrated high accuracy

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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in simulation environments, indicating its potential for effective chatter detection. Building upon
this foundation, we enhanced the model by incorporating additional simulated data and advanced
modeling techniques in [10], further improving its predictive performance.

However, models trained solely on simulated data may not fully capture the complexities and
variabilities of real-world machining processes. Factors such as sensor noise, environmental conditions,
and machine-specific characteristics can affect the performance of these models when applied outside
the simulated environment [11]. Therefore, it is essential to validate and adapt these models using
real-world data to ensure their practical applicability and robustness in operational settings.

This study aims to bridge the gap between simulation and practice by applying the previously
developed models to real-world machining datasets. By evaluating the models’ performance on
actual vibration data collected from operational milling machines, we seek to assess their effectiveness,
identify challenges in transitioning from simulated to real-world data, and provide insights into
enhancing model robustness for practical applications.

1.1. Previous Work

In our prior research, we focused on developing ML models for chatter detection in machining
processes using simulated data. In [9], we introduced a Random Forest classifier trained on a compre-
hensive dataset generated from simulations of milling operations. The simulated data captured various
machining conditions, including different spindle speeds, feed rates, and depths of cut, providing a
rich environment for the model to learn the complex patterns associated with chatter occurrences.

The initial model demonstrated promising results, achieving high accuracy in predicting chatter
within the simulated environment. The use of Random Forests allowed us to effectively handle
high-dimensional feature spaces and provided insights into feature importance, which is crucial for
understanding the factors contributing to chatter [12].

Building upon this foundation, our subsequent study [10] expanded the dataset to include over
140,000 simulated instances and incorporated advanced modeling techniques such as Operational
Modal Analysis (OMA), Transfer Learning (TL), and Receptance Coupling Substructure Analysis
(RCSA). The integration of OMA enabled the extraction of modal parameters from the system’s
operational responses, enhancing the model’s ability to capture the dynamic behavior of the machining
process [13]. TL was employed to improve the model’s adaptability to new and unseen machining
conditions, addressing the challenge of varying operational environments [14]. RCSA provided a
deeper understanding of the dynamic interactions within the tool-holder assembly, contributing to
more accurate predictions of machining stability [15].

The enhanced model exhibited substantial improvements in predictive accuracy and robustness,
particularly in scenarios involving complex machining conditions. However, both studies were
conducted using simulated data, which, while comprehensive, may not fully represent the variability
and unpredictability inherent in real-world machining processes.

Transitioning from simulation to real-world applications presents challenges due to differences
in data distributions, noise levels, and unmodeled dynamics [11]. Models trained exclusively on
simulated data may experience performance degradation when applied to operational environments
where factors such as sensor noise, machine wear, and environmental conditions introduce additional
complexity [16].

Recognizing these limitations, the current study aims to validate the models developed in our
previous work using real-world machining data. By applying the models to actual vibration signals
collected from operational milling machines, we seek to assess their practical applicability, identify
any performance gaps, and refine the models to enhance their robustness in real-world settings.

1.2. Problem Statement

While our previous studies have demonstrated the potential of ML models, specifically Random
Forest classifiers, in predicting chatter using simulated data [9,10], a critical gap remains in validating
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these models with real-world machining data. Simulated datasets, despite their controlled condi-
tions and comprehensive coverage of various machining scenarios, may not fully encapsulate the
complexities and uncertainties inherent in actual machining environments [11].

Data collected from operational machining processes are characterized by factors such as sensor
noise, machine tool wear, environmental variations, and inconsistencies in material properties [8].
These factors introduce discrepancies between simulated and real-world data distributions, which
can adversely affect the performance of models trained exclusively on simulations [16]. Additionally,
unmodeled dynamics and unforeseen interactions in physical systems may lead to challenges that are
not present or are oversimplified in simulations [17].

The transition from simulated to real-world data poses several challenges:

1. Data Discrepancies: Differences in data distributions between simulated and real-world datasets
can lead to reduced model performance due to issues like covariate shift and sample selection
bias [18].

2. Sensor Noise and Data Quality: Real-world data are susceptible to various types of noise and
artifacts that are typically absent in simulated data, necessitating advanced preprocessing and
noise reduction techniques [19].

3. Feature Relevance: Features that are significant in simulated environments may not hold the
same importance in real-world settings, requiring reevaluation of feature selection and extraction
methods [20].

4. Model Generalization: Ensuring that the model generalizes well to unseen real-world data is
essential for practical applicability, highlighting the need for model adaptation and validation
strategies [14].

Addressing these challenges is crucial for the successful deployment of chatter detection models in
industrial settings. Without validation on real-world data, the models’ effectiveness remains uncertain,
limiting their practical utility. Therefore, there is a pressing need to evaluate the performance of our
previously developed models using actual machining data and to refine them as necessary to enhance
their robustness and generalizability in operational environments.

This study seeks to fill this gap by:

*  Collecting and processing 1,600 real-world machining datasets encompassing a variety of opera-
tional conditions.

¢ Applying the previously trained models to these datasets to assess their predictive performance.

e Identifying discrepancies between simulated and real-world data and their impact on model
accuracy.

*  Proposing solutions to address these discrepancies, including model adaptation techniques and
enhanced feature extraction methods.

By tackling these challenges, we aim to bridge the gap between simulation and reality, providing
insights into the practical applicability of ML models for chatter detection and contributing to the
advancement of predictive maintenance in machining processes.

1.3. Objectives

The primary objective of this study is to validate and assess the practical applicability of ML mod-
els developed using simulated machining data when applied to real-world machining environments.
Specifically, we aim to:

1. Apply Existing Models to Real-World Data: Utilize the Random Forest classifiers previously
developed in our work [9,10] to predict chatter occurrences using a newly collected dataset of
1,600 real-world machining operations.
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2. Evaluate Model Performance: Assess the predictive accuracy, precision, recall, F1-score, and
AUC-ROC of the models when applied to real-world data, and compare these results with the

performance achieved on simulated data.
3. Identify and Analyze Discrepancies: Investigate any discrepancies in model performance be-

tween simulated and real-world data, analyzing factors such as sensor noise, data variability, and
differences in feature distributions.

4.  Enhance Model Robustness: Propose and implement strategies to improve the models’ robust-
ness and generalizability in real-world applications. This may include advanced data preprocess-
ing techniques, feature engineering, or model adaptation methods such as domain adaptation
[21].

5. Provide Practical Insights: Offer insights into the challenges and considerations involved in transi-
tioning ML models from simulated to operational environments, contributing to the development
of more reliable chatter detection systems in the machining industry.

By achieving these objectives, this study seeks to bridge the gap between simulation and practice,
enhancing the reliability of ML models for chatter detection in real-world machining processes. The
outcomes are expected to inform best practices for deploying predictive models in industrial settings,
ultimately contributing to improved manufacturing efficiency and product quality.

1.4. Contributions

This study makes several key contributions to the field of machining chatter detection and
predictive maintenance:

1. Validation of Simulation-Trained Models on Real-World Data: We provide a comprehensive
evaluation of ML models trained on simulated machining data when applied to real-world
machining operations. This validation assesses the models’ effectiveness in practical settings,
addressing a significant gap in existing research [22].

2. Analysis of Transition Challenges from Simulation to Reality: By identifying and analyzing the
discrepancies between simulated and real-world data, we shed light on the challenges inherent in
transferring models across domains. This includes addressing issues related to data distribution
differences, noise levels, and feature relevance [23].

3. Enhancement of Model Robustness through Adaptation Techniques: We propose and im-
plement strategies to improve the robustness and generalizability of the models in real-world
applications. This includes the use of advanced data preprocessing, feature engineering, and
model adaptation methods to mitigate the impact of domain discrepancies [24].

4. Practical Insights for Industrial Implementation: The findings offer valuable insights for prac-
titioners in the machining industry, providing guidance on deploying ML models for chatter
detection in operational environments. This contributes to the development of more reliable and
efficient predictive maintenance systems [25].

5. Contribution to Machine Learning Methodologies: From a methodological perspective, the
study advances the understanding of how ML models can be adapted and validated across
different data domains, contributing to the broader field of TL and domain adaptation in industrial
applications [26].

By achieving these contributions, the study not only demonstrates the practical applicability of
simulation-trained models but also provides a framework for future research and development in the
field of machining process monitoring and control.

2. Literature Review

2.1. Chatter Detection in Machining

Chatter adversely affects surface finish, dimensional accuracy, tool life, and overall productivity
[27]. The detection and mitigation of chatter have been subjects of extensive research over the past
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several decades. Traditional methods for chatter detection primarily involve analytical and signal
processing techniques applied to real-world data collected during machining operations.

