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Abstract: Artificial Intelligence (AI) has the disruptive potential to transform patients’ lives via
innovations in pharmaceutical sciences, drug development, clinical trials, and manufacturing.
However, it presents significant challenges, ethical concerns, and risks across sectors and societies.
Al's rapid advancement has revealed regulatory gaps as existing public policies struggle to keep
pace with the challenges posed by these emerging technologies. The term Al itself has become
commonplace to argue that greater “human oversight” for “machine intelligence” is needed to
harness the power of this revolutionary technology for both potential and risk management, and
hence to call for more practical regulatory guidelines, harmonized frameworks, and effective
policies to ensure safety, scalability, data privacy, and governance, transparency, and equitable
treatment. In this review paper, we employ a holistic multidisciplinary lens to overview the current
regulatory landscape with a synopsis of the FDA workshop perspectives on the use of Al in drug
and biological product development. We discuss the promises of responsible data-driven Al,
challenges and related practices adopted to overcome limitations, and our practical reflections on
regulatory oversight. Finally, the paper outlines a path forward and future opportunities for lawful
ethical Al. This review highlights the importance of risk-based regulatory oversight, including
diverging views in the field, in reaching a consensus.

Keywords: artificial intelligence (Al); drug product development; regulatory frameworks; ethical
consideration; biologics; cell and gene therapy/ATMP; AMT

Introduction

Over recent years, the term “Artificial Intelligence” (AI) has become a household word. It was
first introduced in a workshop proposal in 1950, driven by neuro-robotic and brain mechanisms
envisioned for tomography image analysis [1]. In the 1980s, Fletcher and Doi at the University of
Chicago suggested the potential applicability of Al/machine learning (AI/ML) in the medical field for
the first time. They widened systematic medical image analysis by Al for computer-guided diagnosis
and physician labor reduction [2]. Over time, Al has remarkably evolved from theory to practicing
machine learning, expert systems, machine logic, neural networks, and the paradigm shift from
“Rule-Based Systems” to “Data-Driven approaches” enabled supervised learning Al [3-6]. Notable
global investments have been in advancing this disruptive technology [7]. The term “Al” is a diverse
set of inquiries and development from various disciplines and conceptual strategies with no
universally accepted definition, often seen as research that creates technologies capable of tasks
requiring human-like intelligence [8]. Several cognitive scientists, Al experts, and philosophers
suggest that Al research can provide insights into the workings of the human mind [9,10]. Some, like
Turing, argue that if an Al behaves indistinguishably from a human, its intelligence should be
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considered natural. Other key Al pioneers suggested alternative terms and definitions, such as “A
thinking machine” [11] and “A general problem solver” [12].

Al is increasingly impacting all sectors of the economy, fueled by swift advancements in
information processing and rising consumer expectations for competitive products and services. As
Al is transforming the global economy, Al definitions have evolved to balance technical precision
and accessibility. The Organization for Economic Co-operation and Development [13] defines Al as
‘systems that can be regulated, certified, and put on the market, with a key focus on their disruptive
economic potential’. The EU’s High-Level Expert Group on Al builds on this by highlighting the
ability of Al to learn and adapt based on outcomes. The EU defines Al as ‘A system designed to
operate autonomously, potentially showing adaptiveness post-deployment, by using machine or
human-provided data to infer how to meet human-defined objectives through machine learning and
logic approaches’ [14]. A more user-friendly definition offered by UNICEF describes Al as ‘machine-
based systems that make predictions, recommendations, or decisions to influence environments,
often appearing autonomous while still relying on human-defined objectives’ [15]. This definition is
very close to the US FDA definition of FDA [16]. This broader view accommodates data-driven,
symbolic, and future Al paradigms, emphasizing the critical role of human oversight at every stage
of Al-enabled development. As Al regulation progresses, debates over legal definitions and scope
continue, reflecting the diverse techniques and technologies that comprise Al systems today.
Regulatory agencies have issued papers addressing challenges in Al-driven therapeutic product
manufacturing [17,18].

Al applications have been expanded into various domains and interdisciplinary fields, from
computer sciences, languages, and statistical modeling to biology and healthcare, education, the
pharmaceuticals industry, drug discovery and development, sales and marketing, business decision-
making, finance, and beyond [19]. Al's application in pharmaceuticals began in earnest in the late
1990s when advancements in machine learning and deep learning showed promise in drug
discovery. Initially, AI was used primarily for data analysis and identifying potential drug targets.
However, as algorithms became more sophisticated, Al's role expanded to include compound
screening, molecular design, and clinical trial design [20-22]. Pfizer and AstraZeneca are harnessing
Al to accelerate drug discovery and improve patient outcomes. In collaboration with CytoReason,
Pfizer is building a simulated immune system model to uncover new medicines and match
treatments to patients more efficiently [23]. Similarly, AstraZeneca’s partnership with BenevolentAl
focuses on using Al to identify drug targets in immunology and cardiovascular research [24]. Both
collaborations highlight the need for Al-human partnerships, combining biology and data science
expertise to reduce costs, speed up development, and create transformative therapies.

Although Al holds great promise for advancing drug and biological product development,
avoiding overreliance on these technologies in this highly regulated field is essential. While the health
authorities” approach supports Al innovation, Al systems are not infallible. They can make mistakes,
and challenges persist, including the need for representative datasets, concerns about bias, and issues
with interpretability [5,25,26]. Human oversight remains essential to ensure that Al-driven decisions
are accurate and appropriate. The shift from rule-based to data-driven methodologies has profoundly
transformed the AI landscape, unlocked new potential and steering ongoing research and
development [27].

A well-structured governance framework for generative Al is critical for ethical and responsible
technology use. Such a framework should include clear internal standards and guidelines prioritizing
accountability, transparency, and regulatory compliance. By adopting best practices, organizations
can establish a robust governance structure that supports responsible Al development and
deployment. There is an ongoing need to ensure that the potential risks associated with Al are
assessed and mitigated. Therefore, the FDA and EMA guidelines could benefit from greater
specificity and clarity on potential biases or errors in data collection and analysis, providing more
practical frameworks for careful monitoring and validation [14,26,27].

The US FDA has been proactive in establishing regulatory frameworks to guide the application
of Al in healthcare and the pharmaceutical industry. To address emerging challenges, the FDA’s
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Center for Drug Evaluation and Research (CDER) launched the Center for Clinical Trial Innovation
(C3TI) to foster innovative approaches in clinical trials and precision medicine. Despite these
advancements, the FDA has faced criticism for delays updating clinical trial guidance, highlighting
the need for more robust and timely regulation in this rapidly evolving cyberspace [14].

Privacy is a particularly pressing concern. Al algorithms often rely on large datasets that may
include sensitive patient information. This data could be compromised without proper safeguards,
leading to significant privacy breaches. Ensuring data security and anonymization is crucial for
protecting patient confidentiality. Furthermore, Al algorithms are only as good as the data on which
they are trained. If the training data is biased, the Al system may perpetuate these biases, leading to
unfair or discriminatory outcomes. To mitigate this risk, it is essential to use diverse and
representative datasets and to regularly audit Al systems for bias [28]. The use of Al in healthcare
also raises critical ethical questions. For instance, should Al be used to make life-or-death decisions?
How can we ensure that Al systems are deployed relatively and equitably? Addressing these ethical
concerns requires thoughtful consideration and collaboration among scientists, policymakers, and
ethicists.

Navigating the complex ethical and regulatory landscape of Al and ML technologies in good
manufacturing practices (GMP) and clinical practices (GCP) is indispensable for drug and biologics
development organizations. Staying informed about evolving regulations, such as the EU’s Al Act
and the US’s sector-based approach, is pivotal. Providing education and training to healthcare
professionals and the public about Al’s benefits and risks is equally important. Ethical principles like
fairness, transparency, and accountability are essential for responsible Al development. In August
2024, the FDA hosted a workshop on Al in drug and biological product development, co-organized
with the Clinical Trials Transformation Initiative (CTTI). A group of regulatory and industry experts
convened to underscore Al's transformative potential in streamlining clinical trials, optimizing drug
discovery, and improving patient outcomes [29]. Key takeaways included the importance of
transparency, data quality, management, and algorithmic fairness, though the workshop did not fully
address ethical implications related to bias and privacy protection. Integrating Al across diverse
clinical settings and the need for multidisciplinary collaboration also require further attention to
practical instruction on implementation” [30,31].

Here, we employ a comparative lens to overview the current regulatory landscape and a
synopsis of the FDA workshop discussions on the use of Al in drug and biological product
development. We discuss the promises, challenges, limitations, related practices adopted to
overcome them, and our practical recommendation for regulatory oversight. Finally, the paper
outlines a path forward and future opportunities.