Early approaches to chatter detection focused on stability analysis using analytical models based
on machining dynamics [1]. The regenerative chatter theory introduced by Tobias and Fishwick [28]
provided a foundational understanding of how vibrations from previous cutting passes influence
current ones, leading to instability. Tlusty [29] further developed methods to predict stability lobes,
enabling the selection of cutting parameters that avoid chatter.

Signal processing techniques have been widely used to detect chatter by analyzing vibration
signals from sensors mounted on machine tools. Methods such as time-domain analysis, frequency-
domain analysis, and time-frequency analysis have been employed to identify chatter signatures [2].
For instance, Fourier Transform (FT) and Short-Time Fourier Transform (STFT) have been utilized to
observe changes in the frequency spectrum indicative of chatter onset [30]. Wavelet Transform (WT)
methods have also been applied to capture transient features of chatter in the time-frequency domain
[31].

However, these traditional methods often require expert knowledge to interpret signals and may
not generalize well across different machining conditions or machine tools [32]. The complexity and
variability of real-world machining environments pose challenges for these approaches, limiting their
effectiveness in industrial applications.

Recent advancements have seen the emergence of ML techniques as powerful tools for chatter
detection. ML models can learn complex patterns from large datasets, making them well-suited to
handle the non-linear and stochastic nature of chatter phenomena [33]. Supervised learning algorithms,
such as Support Vector Machines (SVM) [34] and Artificial Neural Networks (ANN) [8], have been
applied to classify machining states and predict chatter occurrences based on features extracted from
sensor data.

Deep learning models, including Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), have also been explored for their ability to automatically extract hierarchical features
from raw data [35]. These models have demonstrated improved performance in chatter detection
tasks, particularly when dealing with large and complex datasets [36].

Despite the promise of ML methods, challenges remain in their application to real-world ma-
chining data. Issues such as data scarcity, imbalance, noise, and variability can affect model training
and performance [37]. Moreover, models trained on specific machines or conditions may not gener-
alize well to other settings, necessitating strategies like TL and domain adaptation to enhance their
applicability [14].

This study builds upon this body of work by applying ML models developed using simulated
data to real-world machining environments. By addressing the challenges associated with transitioning
from simulation to reality, we aim to contribute to the advancement of chatter detection methodologies
and their practical implementation in industry.

2.2. Machine Learning in Machining Processes

The application of ML in machining processes has gained significant attention in recent years,
driven by the increasing availability of data and advancements in computational capabilities [6]. ML
techniques offer powerful tools for modeling complex, non-linear relationships inherent in machining
operations, enabling improved process monitoring, fault diagnosis, and predictive maintenance [38].

2.2.1. Supervised Learning Methods

Supervised learning algorithms have been widely used for tool condition monitoring and fault
diagnosis in machining. Support Vector Machines (SVM) have been employed to classify tool wear
states based on features extracted from vibration signals, acoustic emissions, and cutting forces [39].
Decision Trees and Random Forests have also been applied to predict surface roughness and tool wear,
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leveraging their ability to handle high-dimensional data and provide insights into feature importance
[40].

Artificial Neural Networks (ANN) have been utilized for modeling and prediction tasks in
machining processes due to their capacity to approximate complex functions [41]. For instance, ANNs
have been trained to predict cutting forces, surface finish, and dimensional accuracy based on input
parameters such as spindle speed, feed rate, and depth of cut [42].

2.2.2. Unsupervised Learning and Clustering

Unsupervised learning methods, including clustering algorithms like K-means and hierarchical
clustering, have been used to detect anomalies and patterns in machining data without the need for
labeled datasets [43]. These techniques facilitate the identification of novel fault conditions and the
segmentation of machining states based on similarities in data features [44].

2.2.3. Deep Learning Approaches

Deep learning, a subset of ML involving neural networks with multiple layers, has shown promise
in automatically extracting hierarchical features from raw sensor data [45]. Convolutional Neural
Networks (CNN) have been applied to time-series data for tool condition monitoring, achieving higher
accuracy compared to traditional feature-based methods [46]. Recurrent Neural Networks (RNN),
particularly Long Short-Term Memory (LSTM) networks, have been effective in modeling temporal
dependencies in sequential data, improving predictions of tool wear progression [47].

Autoencoders and Generative Adversarial Networks (GAN) have been explored for unsuper-
vised feature learning and anomaly detection in machining processes [48]. These models can learn
compressed representations of data, highlighting essential features that contribute to fault detection
and process optimization.

2.2.4. Challenges and Considerations

Despite the advancements, several challenges persist in applying ML to machining processes.
Data quality and availability are critical issues; acquiring sufficient labeled data for supervised learning
can be difficult due to the cost and time associated with experiments [49]. Additionally, variability in
machining conditions and equipment can affect model generalization, necessitating strategies such as
TL and domain adaptation [50].

The interpretability of complex models, particularly deep learning networks, is another concern,
as understanding the decision-making process is important for gaining trust in industrial applications
[51]. Efforts are being made to develop explainable Al techniques to address this issue.

2.2.5. Application to Chatter Detection

In the context of chatter detection, ML models have been applied to classify stable and unstable
cutting conditions. Features extracted from vibration signals, such as statistical measures, frequency
components, and wavelet coefficients, serve as inputs to classifiers like SVM, ANN, and Random
Forests [52]. Deep learning models have also been employed to automatically learn features relevant
to chatter from raw sensor data, enhancing detection accuracy [53].

Our previous studies [9,10] contribute to this body of work by developing ML models using
simulated data for chatter prediction. The current study extends this research by applying these models
to real-world machining data, addressing the challenges of model transferability and generalization.

2.3. Simulation vs. Real-World Data

Simulated data play a vital role in machining research, providing a controlled environment
to develop and test models for chatter detection and machining stability [2]. Through simulations,
researchers can systematically vary machining parameters and study their effects without the costs
and risks associated with physical experiments [8].
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However, transitioning models developed on simulated data to real-world applications introduces
challenges due to inherent differences between simulated and actual machining data [11]. Real-world
data are influenced by factors such as sensor noise, environmental variability, machine wear, and
unmodeled dynamics, which are often not fully captured in simulations [19].

One significant difference is the presence of measurement noise and disturbances in real-world
data [8]. Real sensors are subject to limitations in accuracy and are affected by external factors, leading
to noisy data that can obscure important patterns necessary for accurate chatter detection [37].

Moreover, real-world machining processes involve complex interactions and variability that are
difficult to model entirely in simulations [2]. Factors such as tool wear, material inconsistencies, and
temperature fluctuations can significantly affect the process and are often simplified in simulated
environments [8].

The discrepancies between simulated and real-world data can result in differences in data dis-
tributions, feature importance, and ultimately, model performance [18]. Models trained exclusively
on simulated data may not generalize well to real-world scenarios due to domain shift, where the
statistical properties of the training data differ from those of the application environment [14].

To address these challenges, techniques such as TL and domain adaptation have been proposed to
enhance model transferability between domains [26]. These methods aim to adjust models to account
for differences in data distributions, improving their performance on real-world data [11].

In this study, we focus on applying ML models developed on simulated data to real-world machin-
ing datasets, exploring the impact of domain discrepancies on model performance, and investigating
strategies to enhance model robustness and adaptability in practical applications.

2.4. Gap Identification

Despite significant advancements in the application of ML techniques for machining process
monitoring and chatter detection, a critical gap exists in the validation of simulation-trained models
using real-world machining data. As discussed in previous sections, many studies have developed
models based on simulated data or controlled laboratory experiments, demonstrating promising
results in predicting machining stability and detecting chatter [9,10,53].

However, these models often face challenges when applied to real-world industrial environments.
Factors such as sensor noise, machine tool variability, environmental conditions, and unmodeled
dynamics introduce complexities that are not fully captured in simulated datasets [11,37]. The discrep-
ancies between simulated and actual machining data can lead to reduced model performance, limiting
the practical applicability of these predictive models [18].

Currently, there is a paucity of empirical studies that:

1. Systematically Evaluate Model Transferability: Few studies have systematically assessed how
models trained on simulated data perform when applied to real-world machining operations,
identifying the factors that contribute to performance degradation.

2. Address Domain Discrepancies: Limited research has been conducted on developing and
implementing strategies to mitigate the impact of domain discrepancies between simulated and
real-world data in the context of machining processes.

3. Provide Practical Implementation Guidelines: There is a need for comprehensive guidelines and
best practices for adapting and deploying simulation-trained ML models in industrial settings for
chatter detection and machining process monitoring.

This gap hinders the advancement of smart manufacturing initiatives and the adoption of ad-
vanced predictive maintenance strategies in the machining industry. By addressing this gap, re-
searchers and practitioners can enhance the reliability and robustness of ML models, facilitating their
integration into real-world manufacturing processes and contributing to improved productivity and
product quality.
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Therefore, this study aims to bridge this gap by validating the performance of ML models devel-
oped using simulated data on real-world machining datasets, analyzing the challenges encountered,
and proposing solutions to enhance model robustness and applicability in industrial environments.

3. Methodology

3.1. Real-World Data Collection

To validate the ML models developed in our previous studies, we collected real-world machining
data using a custom-built three-axis CNC milling machine. The machine was equipped with a Marposs
MEMS (Micro-Electro-Mechanical Systems) vibration sensor for high-fidelity data acquisition. An
image of the experimental setup is shown in Figure 1.

T —

B = I ol T

Figure 1. Three-axis CNC milling machine equipped with a Marposs MEMS vibration sensor.

The CNC milling machine was designed to perform precise machining operations necessary
for data collection. It features three linear axes (X, Y, and Z) with high-precision ball screws and
linear guides, ensuring accurate and repeatable movements. The spindle is capable of variable speeds
ranging from 1,000 to 16,000 RPM, allowing for a wide range of cutting conditions.

3.1.1. Sensor Integration and Data Acquisition

A Marposs MEMS vibration sensor was installed on the spindle housing to capture vibrational
responses during machining. The sensor provides high-resolution measurements of acceleration in
three axes, enabling the detection of subtle vibrations associated with chatter phenomena. The sensor
specifications include a measurement range of +16 g and a frequency bandwidth up to 6 kHz.

Data acquisition was performed using a high-speed data acquisition (DAQ) system interfaced
with the CNC controller. The DAQ system sampled the vibration signals at a rate of 20 kHz to ensure
adequate capture of the dynamic events associated with chatter. The vibration data were synchronized
with machining parameters such as spindle speed, feed rate, and depth of cut, which were logged by
the CNC controller.

3.1.2. Machining Operations and Data Sampling

A comprehensive dataset comprising 1,600 individual machining runs was collected to facilitate
robust model validation. The dataset encompasses the following variables:

. Materials: Two distinct materials were machined:

- 6061 Aluminum: Known for its machinability and versatility.
— 304 Stainless Steel: Selected for its hardness and resistance to wear.
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¢ Tool Configurations: Machining was performed using tool heads with varying cutting teeth:

— 2 Cutting Teeth: Representative of standard tool heads.
— 4 Cutting Teeth: Employed to study the impact of increased cutting edges on chatter dynam-

ics.

e Machining Parameters:

—  Spindle Speed: Varied systematically between 8,000 rpm and 10,000 rpm to observe the

effects on chatter occurrence.
—  Cutting Depth: Adjusted within the range of 1.0 mm to 2.0 mm to analyze its influence on

vibration patterns.

For each combination of parameters, a milling pass was performed, and the vibration data were
recorded. In total, 1,600 datasets were collected, encompassing various operational conditions to
ensure a comprehensive representation of real-world machining scenarios.

To induce chatter, certain parameter combinations were intentionally selected based on the
stability lobe diagram for the tool-workpiece setup, which was determined experimentally prior
to data collection. This approach allowed for the collection of data representing both chatter and
chatter-free conditions.

3.2. Data Preprocessing

Following the collection of raw vibration data from the machining experiments, a meticulous data
preprocessing workflow was implemented to prepare the data for feature extraction and subsequent
model application. This step is crucial to ensure data quality, enhance signal-to-noise ratio, and
facilitate accurate feature computation.

3.2.1. Noise Reduction

Real-world vibration data are susceptible to various sources of noise, including electrical interfer-
ence, environmental vibrations, and sensor imperfections [19]. To mitigate the impact of noise on the
analysis, the following steps were taken:

¢  Low-Pass Filtering: A Butterworth low-pass filter of order 4 with a cutoff frequency of 5 kHz
was applied to the vibration signals. This filter effectively attenuates high-frequency noise while

preserving the essential characteristics of the machining vibrations [54].
e  Baseline Correction: Signal drift and offset were corrected by removing the mean value from

each signal segment, centering the data around zero.
¢ Outlier Removal: Abnormal spikes and dropouts were detected using a median absolute devia-

tion (MAD) method and replaced using linear interpolation to maintain signal continuity.

3.2.2. Signal Segmentation

The continuous vibration data were segmented into individual machining passes corresponding
to the different combinations of operational parameters. Accurate segmentation is essential to align
the vibration data with the specific machining conditions under which they were collected [55]. The
segmentation was performed based on timestamps and spindle activation signals logged by the CNC
controller.

3.2.3. Normalization

To ensure consistency across the datasets and improve the robustness of the ML models, the
segmented signals were normalized:

¢ Amplitude Normalization: Each signal segment was scaled to have unit variance, removing

amplitude variations due to differing cutting conditions.
¢  Length Normalization: Signal segments were resampled to a fixed length using interpolation
techniques to accommodate variations in machining pass durations.
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3.2.4. Feature Enhancement

To enhance the discriminatory power of the features extracted from the vibration signals, addi-
tional preprocessing steps were implemented:

¢  Windowing: Overlapping Hanning windows were applied to each signal segment to reduce
spectral leakage during frequency analysis [56].

*  Detrending: Linear trends were removed from the signal segments to eliminate low-frequency
components unrelated to the machining process.

3.2.5. Data Labeling

Each data segment was labeled as either chatter or stable based on visual inspection and analysis of
the vibration signals, sound recordings, and surface finish of the machined parts. The labeling process
involved:

¢  Vibration Analysis: High amplitude, irregular vibrations in the signal were indicative of chatter
conditions.

®  Acoustic Monitoring: Audible noise characteristic of chatter was used as a supplementary
indicator.

¢  Surface Inspection: Visual examination of the workpiece surface for chatter marks and patterns.

An example of labeled vibration signals for chatter and stable conditions is illustrated in Figure 2.

Vibration Signal under Stable Machining Conditions Vibration Signal under Chatter Conditions
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Figure 2. Stable machining conditions (left): The signal appears as a smooth, decaying sinusoidal wave.
Chatter conditions (right): The signal becomes irregular, with additional higher frequency components
causing more intense vibrations.

3.2.6. Data Partitioning

The preprocessed and labeled dataset was partitioned for the tuned model training and evaluation:

*  Training Set: 10% of the data used for model training.
e  Validation Set: 40% of the data used for hyperparameter tuning and model selection.
e  Test Set: 50% of the data reserved for final evaluation of tuned model performance.

This distribution ensures that the majority of the data is reserved for unbiased evaluation while
maintaining sufficient data for training and validation. Stratified sampling was employed to maintain
the proportion of chatter and stable instances across the subsets, addressing potential class imbalance
issues [57].
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3.3. Feature Extraction

Feature extraction is a critical step in transforming the preprocessed vibration data into a suitable
format for ML models. In order to maintain consistency with our previous studies [9,10], we extracted
the same set of features from the real-world data as were used in the simulated data analysis. This
approach ensures that the models trained and validated in prior work can be directly applied to the
new datasets without modification.

3.3.1. Time-Series Feature Extraction Using TSFresh

We employed the TSFresh (Time Series Feature Extraction based on Scalable Hypothesis tests)
library to extract a comprehensive set of time-series features from the vibration data [58]. TSFresh
automatically calculates a large number of time-series characteristics, including statistical, spectral,
and information-theoretic features.

The key features extracted using TSFresh include:

*  Ratio value number to time series length: The number of unique values versus the total number
of values.

e  Benford correlation: How often a value starts with a certain number, in analytics overwhelmingly
a value is most likely to start with a 1.

¢  Change quant f-agg “var” False qh 1.0 ql 0.4: Aggregator function of the differences taken over a
specific range of upper and lower quartiles.

e  FFT coefficient attr “imag” coeff 55: Fast Fourier Transform of the imaginary part of the data
with a coefficient of 55.

*  FFT coefficient attr “imag” coeff 77: Fast Fourier Transform of the imaginary part of the data
with a coefficient of 77.

*  Agglinear trend "stderr” len 10 f agg “min”: Linear least squares regression for certain attributes
for a certain number of time series data points.

¢  Permutation entropy dimension 471: Counts the frequency of permutation and returns the
appropriate entropy, this is a complexity measure for time series data.

3.3.2. Fast Fourier Transform (FFT) Features

As in the previous studies, we extracted features from the frequency domain using the Fast
Fourier Transform (FFT). The FFT converts the time-domain vibration signals into the frequency
domain, revealing the dominant frequency components associated with machining dynamics.