Perspectives on the Use of Al in Drug Development, Manufacturing, and Clinical Trials
A Review of the FDA and CTTI Joint Workshop 2024: Keynote Speaker

On August 6, 2024, the FDA, in collaboration with the Clinical Trials Transformation Initiative
(CTTI), hosted a hybrid workshop titled “Al in Drug & Biological Product Development”. This event
focused on the responsible application of Al in drug development and manufacturing, discussing
emerging Al technologies, associated challenges, and future directions. Experts from diverse fields
contributed to the discussions.

The workshop opened with a keynote address that spanned the entire drug development
lifecycle, covering early discovery, non-clinical studies, clinical research, late-stage manufacturing,
and pharmacovigilance. The role of AI/ML technologies in enhancing these processes was
highlighted. Emphasis was placed on the collaborative efforts between various FDA centers,
including the Center for Drug Evaluation and Research (CDER), the Center for Biologics Evaluation
and Research (CBER), the Center for Devices and Radiological Health (CDRH), and the Office of
Product Quality (OPQ). These efforts focused on four key areas: 1) fostering collaboration to protect
public health, 2) advancing regulatory approaches to support innovation, 3) promoting harmonized
best practices, and 4) developing tools to evaluate and monitor Al performance.
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The FDA has already approved numerous AI/ML-based drugs and biological products. With
the increasing number of clinical trials and high success rates, this number is expected to rise
significantly (Figure 1). The workshop underscored the importance of continuing risk-based
regulatory approaches and engaging all stakeholders—academia, biotech, pharmaceutical
companies, and international regulators—to advance regulatory science and support innovation in
Al-driven drug development [32].

Al/ML Submissions in Drug and Biological Products to the FDA (2016-2021)
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Figure 1. The increasing number of AI/ML submissions in drug and biological products to the FDA
CDER from 2016 to 2021. The trend shows a significant rise in submissions over this period (Adapted
from Liu et al., 2022 [33]).

Integrating Al into drug development, manufacturing, and clinical trials is a focus for several
FDA offices, including the CDER and CBER, as well as the National Institute of Standards and
Technology (NIST). These agencies are advancing Al frameworks, guidelines, and standards to
ensure the safe and effective use of Al in these areas (Executive Orders [34,35] (Figure 2).
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Figure 2. NIST due dates under Executive Order 14110 (adapted from NIST website).

The CDER has established a framework emphasizing the rigorous validation, data integrity, and
transparency of Al systems. This framework integrates Al with continuous manufacturing and
process analytical technology (PAT) to enhance process control and product quality. CDER is also
developing clear regulatory pathways for Al-based systems’ validation, monitoring, and post-market
surveillance. CBER has issued guidelines for Al in biologics manufacturing, prioritizing risk
management to ensure product safety and efficacy. CBER supports continuous Al improvement in
manufacturing, mainly through real-time monitoring and feedback mechanisms that enhance
product quality. NIST is crucial in developing Al standards, focusing on data quality, algorithm
performance, and transparency. NIST’s initiatives include developing performance metrics and best
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practices for validating Al systems to meet regulatory and scientific standards. These initiatives
underscore a unified approach to Al regulation and implementation, emphasizing safety, ethical use,
and international cooperation in the evolving landscape of drug development, manufacturing, and
clinical trials (Table 1).

Additionally, the Executive Order on Al, issued in December 2023, provides a comprehensive
government policy to address various Al-related legal and regulatory implications for the safe,
secure, and trustworthy development of Al technologies in the healthcare industry, including drug
and device development, personalized medicine, clinical trials, and patient monitoring. The Order
emphasizes safety, security, ethical considerations, and the need for fairness and accountability in Al
systems. It calls for increased Al research and development, regulatory frameworks, international
collaboration, and public engagement to balance innovation with public safety and ethical norms.
Ongoing monitoring and evaluation of Al systems are also highlighted to ensure their effectiveness
and address emerging risks. It aims to balance innovation with public safety and ethical
considerations [36]. Key points include:

Safety and Security: The Order mandates the development of standards and guidelines to ensure
safe and secure Al systems. This includes protecting against misuse, safeguarding data privacy, and
ensuring Al operates transparently and reliably.

e  Ethical Considerations: It emphasizes fairness, accountability, and transparency in Al systems
to prevent discrimination and ensure responsible use.

e  Research and Development: The Order calls for increased investment in Al research and
development, encouraging collaboration among government, industry, and academia to
advance technology while addressing safety and ethical concerns.

e  Regulatory Framework for health care and drug development: This encompasses a wide range
of activities, from clinical research to post-market surveillance, all subject to established
regulations and FDA guidance. Relevant agencies are tasked with developing regulations and
guidelines for Al development, deployment, and monitoring to ensure safety and ethical
standards compliance.

e Quality Assurance: The Department of Health and Human Services (HHS) is responsible for
establishing a strategy to maintain quality in Al-enabled healthcare technology through
premarket assessment and post-market oversight. The testing and validation standards
required to ensure data quality, reliability, reproducibility, and accuracy across drug
development are also crucial. Incorporating open-source and real-world data into AI model
development and appropriate documentation related to data source selection, inclusion, and
exclusion is essential for effective Al implementation. Understanding how quality standards
will impact overall product development requirements, both within and outside the U.S., is
vital. Furthermore, determining the necessary transparency and reporting requirements to
address trends and propose changes in light of postmarket safety issues or other real-world
data is crucial.

¢ International Collaboration: The Order promotes international cooperation to establish global
standards and best practices for AL

e  Public Engagement: It supports engaging the public and stakeholders in discussions about Al
technologies, promoting transparency, and involving various communities in decision-making.

¢  Monitoring and Evaluation: Ongoing monitoring and evaluation of Al systems are outlined to
assess their impact and effectiveness, with policies and regulations adapting based on
emerging technologies and societal implications.

Overall, the Executive Order seeks to foster innovation in Al while addressing potential risks
and ensuring that Al technologies are developed and used responsibly for societal benefit.
Incorporating these elements, the combined perspectives highlight a unified approach to Al
regulation and implementation across various agencies, emphasizing safety, ethical use, and
international collaboration.
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Table 1. Executive Order on Al in Drug Development.

Enhance Al Utilization in Drug Development
Goals: Improve Safety, Efficacy, Efficiency
Focus Areas: Data Quality, Transparency, Risk Management
FDA NIST Other Agencies
eEnsure Al tools meet
esafety and efficacy standards

*Develop Al technology
eStandard and Benchmarks

*Review Al in Drug Development _ ¢Ethics and Privacy
. L. *Promoting Performance .
eProvide Guidelines for Al metrics and Best Practices *Data Protection
integration *Global Partnership

eProvide Technical guidance
*Risk management framework
*Governance and Policy

*Risk Management and Post- eInternational Coordination

Market Surveillance eInnovative Support

eStakeholder Engagement

The Broader Role and Applications of Al in Drug and Biologics Development: Lessons from the
FDA Workshop and Industry

The pharmaceutical industry has long relied on trial-and-error methods for drug discovery,
which, while sometimes effective, are often inefficient and costly. Al's expanding portfolio of
applications and methodologies is revolutionizing drug discovery and development, driving more
efficient, precise, and cost-effective processes. Leading pharmaceutical companies have successfully
integrated Al and ML across various stages of drug development, accelerating the identification of
therapeutic targets, optimizing clinical trial design, and enhancing the drug pipeline. Below are
critical real-world examples that highlight the impact of Al in drug discovery, followed by an
exploration of the broader role Al plays in optimizing the drug development process. Moreover, Al's
ability to learn from existing data allows it to improve over time, making it an invaluable tool in the
iterative drug development process. By continuously analyzing the outcomes of previous
experiments, Al can refine its predictions, identifying more effective compounds with fewer side
effects. This iterative learning process is a significant departure from traditional methods, where each
new experiment often starts from scratch without the benefit of insights gained from previous failures
[35].

Several key pharmaceutical industry players have demonstrated Al's applications in drug and
Biologics discovery. Bristol-Myers Squibb, for instance, deployed an ML model to predict CYP450
enzyme inhibition, which is essential for drug metabolism. Their Al tool achieved 95% accuracy,
reducing failure rates by sixfold compared to traditional methods [22,37]. This improvement
accelerated the screening process and allowed researchers to focus on drug candidates with a higher
likelihood of success during human trials and FDA approval. Merck and Bayer partnered with
Cyclica to enhance drug candidate identification through Al This collaboration led to discovery of a
target protein linked to FDA-approved drugs for treating systemic scleroderma and the Ebola virus
[38]. The use of Al to repurpose existing drugs highlights the technology’s potential to expedite the
drug development cycle. In another example, GlaxoSmithKline (GSK) worked with Exscientia to
discover a novel molecule targeting a pathway involved in chronic obstructive pulmonary disease
(COPD). This collaboration demonstrated Al’s ability to identify innovative therapeutic targets for
complex diseases [39].