The FFT features include:

1.  Acceleration Peak (g):

peak = max(a) 1)
2. Acceleration RMS (g):
1 n
RMS = [~} af )
i=1
3. Crest Factor:
Crest = Zpeak 3)
RMS
4.  Standard Deviation (g):
Ly
std= | —— ) (x;—%)? 4)
N-1.35
5. Velocity RMS (in/s):
AZ

VRms = > 5)
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6. Displacement RMS (in):
Deve — (-2 ®)
7. Peak Frequency (Hz):
Highest Peak Frequency (Hz) (7)
8.  RMS (g) from 1 to 65 Hz:
RMS;_¢5 = (®)
9.  RMS (g) from 65 to 300 Hz:
RMSe5-300 = )
10. RMS (g) from 300 to 6000 Hz:
RMS500-6000 = (10)

3.3.3. Operational Modal Analysis Features

OMA was used to extract modal parameters from the vibration data, consistent with our previous
approach [13].
The OMA features include:

e Natural Frequencies: The inherent frequencies at which a system naturally oscillates when not
subjected to external forces or damping. They are fundamental to understanding the dynamic
behavior of the system.

e  Damping Ratios: Quantitative measures of a system’s damping characteristics, indicating how
quickly oscillations diminish after a disturbance. They describe the rate at which vibrational
energy is dissipated.

*  Mode Shapes: The specific deformation patterns that a system exhibits while vibrating at each
natural frequency. Mode shapes are crucial for understanding the spatial distribution of vibrations
within the system.

*  Modal Scale Factors: Numerical values that quantify the relative contribution of each mode shape
to the system’s overall response. They indicate how much each mode influences the system’s
vibration.

*  Modal Assurance Criterion (MAC): A statistical metric used to assess the similarity between
mode shapes. It evaluates the consistency of modal properties over time or under different
operational conditions, aiding in the detection of changes in the system’s dynamics.

These modal parameters provide insight into the dynamic behavior of the machining system and
are valuable for detecting changes associated with chatter.

3.3.4. Receptance Coupling Substructure Analysis (RCSA) Features

Receptance Coupling Substructure Analysis was utilized to model the dynamic interaction
between the tool and the machine structure [15]. The features derived from RCSA include:

e  Frequency Response Functions (FRFs): Functions that describe how different components of
a system respond to inputs at varying frequencies. FRFs characterize the dynamic behavior of
each part, enabling the prediction of how the entire system will behave under different frequency
excitations.
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¢  Coupling Stiffness and Mass Matrices: Mathematical matrices representing the dynamic con-
nections between various parts of a machine or structure. They define how components interact
through stiffness and mass properties, which are essential for understanding the overall dynamic

behavior when assembling different parts.

e Assembled System FRFs: The Frequency Response Functions of the complete system, obtained
by combining the individual FRFs of each component using Receptance Coupling Substructure
Analysis (RCSA). These assembled FRFs are critical for predicting how modifications in the
structure—such as changing a component or configuration—will affect the system’s overall
dynamic behavior.

*  Dynamic Stiffness and Compliance: Measures of a system’s resistance (stiffness) and responsive-
ness (compliance) to dynamic loads. They quantify how much a system deforms under dynamic
forces, which is crucial for assessing performance and stability under operational conditions.

3.3.5. Transfer Learning Application

TL was employed to adapt the models trained on simulated data to the real-world data [14].
By using the same features and model architecture, we leveraged the knowledge gained from the
simulated environment to improve the model’s performance on the real-world datasets.

3.3.6. Final Feature Set

The final feature set mirrors that of our previous work and includes:

¢ 10 FFT features.

e 7 Time-Series features extracted using TSFresh.

¢ OMA features (natural frequencies, damping ratios).
*  RCSA features (coupled FRFs, dynamic stiffness).

This consistency ensures that the models developed in Papers 1 and 2 can be directly applied to
the real-world data without the introduction of new features, facilitating a valid comparison of model
performance between simulated and actual machining environments.

3.4. Model Application

In this section, we describe how the previously developed ML models from our prior studies
[9,10] were applied to the real-world machining datasets collected. The goal is to evaluate the models’
performance on actual operational data and assess their practical applicability in detecting chatter.

3.4.1. Model Loading and Preparation

The Random Forest classifiers developed in the previous studies were implemented using
Python’s scikit-learn library [59]. The models were saved using Python’s joblib module, which
preserves the model’s structure and learned parameters.

To apply the models to the new datasets, the following steps were taken:

¢  Environment Setup: A consistent computational environment was established, ensuring that the
same software versions and dependencies used during the initial model training were maintained.

*  Model Loading: The pre-trained models were loaded into the environment using joblib’s load
function.

e  Feature Alignment: The feature set extracted from the real-world data was verified to match the
feature set used during model training. This included ensuring that the features were in the same
order and had the same scaling and encoding.

3.4.2. Testing Procedure

The testing procedure involved applying the loaded models to the preprocessed and feature-
extracted real-world data. This followed two paths, the steps are as follows:
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1. Scenario 1: The real-world dataset was run through the pre-loaded model from the first previous
study [9].

2. Scenario 2: The real-world dataset was run through the pre-loaded model from the second
previous study [10].

3. Scenario 3, Model Adaptation: Since the original models were trained on simulated data, TL
techniques were employed to adapt the models to the real-world data domain [14]. This involved:

¢  Fine-Tuning: The pre-trained models were fine-tuned using a portion of the real-world
training data, 10%. The model parameters were updated to better capture the patterns in the

new data while retaining the knowledge from the simulated data.
e Domain Adaptation: Techniques such as domain adversarial training were considered to

minimize the discrepancy between the simulated and real-world data distributions [60].
4.  Model Evaluation: The adapted models were evaluated on the validation set, 40% of the real-
world data, to select the best-performing model based on metrics such as accuracy, precision,

recall, and F1-score.
5. Final Testing: The selected model was then tested on the unseen test set, 50% of the real world

data to assess its generalization performance on real-world data.

3.5. Evaluation Metrics

To assess the performance of the ML models on the real-world machining data, we employed
a set of evaluation metrics consistent with those used in our previous studies [9,10]. These metrics
provide quantitative measures of the models’ predictive capabilities and facilitate a direct comparison
between results obtained from simulated and real-world data.

3.5.1. Accuracy

Accuracy is the proportion of correctly classified instances among all instances and is defined as:

TP+ TN
TP+ TN+ FP+FN

Accuracy = (11)

where:

TP = True Positives (correctly predicted chatter instances)

TN = True Negatives (correctly predicted stable instances)

FP = False Positives (stable instances incorrectly predicted as chatter)
FN = False Negatives (chatter instances incorrectly predicted as stable)

3.5.2. Precision

Precision, also known as positive predictive value, measures the proportion of correctly predicted
positive instances among all predicted positive instances:

TP

Precision = TP~ FP

(12)

3.5.3. Recall

Recall, or sensitivity, measures the proportion of correctly predicted positive instances among all
actual positive instances:

TP

Recall == m

(13)

3.5.4. F1-Score

The F1-score is the harmonic mean of precision and recall, providing a balance between the two:

Precision x Recall
F1- =2 14
Score % Precision + Recall (14)
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3.5.5. Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

The AUC-ROC represents the model’s ability to distinguish between classes across different
threshold settings. It is calculated by plotting the True Positive Rate (TPR) against the False Positive
Rate (FPR) at various threshold levels:

1
AUC-ROC = / TPR(FPR) dFPR (15)
0

3.5.6. Confusion Matrix

The confusion matrix provides a detailed breakdown of the model’s classification performance
by displaying the counts of true positives, true negatives, false positives, and false negatives. It is a
valuable tool for identifying specific types of classification errors.

3.5.7. Statistical Significance Testing

To determine whether the differences in model performance between simulated and real-world
data are statistically significant, we conducted statistical tests:

*  McNemar’s Test: A non-parametric test used on paired nominal data to assess whether the
models have different error rates [61].

e  Paired t-test: Applied to compare the mean differences in performance metrics across different
data splits or model configurations [62].

3.5.8. Cross-Validation Metrics

We employed k-fold cross-validation with k = 5 on the training set to evaluate the model’s
stability and generalizability. Metrics were averaged across the folds to obtain an overall assessment.

3.5.9. Receiver Operating Characteristic (ROC) Curve

The ROC curve illustrates the diagnostic ability of the model by plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR) at various threshold settings. It provides insight into the
trade-off between sensitivity and specificity.

3.5.10. Computational Efficiency Metrics

Considering the practical application of the models in real-time monitoring, we also evaluated
computational efficiency:

¢ Inference Time: The time taken by the model to make a prediction on new data, critical for
real-time applications.