Similarly, Exscientia and Evotec applied Al to discover a cancer treatment that targets the A2a
receptor rapidly. Within just eight months, the drug candidate entered clinical trials in 2021,
showcasing how Al can significantly reduce the discovery phase in drug development [40]. Berg’s
Al platform identified BPM31510 as a promising treatment for advanced pancreatic cancer, one of
the most challenging diseases. The platform’s capability to predict patient responses and potential
adverse effects underscores Al's growing role in enabling personalized medicine [41]. Rapid
advancements in the use of Al in cancer research, diagnosis, and treatment have spanned a diverse
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range of indications. Numerous startups are leveraging Al to offer innovative approaches to
transforming the field [42]. MultipleAl, for example, provides a comprehensive whole blood
screening test that utilizes RNA sequencing technology and Al to detect a wide range of complex
diseases, including cardiovascular and cancer [43]. Another notable achievement in Al-driven drug
discovery came from BenevolentAl, which used its platform to identify baricitinib, initially
developed by Eli Lilly for rheumatoid arthritis, as a potential treatment for COVID-19. The drug was
subsequently approved for emergency use in the U.S. and Japan, illustrating how Al can rapidly
repurpose existing drugs in response to global health crises [43]. Lastly, in collaboration with Insilico
Medicine, Taisho Pharmaceutical utilized Al to identify compounds targeting cellular aging.
Insilico’s Al system helped discover drug-like molecules that target senescent cells, which play a role
in aging-related diseases [44]. This project underscores Al’s potential to pioneer new therapeutic
areas, such as anti-aging therapeutics.

This rapid integration of Al and ML technologies into drug development has the potential to
revolutionize the pharmaceutical industry. However, adopting these advanced tools is fraught with
complex technical, regulatory, clinical, and ethical challenges. The recent FDA workshop provided a
forum for leading experts across academia, industry, and regulatory bodies to discuss these
challenges and propose actionable pathways forward [45]. The workshop discussions focused on four
major challenge areas that are critical to ensuring the safe, effective, and equitable deployment of
AI/ML technologies in drug development:

Optimizing Model Design Through Multidisciplinary Expertise

A key theme of the workshop was the importance of integrating diverse expertise in designing
AI/ML models. Developing Al solutions for drug development requires the collaboration of
professionals from computational sciences, clinical research, regulatory affairs, and ethics to ensure
that models are technically sound, clinically relevant, and compliant with regulatory standards.
Several speakers emphasized that this multidisciplinary approach is vital to creating models that
align with the realities of clinical practice and regulatory expectations [30,46].

Using the Data We Have, Creating the Data We Need: Clinical Development, Clinical Data Management,
and Analysis

AI/ML technologies are poised to transform clinical trial design, patient recruitment, and data
analysis, yet these advancements depend heavily on the integrity and management of clinical data.
Workshop participants highlighted the need for rigorous data governance practices, including
standardization, harmonization across regulatory frameworks, and fit-for-purpose approaches
tailored to specific clinical applications. Effective clinical data management is essential to unlocking
the full potential of Al-driven insights and ensuring that AI/ML models can be integrated into
regulatory submissions [47,48]. The session addressed selection and algorithmic biases that can affect
outcomes in clinical data analysis. And focused on ensuring clinical data integrity and model
validation concerning FDA regulations on Good Clinical Practice (2021) [49]. Al aids in target
identification, dose optimization, and understanding pharmacokinetics and pharmacodynamics [50].
Moreover, different datasets aggregate single-cell data from various research efforts, enabling in
silico drug targeting and enhancing the precision of drug development and therapeutic targeting
[51,52]. These predictions depend significantly on the volume and quality of the data used.

Balancing Model Performance, Explainability, and Transparency

The trade-off between high model performance and the need for transparency and explainability
emerged as a central topic of discussion. While Al models, particularly those based on deep learning,
can achieve high levels of accuracy, they often operate as “black boxes,” limiting their interpretability.
Speakers emphasized that explainability is critical for regulatory approval and clinical adoption, as
stakeholders must be able to trust and understand the outputs of Al models. The workshop
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underscored the need for innovative solutions, such as dual-model approaches and transparency
tools, to balance these competing demands [53-56].

Cross-functional collaborations among data scientists, statisticians, clinicians, and Al
researchers can enhance model robustness and support informed decision-making, ultimately
improving clinical practices and outcomes.

Identifying Gaps, Addressing Challenges, and Charting the Path Forward

Despite the progress made in AI/ML regulatory frameworks, significant gaps remain,
particularly in the harmonization of global policies and the continuous validation of Al models post-
market. The workshop discussions called for a coordinated, international effort to develop more
consistent and fit-for-purpose pathways for Al applications in drug development. Regular model
monitoring, the integration of real-world data, and clear guidelines for risk-based approaches were
identified as critical components for advancing Al's potential while safeguarding patient safety.

Through these four challenge areas, the FDA workshop provided a comprehensive overview of
the current state of AI/ML in drug development and identified key priorities for future research,
policy development, and cross-sector collaboration. By addressing these challenges, the Al
community can work toward a future where AI/ML technologies contribute meaningfully to faster,
safer, and more personalized drug development. We will discuss some of these challenges in the
following sections.

Data Integrity and Quality Challenges in Al-Driven Drug Development Governance Considerations:
Practical Guidelines for Al Implementation

Data integrity and quality are critical factors in the success of Al-driven drug development. Data
accuracy, consistency, and completeness are essential for training effective Al models and generating
reliable results [55]. Data integrity and quality challenges can arise from various sources, including
data collection errors, biases, and inconsistencies across different datasets [49,57-60]. Addressing the
following data-related challenges is crucial for developing Al models that can provide meaningful
insights and support informed decision-making throughout the drug development process:

One of the primary data-related challenges in leveraging Al for drug development is the absence
of standardized sources for patient demographic data. This lack of standardization complicates
efforts to set accurate enrollment goals for underrepresented groups in clinical trials, a crucial aspect
of ensuring that trials are diverse and equitable. For Al applications, standardized data is essential
for training models representative of the target populations. However, disparate and often
incomplete data sources significantly hinder the integration and analysis processes required for
effective Al-driven drug development. The resulting gaps in data availability can lead to models that
fail to generalize across diverse groups, limiting their potential to drive genuinely inclusive
innovations.

A related challenge is the insufficient biomarker data across demographic groups, further
hampers the development of Al systems capable of predicting drug efficacy and safety for diverse
populations. AI models rely on extensive and diverse biomarker data to accurately generalize their
predictions across various population subsets. The current gap in biomarker data affects clinical
endpoint assessments and impedes the generation of accurate individual case safety reports (ICSR).
This lack of comprehensive biomarker data hampers the ability of Al systems to predict drug efficacy
and safety for diverse populations accurately. AI models require extensive and diverse biomarker
data to generalize across various groups and provide accurate insights on the adverse effects of drugs,
as well as automated case submission and evaluation.

Another significant obstacle is the inconsistency in the definitions of race and ethnicity across
different datasets. This lack of uniformity complicates data integration and analysis, which is
particularly problematic for Al applications in drug development. Consistent and clear definitions of
race and ethnicity are critical for ensuring that Al algorithms are trained on relevant and comparable
data, which helps to avoid perpetuating existing biases. Inconsistent definitions increase the risk of
reinforcing these biases in Al models, potentially leading to skewed outcomes that fail to address the
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needs of diverse populations. Moreover, the inadequate collection of social determinants of health
(SDoH) data further limits the ability of AI models to account for the vast array of factors that
influence drug responses and overall health outcomes. Social determinants of health, such as
socioeconomic status, education, and access to healthcare, play a critical role in determining patient
outcomes. Incorporating SDoH into Al models is essential for understanding the broader context of
patient health and ensuring that drug development efforts are inclusive and effective across diverse
populations. Unfortunately, this data is not routinely collected, presenting a substantial barrier to
developing Al systems that reflect real-world complexities.