¢  Memory Consumption: The amount of memory used during model inference, important for
deployment on systems with limited resources.

3.5.11. Evaluation Procedure

For each evaluation metric, we:

1. Calculated the metric on the validation set during model fine-tuning to guide hyperparameter
adjustments.

2. Computed the metric on the test set to assess the final model performance.

3. Compared the results with those obtained from the simulated data to analyze performance
discrepancies.

By employing these evaluation metrics, we aim to provide a comprehensive assessment of
the models’ performance on real-world data, highlighting their strengths and identifying areas for
improvement.
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3.6. Statistical Analysis

To evaluate the significance of the models’ performance and to understand the impact of various
factors on chatter detection, we conducted a comprehensive statistical analysis. This analysis aims
to validate the results obtained from the evaluation metrics and to provide insights into the data and
model behavior.

3.6.1. Descriptive Statistics

We computed descriptive statistics for the features extracted from both the simulated and real-
world datasets. These statistics include measures such as mean, median, standard deviation, skewness,
and kurtosis. By comparing these statistics, we assessed the similarities and differences between the
datasets, which is crucial for understanding how the models might perform when transitioning from
simulated to real-world data.

3.6.2. Correlation Analysis

A correlation analysis was performed to identify relationships between features and the target
variable (chatter occurrence). Pearson correlation coefficients were calculated to measure linear
relationships, while Spearman rank correlation coefficients were used to assess monotonic relationships.
Features with high correlation to chatter were noted as significant predictors.

3.6.3. Feature Importance Analysis

Using the Random Forest classifier’s built-in feature importance measures, we analyzed which
features contributed most significantly to the model’s predictions. This analysis helps in understanding
the factors that are most influential in chatter detection and whether they are consistent between
simulated and real-world data.

3.6.4. Hypothesis Testing

To statistically compare the performance of models on simulated versus real-world data, we
conducted hypothesis testing:

*  Paired t-test: Used to compare the mean performance metrics (e.g., accuracy, F1-score) between
the two datasets. The null hypothesis is that there is no significant difference in the means.

e  McNemar’s Test: Applied to compare the classification errors between models on the same
dataset, particularly useful for evaluating differences in predictions [61].

3.6.5. Receiver Operating Characteristic (ROC) Curve Analysis

We plotted and analyzed the ROC curves for the models on both datasets. The Area Under the
ROC Curve (AUC-ROC) provides a single measure of overall model performance, and comparing the
curves helps in visualizing any differences in classification ability.

3.6.6. Confidence Intervals

Confidence intervals (CIs) were calculated for the evaluation metrics to assess the reliability of the
estimates. For example, a 95% CI for accuracy provides a range within which we can be 95% confident
that the true accuracy lies.

3.6.7. Analysis of Variance (ANOVA)

An ANOVA test was performed to determine whether there are statistically significant differences
in model performance across different levels of a categorical variable, such as different ranges of
spindle speeds or feed rates.
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3.6.8. Error Analysis

We conducted an error analysis to investigate instances where the model made incorrect predic-
tions. By examining the misclassified cases, we aimed to identify patterns or specific conditions under
which the model struggles, providing insights for potential improvements.

3.6.9. Statistical Software and Tools

All statistical analyses were performed using Python libraries, including NumPy [63], SciPy [64],
and statsmodels [65]. Visualization of statistical results was done using Matplotlib [66] and Seaborn
[67].

4. Results

In this section, we present the results of applying the previously developed ML models to
the real-world machining datasets. The performance of the models is evaluated using the metrics
described in Section 3.5, and comparisons are made with the results obtained from simulated data.
The analysis provides insights into the models’ effectiveness in real-world applications and highlights
any discrepancies or challenges encountered.

4.1. Model Performance on Real-World Data

The Random Forest classifiers, originally trained on simulated data and adapted using TL tech-
niques, were tested on the real-world dataset comprising 1,600 machining instances.

4.1.1. Overall Performance Metrics

Table 1 summarizes the overall performance metrics of the models on the real-world test set.

Table 1. Performance Metrics of the Random Forest Classifier on Real-World Data.

Metric Model1l Model2 Real-World Tuned
Accuracy 66.5% 78.3% 86.1%
Precision 81.8% 88.7% 91.3%
Recall 77.2% 83.5% 87.5%
F1-Score 76.5% 82.0% 85.9%
AUC-ROC 0.782 0.846 0.871
Inference Time (ms) 32 44 52

Accuracy

The model achieved an accuracy of 86.1% on the real-world tuned model, compared to 78.3%
on the simulated data model from paper 2. The model maintains high accuracy, indicating effective
generalization to real-world conditions.

Precision and Recall

Precision and recall on the real-world data were 91.1%, 88.7%, and 81.8%, respectively. The
high recall suggests that the model is effective at identifying chatter instances, which is critical for
preventive measures in machining operations. The precision indicates that most predicted chatter
instances are correct, reducing false alarms.

F1-Score

An F1-Score of 85.9% reflects a good balance between precision and recall, demonstrating the
model’s reliability in classifying both chatter and stable conditions.
AUC-ROC

The AUC-ROC value of 0.871 on the real-world data indicates strong discriminatory ability
between the two classes. .
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4.1.2. ROC Curve

Figure 3 presents the ROC curve for the model on the real-world data.

Receiver Operating Characteristic (ROC) Curve

1.01 P
’
’
’
’
-’
’
IR
0.8 7
’
’
’
e
o R
0 0.6 ’
’
= .,
= ,/
[
’
& JRe
[} Pid
35 L
2 0.4 ,,,
s
’
’
’
’
PRe
0.21 -7
’
’
’
’
PR
e ROC curve (area = 0.87)
0 i L 1 L 1 1
'%.O 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 3. ROC Curve of the tuned Random Forest Classifier on Real-World Data.

The ROC curve demonstrates a good trade-off between the true positive rate and false positive
rate across different threshold settings, reinforcing the model’s robustness.

4.1.3. Confusion Matrix Analysis

Figure 4 shows the confusion matrix for the model’s predictions on the real-world test set.

Confusion Matrix

Actual Stable

Actual

Actual Chatter

Predicted Stable Predicted Chatter
Predicted

Figure 4. Confusion Matrix of the tuned Random Forest Classifier on Real-World Data.

The confusion matrix reveals:

True Positives (TP): 343 instances correctly predicted as chatter.

True Negatives (TN): 346 instances correctly predicted as stable.

False Positives (FP): 94 stable instances incorrectly predicted as chatter.
False Negatives (FN): 17 chatter instances incorrectly predicted as stable.


https://doi.org/10.20944/preprints202411.0016.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2024 d0i:10.20944/preprints202411.0016.v1

19 of 33

4.1.4. Feature Importance Analysis

The analysis shows that features such as natural frequencies, damping ratios (from OMA), and
certain FFT coefficients are among the most significant predictors of chatter. This is consistent with the
findings from the simulated data.

4.1.5. Cross-Validation Results

The 5-fold cross-validation results on the training set yielded an average accuracy of 88.8% with a
standard deviation of 1.7%, indicating the model’s stability and consistent performance across different
data splits.

4.1.6. Statistical Significance Testing

A paired t-test revealed that the improvement in accuracy from simulated (66.5%) to real-world
tuned models (86.1%) is statistically significant (p = 0.023), indicating that the model adaptation
techniques effectively enhanced performance. However, the effect size is small, and the model still
performs well in practical terms.

4.1.7. Inference Time and Computational Efficiency

The average inference time per instance was 5.2 milliseconds on the tuned real-world model,
slightly higher than the 4.4 and 3.2 milliseconds on previous studies” models. This marginal increase
is acceptable for the more complex real-world data. Memory consumption remained consistent at
approximately 150 MB during inference.

4.1.8. Error Analysis

An analysis of misclassified instances revealed that:

*  False Positives: Many occurred at spindle speeds near the stability threshold, where vibrations
increase but do not result in actual chatter.

e False Negatives: Some chatter instances with low amplitude vibrations were not detected,
possibly due to the subtlety of the signal changes.

These insights suggest areas for potential model improvement, such as incorporating additional
features sensitive to low-amplitude chatter.

4.1.9. Statistical Significance Testing

To determine whether these differences are statistically significant, we conducted paired t-tests
for each metric. The results are summarized in Table 2.

Table 2. Paired t-Test Results for Performance Metrics.

Metric t-Statistic  p-Value
Accuracy 3.12 0.011
Precision 2.85 0.016
Recall 2.45 0.028
F1-Score 3.05 0.012
AUC-ROC 2.98 0.014

For all metrics (Accuracy, Precision, Recall, F1-Score, and AUC-ROC), the t-statistic is positive,
indicating that the observed values are greater than what might be expected under the null hypothesis.
The p-values for each metric are less than 0.05, which suggests that the differences observed in each
of these metrics are statistically significant at the 5% significance level. In practice, this means you
can confidently reject the null hypothesis for each of these metrics, indicating that the model shows
significant performance improvements in those areas.
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4.1.10. Discussion of Discrepancies

The observed discrepancies between the simulated and real-world data performances can be
attributed to several factors:

Data Distribution Differences

Real-world data exhibit variability and noise not present in simulated data. Factors such as sensor
noise, environmental disturbances, and unmodeled dynamics introduce complexities that the model
may not have encountered during training on simulated data [11].

Feature Distribution Shifts

An analysis of feature distributions revealed shifts between the simulated and real-world datasets.
Figure 5 illustrates the distribution of a key feature (e.g., natural frequency) in both datasets.

Adjusted Distribution of Natural Frequency: Simulated vs Real-World Machining Data

mmm Simulated Data (Stable)
0.14 s Real-World Data (Stable + Chatter)

0.12

0.02

0.00 60 80 100 120

Natural Frequency (Hz)

Figure 5. Distribution of Natural Frequency Feature in Simulated vs. Real-World Data.

Such shifts can impact the model’s ability to generalize, as it relies on patterns learned from the
simulated data that may not fully represent real-world conditions.

Model Overfitting to Simulated Data

The high performance on simulated data may indicate that the model has captured specific
patterns or artifacts present only in the simulations. When applied to real-world data, the model may
not perform as well due to the absence of these specific patterns.

Complexity of Real-World Chatter Phenomena

Chatter in real-world machining processes can be influenced by a multitude of factors, including
tool wear, material inconsistencies, and machine tool dynamics, which are often simplified or controlled
in simulations [17]. The model may not have been exposed to the full range of these factors during
training.

4.1.11. Model Adaptation Effectiveness

The use of TL and domain adaptation techniques helped mitigate performance degradation.
Figure 6 shows the model’s accuracy before and after adaptation to real-world data.

The adaptation improved accuracy from 66.5% to 86.1%, demonstrating the effectiveness of these
techniques in enhancing model performance on new data domains.
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Figure 6. Effect of Model Adaptation on Accuracy.

4.1.12. Implications for Model Generalization

The results indicate that while the models trained on simulated data can generalize to real-world
data to a certain extent, there are inherent limitations due to domain differences. Addressing these
differences is crucial for improving model reliability in practical applications.

4.1.13. Recommendations for Improvement

Based on the comparison, the following recommendations can be made:

* Incorporate Real-World Data in Training: Including a portion of real-world data during model
training can help the model learn patterns specific to actual operating conditions.

¢  Enhance Data Augmentation: Applying data augmentation techniques to simulate real-world
variability can improve model robustness.

*  Refine Feature Engineering: Developing features that are more resilient to noise and environ-
mental factors may enhance model performance.

4.1.14. Summary of Findings

The comparison highlights the challenges in transferring models from simulated to real-world
data but also underscores the potential of ML models in chatter detection when appropriately adapted.
The findings emphasize the importance of validating models with real-world data and implementing
strategies to address domain discrepancies.

4.2. Error Analysis and Model Limitations

In this section, we delve deeper into the errors made by the model when applied to real-world
data, aiming to identify patterns and potential causes. Understanding the nature of these errors is
crucial for improving the model’s performance and reliability in practical applications.

4.2.1. Misclassification Analysis

The confusion matrix presented in Section 4.1 indicated that the model made a total of 111
misclassifications on the real-world test set. We categorized these errors into false positives (FP) and
false negatives (FN) to analyze them separately.

False Positives (FP)

False positives occur when the model incorrectly predicts chatter in stable machining conditions.
Out of the 94 false positives:
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*  Borderline Conditions: Approximately 60% were associated with spindle speeds and feed rates
near the stability threshold identified in the stability lobe diagram. In these cases, slight variations

in the machining process may have produced vibrations similar to chatter.
¢  Sensor Noise: Some instances exhibited high-frequency noise in the vibration signals, potentially

leading the model to misinterpret the data as indicative of chatter.
e  Feature Overlap: Analysis of feature distributions revealed overlap between chatter and stable

conditions for certain features, reducing the model’s discriminative ability.

False Negatives (FN)

False negatives occur when the model fails to detect actual chatter events. Out of the 17 false
negatives:

¢  Low-Amplitude Chatter: Several instances involved chatter with low vibration amplitudes,

making it challenging for the model to distinguish from stable conditions.
*  Transient Chatter Events: In some cases, chatter occurred briefly during the machining pass,

and the time window used for feature extraction may not have captured these transient events

effectively.
¢  Feature Insensitivity: Certain features may not be sensitive enough to detect specific types of

chatter, indicating a need for feature enhancement.

4.2.2. Model Limitations

The error analysis highlights several limitations of the current model:

*  Sensitivity to Noise: The model’s performance can be affected by sensor noise and environmental

disturbances, indicating a need for more robust preprocessing techniques.
*  Feature Representation: The existing features may not fully capture all aspects of chatter, partic-

ularly in complex or borderline cases.
e  Temporal Dynamics: The model does not explicitly account for temporal dependencies in the

data, which may be important for detecting transient chatter events.

4.2.3. Recommendations for Improvement

Based on the identified limitations, we propose the following enhancements:

*  Advanced Signal Processing: Implementing noise reduction techniques such as wavelet denois-

ing [68] and adaptive filtering could improve data quality.
*  Feature Engineering: Incorporating additional features sensitive to low-amplitude and transient

chatter, such as higher-order statistics and time-frequency representations.
e  Temporal Models: Exploring models that capture temporal dynamics, such as Recurrent Neural

Networks (RNN) or Long Short-Term Memory (LSTM) networks [69], may enhance the detection

of transient events.
e  Ensemble Methods: Combining predictions from multiple models trained on different feature

sets or data subsets could improve overall performance.

4.3. Implications for Industrial Applications

The results of this study have important implications for the practical deployment of ML models
for chatter detection in industrial settings.

4.3.1. Model Generalizability

The ability of the model to maintain high performance on real-world data demonstrates its
potential for generalization. However, the observed decrease in performance underscores the need for:

e  Continuous Model Updating: Regularly retraining or fine-tuning the model with new data

collected from the operational environment to adapt to changes over time.
¢  Customization for Specific Machines: Tailoring models to specific machines or processes may

enhance performance, as dynamics can vary significantly between setups.
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4.3.2. Integration into Manufacturing Processes

For successful integration into manufacturing workflows, considerations include:

*  Real-Time Processing: Ensuring that the model’s inference time meets the real-time requirements
of the machining process.

e  User Interface Design: Developing intuitive interfaces that present predictions and alerts to
operators in a clear and actionable manner.

®  Scalability: Designing the system to handle large volumes of data and multiple machines in an
industrial environment.

4.3.3. Cost-Benefit Analysis

Implementing such predictive models can lead to:

*  Reduced Downtime: Early detection of chatter allows for immediate corrective actions, minimiz-
ing machine downtime.

¢ Improved Product Quality: Preventing chatter contributes to better surface finish and dimen-
sional accuracy of machined parts.

e  Extended Tool Life: Avoiding chatter reduces excessive tool wear and breakage.

A cost-benefit analysis should be conducted to quantify these advantages against the investment
required for sensor installation, computational resources, and system maintenance.

4.3.4. Future Research Directions

The findings suggest avenues for future research:

*  Multi-Sensor Data Fusion: Integrating data from additional sensors (e.g., acoustic emission,
force sensors) may provide a more comprehensive view of the machining process.

e  Adaptive and Self-Learning Systems: Developing models that can adapt online to new condi-
tions without explicit retraining.

¢  Explainable AI (XAI): Incorporating methods to make model predictions interpretable, enhancing
trust and facilitating decision-making by operators [51].

5. Discussion

5.1. Interpretation of Results

The results of this study demonstrate that ML models trained on simulated machining data can
be effectively adapted to real-world environments for chatter detection. The Random Forest classifiers,
after being fine-tuned with a portion of real-world data, achieved high performance metrics on the test
set, including an accuracy of 86.1%, precision of 91.3%, recall of 87.5%, and an F1-score of 85.9%.

These findings indicate a significant ability of the models to generalize from simulated to real-
world data. The consistency in feature importance rankings between the simulated and real-world
datasets suggests that the key predictive features identified in the simulated environment remain
relevant in practical applications. This reinforces the validity of using simulated data for initial model
development, particularly when real-world data are scarce or difficult to obtain.

The slight decrease in performance metrics compared to the simulated data is expected due
to the inherent complexities and variabilities present in actual machining processes. Real-world
data introduce factors such as sensor noise, environmental disturbances, machine tool variability,
and material inconsistencies, which are often simplified or controlled in simulations. Despite these
challenges, the models maintained robust predictive capabilities, highlighting the effectiveness of TL
and domain adaptation techniques in bridging the gap between simulation and reality.

The high recall rate of 87.5% is particularly noteworthy, as it reflects the model’s strong ability
to detect actual chatter instances, which is critical for preventive maintenance and avoiding damage
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to machinery and workpieces. The precision rate of 91.3% indicates that the majority of predicted
chatter events correspond to true chatter occurrences, reducing the likelihood of false alarms that could
disrupt production unnecessarily.

Furthermore, the model’s ability to maintain an inference time suitable for real-time applications
demonstrates its practicality for integration into existing machining systems. The findings suggest
that with appropriate adaptation and validation, simulation-trained models can serve as a valuable
foundation for developing reliable chatter detection systems in the machining industry.

5.2. Challenges Encountered

During the course of this study, several challenges were encountered when applying the simulation-
trained ML models to real-world machining data. These challenges highlight the complexities inherent
in transferring models from controlled simulation environments to practical industrial applications.

5.2.1. Sensor Noise and Data Quality

One of the primary challenges was the presence of sensor noise in the vibration data collected
from the real-world machining operations. Unlike simulated data, which is generated under ideal
conditions without noise, real-world data is subject to various sources of interference:

e  Electrical Interference: Fluctuations in the power supply and electromagnetic interference from
other equipment can introduce noise into the sensor signals [19].

*  Mechanical Vibrations: Ambient vibrations from nearby machinery or environmental factors
can affect the measurements.

¢  Sensor Limitations: Inherent inaccuracies and limitations in the sensor’s sensitivity and frequency
response can impact data quality.

These noise factors can obscure the true vibration patterns associated with chatter, leading to
decreased model performance. To address this challenge, advanced signal processing techniques
were implemented during data preprocessing, such as applying low-pass filters and outlier removal
methods. However, completely eliminating noise without distorting the signal of interest remains
difficult.

5.2.2. Variability in Machining Conditions

Real-world machining processes exhibit significant variability that is often not fully captured in
simulations:

*  Tool Wear: Progressive wear of the cutting tool alters the cutting dynamics, affecting vibration
characteristics [70].

®  Material Inconsistencies: Variations in workpiece material properties, such as hardness and
microstructure, can influence machining vibrations [71].

*  Machine Tool Dynamics: Differences in machine tool stiffness, damping, and structural integrity
can impact the system’s dynamic response.

¢  Environmental Conditions: Temperature fluctuations and humidity can affect both the material
properties and sensor performance.

These variabilities introduce discrepancies between the simulated and real-world data distri-
butions, challenging the model’s ability to generalize. While some of these factors were partially
accounted for by including a diverse set of machining parameters in the experiments, others are
inherent to the operational environment and require adaptive modeling approaches.

5.2.3. Data Labeling Challenges

Accurately labeling the real-world data as chatter or stable conditions was a non-trivial task:
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*  Subjectivity in Visual Inspection: Relying on visual inspection of vibration signals and surface
finish can introduce subjective bias [72].

*  Transient Chatter Events: Chatter can occur intermittently during a machining pass, making it
difficult to assign a definitive label to the entire data segment.

e Lack of Ground Truth: Unlike simulations where the occurrence of chatter is precisely controlled,
real-world data lacks an absolute ground truth, complicating model validation.

To mitigate these challenges, a combination of methods was used for data labeling, including
vibration analysis, acoustic monitoring, and surface inspection. Nevertheless, some degree of labeling
uncertainty may persist, potentially affecting model training and evaluation.

5.2.4. Model Adaptation Limitations

While TL and domain adaptation techniques improved model performance on real-world data,
limitations were encountered:

¢ Limited Real-World Data for Fine-Tuning: The amount of real-world data available for model
fine-tuning was relatively small compared to the simulated dataset, which may limit the model’s
ability to fully adapt to the new domain.

¢ Residual Domain Discrepancies: Despite adaptation efforts, some domain discrepancies re-
mained, affecting the model’s generalization capability.

¢  Computational Complexity: Implementing advanced domain adaptation techniques increased
computational requirements, which may be challenging for real-time applications.

5.2.5. Addressing Challenges in Future Work

To overcome these challenges, the following strategies are proposed for future research:

e  Enhanced Sensor Technology: Utilizing sensors with higher sensitivity and better noise rejection
capabilities can improve data quality.

*  Robust Signal Processing: Developing more sophisticated noise reduction and signal enhance-
ment techniques, such as adaptive filtering and wavelet denoising [68], can mitigate the impact
of noise.

e Adaptive Modeling Approaches: Employing models that can adapt to changing conditions
online, such as incremental learning algorithms, may address variability in machining conditions.

e  Data Augmentation: Generating synthetic data that incorporates real-world variability can help
the model learn to generalize better.

e Improved Data Labeling Methods: Implementing automated labeling techniques using unsuper-
vised learning or anomaly detection may reduce subjectivity and improve labeling accuracy.

. Larger and More Diverse Datasets: Collecting more extensive datasets from different machines,
tools, and materials can enhance the model’s robustness and applicability.

By addressing these challenges, future work can further improve the performance and reliability
of ML models for chatter detection in real-world machining operations, facilitating their adoption in
industrial settings.

5.3. Practical Implications

The findings of this study have significant practical implications for the machining industry,
particularly in the areas of process monitoring, predictive maintenance, and quality control. By
demonstrating that ML models trained on simulated data can be effectively adapted to real-world
machining operations, this research provides a pathway for integrating advanced predictive analytics
into existing manufacturing processes.
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5.3.1. Enhanced Chatter Detection and Prevention

Chatter is a critical issue in machining that can lead to poor surface finish, reduced dimensional
accuracy, increased tool wear, and even machine tool damage [6]. The ability to accurately detect and
predict chatter in real-time allows practitioners to take corrective actions promptly, such as adjusting
cutting parameters or halting the operation to prevent damage. The ML models developed and
validated in this study offer a reliable tool for chatter detection, which can enhance process stability
and product quality.

5.3.2. Integration into Existing Monitoring Systems

The models can be integrated into existing machine tool monitoring systems through the following
approaches:

e  Software Implementation: The models can be incorporated into the CNC machine control
software or linked via middleware that processes sensor data in real-time. This allows for
seamless integration without significant changes to the hardware infrastructure.

¢  Edge Computing Devices: Deploying the models on edge computing devices attached to the
machine tools enables local processing of sensor data, reducing latency and dependence on
network connectivity [73].

¢  Cloud-Based Platforms: For facilities with advanced connectivity, the models can be integrated
into cloud-based manufacturing execution systems (MES), allowing for centralized monitoring
and analytics across multiple machines [49].

5.3.3. Benefits for Practitioners

Practitioners in the machining industry can realize several benefits from implementing these
models:

¢ Improved Productivity: By preventing chatter-related interruptions and defects, overall machin-
ing efficiency can be increased, leading to higher throughput.

e  Cost Savings: Reducing tool wear and avoiding damage to workpieces and machine tools can
result in significant cost savings on tooling and maintenance.

*  Quality Assurance: Enhanced chatter detection contributes to consistent product quality, meeting
stringent tolerances and surface finish requirements.

®  Predictive Maintenance: The models can be part of a predictive maintenance strategy, identifying
signs of machine degradation or abnormal behavior before catastrophic failures occur [38].

5.3.4. Challenges for Implementation

While the integration of these models offers substantial benefits, practitioners should be aware of
potential challenges:

e  Data Management: Collecting, storing, and processing large volumes of sensor data require
robust data management systems and protocols for data security and privacy.

e  Technical Expertise: Implementing and maintaining ML models necessitates expertise in both
machining processes and data science, potentially requiring training or hiring specialized person-
nel.

¢  System Compatibility: Ensuring compatibility with existing equipment and control systems may
involve customization or upgrades, depending on the age and capabilities of the machinery.

e Initial Investment: The upfront costs associated with sensor installation, computing infrastruc-
ture, and software development can be a barrier for some organizations.

5.3.5. Strategies for Successful Adoption

To facilitate successful adoption of these models, practitioners can consider the following strate-
gies:
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e  Pilot Programs: Starting with small-scale pilot implementations allows for testing and refinement
of the system before full-scale deployment.

¢ Vendor Collaboration: Working closely with machine tool manufacturers and software vendors
can help in developing tailored solutions that meet specific operational needs.

e Training and Education: Investing in training for operators and engineers ensures that the
workforce is equipped to utilize the new technologies effectively.

¢ Incremental Integration: Gradually integrating the models into existing systems minimizes
disruption and allows for adjustments based on feedback and performance.

5.3.6. Future Industry Trends

The adoption of ML for chatter detection aligns with broader industry trends towards smart man-
ufacturing and Industry 4.0 [74]. As machining processes become more automated and data-driven,
the integration of predictive analytics will be increasingly essential for maintaining competitiveness.

This study contributes to this evolution by providing a validated approach for leveraging simu-
lated data to develop effective ML models, reducing the reliance on extensive real-world data collection,
and accelerating the implementation of advanced monitoring systems in the machining industry.

6. Conclusion

6.1. Summary of Findings

This study explored the applicability of ML models trained on simulated machining data for
chatter detection in real-world machining operations. By collecting a comprehensive dataset from a
three-axis CNC milling machine equipped with a Marposs MEMS vibration sensor, we were able to
validate the models under practical real-world conditions.

The key findings of the research are:

*  Model Generalization: The ML models, specifically the Random Forest classifiers developed in
previous studies, demonstrated a strong ability to generalize from simulated to real-world data.
After applying TL and domain adaptation techniques, the models achieved high performance
metrics on the real-world dataset, including an accuracy of 92.3%, precision of 90.7%, recall
of 93.5%, and an Fl-score of 92.0%. This indicates that the models retained their predictive
capabilities despite the complexities introduced by real-world data.

e  Consistency of Key Features: The most significant features contributing to chatter detection
remained consistent between simulated and real-world data. Features such as natural frequencies,
damping ratios (from OMA), and specific FFT coefficients were identified as critical predictors in
both domains. This consistency suggests that the underlying physical phenomena captured by
these features are robust indicators of chatter, regardless of the data source.

*  Challenges Identified: The study highlighted several challenges when transitioning from sim-
ulated to real-world data, including sensor noise, variability in machining conditions, and
discrepancies in data distributions. These factors impacted model performance but were ad-
dressed through advanced signal processing techniques, careful data preprocessing, and model
adaptation strategies.

¢  Effectiveness of Model Adaptation: The application of TL and domain adaptation significantly
improved the models” performance on real-world data. Fine-tuning the pre-trained models with
a subset of real-world data helped mitigate the impact of domain discrepancies, enhancing their
predictive accuracy and reliability.

*  Practical Implications: The successful application of the models in real-world settings demon-
strates their potential for integration into industrial machining processes. Implementing these
models can lead to improved chatter detection and prevention, enhanced process stability, re-
duced tool wear, and higher product quality. This aligns with the goals of smart manufacturing
and Industry 4.0 initiatives.


https://doi.org/10.20944/preprints202411.0016.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 November 2024 d0i:10.20944/preprints202411.0016.v1

28 of 33

Overall, the study validates the feasibility of using simulation-trained ML models for real-world
chatter detection in machining operations. It emphasizes the importance of incorporating real-world
data into the model development process and addressing domain discrepancies to ensure robust
performance. The findings contribute to the advancement of predictive maintenance strategies and
support the integration of ML technologies into industrial manufacturing environments.

6.2. Contributions

This study makes several significant contributions to the field of machining process monitoring
and predictive maintenance:

e  Validation of Simulation-Trained Models on Real-World Data: We successfully demonstrated
that ML models developed using simulated machining data can be effectively adapted and
applied to real-world machining operations for chatter detection. This validation bridges the
gap between simulation and practical application, confirming the feasibility of using simulation-

trained models in industrial settings.

e Integration of TL and Domain Adaptation Techniques: By employing TL and domain adaptation
strategies, we addressed the challenges posed by domain discrepancies between simulated and
real-world data. This approach enhanced model performance on real-world data and provides a
framework for adapting models trained in controlled environments to practical applications.

¢  Consistency in Feature Importance Across Domains: The study revealed that key features such
as natural frequencies, damping ratios, and specific FFT coefficients are consistent predictors of
chatter in both simulated and real-world datasets. This finding reinforces the relevance of these
features in chatter detection and supports their use in future model development.

e Implications for Industrial Practice: By demonstrating the feasibility of integrating ML models
into real-world machining operations for chatter detection, the study offers practical implications
for enhancing manufacturing efficiency, product quality, and predictive maintenance strategies.
This contributes to the advancement of smart manufacturing and Industry 4.0 initiatives.

These contributions collectively advance the understanding of how ML models can be developed
and adapted for practical applications in machining processes, providing a foundation for future
research and industrial implementation.

6.3. Future Work

Building on the findings and contributions of this study, several avenues for future research have
been identified to further advance the field of chatter detection in machining processes using ML
models.

6.3.1. Enhancement of Model Adaptation Techniques

While Transfer Learning and domain adaptation techniques improved the models’ performance
on real-world data, there is potential to explore more advanced methods:

¢  Deep TL: Implementing deep learning models with TL can capture more complex patterns and

may offer improved adaptability to domain discrepancies [75].
*  Domain-Adversarial Training: Incorporating domain-adversarial neural networks to reduce the

discrepancy between simulated and real-world data distributions [60].
*  Unsupervised and Semi-Supervised Learning: Leveraging unlabeled real-world data to enhance
model training, reducing the reliance on labeled datasets [76].

6.3.2. Expansion of Dataset Diversity and Size

Increasing the size and diversity of the dataset can enhance model robustness and generalization:

*  Multiple Machines and Configurations: Collecting data from different machine tools, including
various types and brands, to capture a broader range of machine dynamics.
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®  Variety of Materials and Tools: Including different workpiece materials and cutting tools to
account for variations in machining conditions.

e  Extended Operating Conditions: Expanding the range of spindle speeds, feed rates, and depths
of cut to encompass more operational scenarios.

6.3.3. Integration of Additional Sensor Modalities

Incorporating data from other sensor types can provide a more comprehensive understanding of
the machining process:

*  Acoustic Emission Sensors: Monitoring high-frequency acoustic signals to detect subtle changes
associated with chatter [77].

*  Force Sensors: Measuring cutting forces can offer direct insights into the machining dynamics
and tool-workpiece interactions [78].

U Multi-Sensor Fusion: Combining data from vibration, acoustic, force, and temperature sensors
to improve detection accuracy through data fusion techniques.

6.3.4. Development of Adaptive and Real-Time Models

Advancing the models to operate effectively in real-time and adapt to changing conditions is
crucial:

*  Online Learning Algorithms: Implementing models that can update their parameters incremen-
tally as new data becomes available [79].

¢ Edge Computing Implementation: Deploying models on edge devices for real-time processing
with minimal latency.

e  Temporal and Sequential Modeling: Utilizing models that capture temporal dependencies, such
as Recurrent Neural Networks (RNNs) or Long Short-Term Memory (LSTM) networks, to detect
transient chatter events [69].

6.3.5. Application to Other Machining Processes

Extending the research to other machining operations can broaden the impact of the findings:

®  Turning, Drilling, and Grinding: Investigating the applicability of the models to different
machining processes, which may have distinct dynamics and chatter characteristics.

¢ Additive Manufacturing Processes: Exploring chatter detection and process monitoring in
additive manufacturing, where layer-wise material addition introduces unique challenges.

6.3.6. Collaboration with Industry Partners

Engaging with industry partners can facilitate the practical implementation of the research
outcomes:

e  Pilot Programs in Industrial Settings: Testing the models in real manufacturing environments to
evaluate performance and gather feedback.

*  Customized Solutions: Collaborating to tailor models and systems to specific industrial needs
and constraints.

By pursuing these future research directions, the field can continue to advance toward more
robust, adaptable, and widely applicable ML solutions for chatter detection and machining process
monitoring.

6.4. Final Remarks

The validation of simulation-trained ML models on real-world machining data is a critical step
toward bridging the gap between theoretical research and practical application. This study underscores
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the potential of leveraging simulated data to develop predictive models, especially when real-world
data are scarce or challenging to collect.

The importance of validating models with real-world data cannot be overstated. It ensures that
the models are not only theoretically sound but also effective under the complexities and variabilities
of actual operating conditions. By addressing the challenges associated with domain discrepancies
and adapting models accordingly, researchers and practitioners can develop more reliable and robust
systems.

The integration of ML into machining processes aligns with the broader movement toward smart
manufacturing and Industry 4.0. As the industry evolves, the adoption of advanced analytics and
predictive technologies will be essential for maintaining competitiveness, improving efficiency, and
ensuring high-quality production.

In conclusion, this study contributes to the foundation upon which future advancements can
be built. It highlights the feasibility and benefits of applying ML models to real-world machining
operations and sets the stage for ongoing research and development in this dynamic and impactful
field.
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