Additionally, the limited availability of robust data on populations outside the United States
poses a significant challenge to the global applicability of AI models in drug development. For Al
systems to drive innovation worldwide, they must be trained on diverse datasets that include
international populations. Without such data, the findings produced by Al models risk being overly
specific to U.S. healthcare systems. They may fail to generalize to other regions, limiting the broader
utility of these models in international drug development efforts. Addressing these data challenges
is critical for the effective implementation of Al in drug development. One proposed strategy
involves creating a centralized repository for biomarker data, which would serve as a standardized
source of nationally representative data for various disease areas. This repository could integrate race
and ethnicity data, thereby enhancing Al models’ ability to generate inclusive and accurate insights.
By consolidating existing data sources and developing integration standards, researchers can
overcome inconsistencies and support the development of more robust Al models. This would
provide a more comprehensive understanding of disease biology and facilitate the identification of
promising drug targets.

Beyond these strategies, additional challenges must be addressed to optimize Al use in drug
development. Data privacy and security are paramount, particularly given the sensitive nature of
patient data used in training Al models. Ensuring compliance with data protection regulations
requires the implementation of robust encryption, anonymization techniques, and transparent data
governance policies. Furthermore, navigating the evolving regulatory landscape for Al applications
remains a significant challenge. Proactive engagement with regulatory agencies and participation in
industry forums are necessary to stay abreast of changes and ensure that Al innovations are aligned
with regulatory expectations. Integrating Al tools into existing drug development processes and
scaling them across different markets presents further obstacles. For Al to reach its full potential,
solutions must be scalable and adaptable to various production environments, including diverse
regulatory and healthcare systems. The FDA’s discussion paper on Al and ML in drug development
underscores the agency’s commitment to a risk-based regulatory framework that fosters innovation
while prioritizing patient safety. This framework spans the entire drug development lifecycle,
covering drug discovery, non-clinical research, clinical research, post-market safety surveillance, and
advanced manufacturing technologies (AMT).

Several key considerations are vital for successfully implementing AI/ML in drug development.
First, Al systems must be developed and deployed with human-led governance, accountability, and
transparency to ensure responsible and ethical use. Additionally, the quality, reliability, and
representativeness of data used in Al models must be guaranteed to ensure that the models reflect
the diverse populations they aim to serve. Lastly, rigorous model development, performance
monitoring, and validation processes are essential to ensure that Al systems deliver accurate, reliable,
and actionable insights throughout the drug development process [49-53].

The successful integration of Al in these areas requires adherence to best practices in data
management, model validation, transparency, risk assessment, management approaches, continuous
monitoring, and strategic collaboration. By addressing these fundamental considerations,
organizations can harness Al's potential to accelerate drug discovery, improve patient outcomes, and
drive innovation in the healthcare industry. As an example of successful Al tools in drug
development, Cassandra- an ICON’s advanced Al prediction system- demonstrates how integrating
real-world evidence with regulatory insights can streamline postmarking requirements, enhance
regulatory approval, and facilitate a more efficient path to market [61].
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Access, Fairness, and Accountability: Lessons from Economic, Law, Ethics, and Politics:

Integrating Al into drug development and manufacturing offers transformative economic
potential, reducing the cost and time to market for new therapies. Al algorithms can optimize drug
formulation and predict clinical trial outcomes, cutting research and development costs. In
manufacturing, Al-driven platforms enhance efficiency, improve quality control, and support real-
time monitoring. These platforms, recognized by the FDA’s advanced manufacturing platform
designation [62], enable cost-effective, flexible production even for complex biologics [22,63].
However, AI/ML systems and algorithms used in drug development and manufacturing can
resemble the economic profile of a “natural monopoly,” akin to railroads or telecommunications [64—
66]. The high fixed costs of Al development, low marginal deployment costs, and network effects
allow companies controlling these platforms to dominate the market [67,68]. This economic structure
poses regulatory challenges, requiring thoughtful oversight to prevent monopolistic pricing and
ensure access [68-71].

AI/ML can be thought of as two distinct workflows: first, the design, development, and training
of a model, and second, the deployment of that model to make decisions in real-world scenarios [72].
For companies, there are no disadvantages to collecting unlimited data; in the United States, few
restrictions prevent them from doing so. As Al becomes central to biopharmaceutical production,
regulatory oversight, not competition, may be needed to maintain fair pricing and equitable access
to balance monopolism in this data-intensive industry [72]. Drawing on historical lessons from other
monopolies, regulation can prevent practices like inflated pricing or restricted access. Moreover, it
can address issues like data privacy, algorithmic bias, and prioritizing profit over patient care
[66,69,73]. We will discuss HIPAA and GDRP as examples of such a provision. Public oversight will
ensure that Al's benefits are distributed across the healthcare ecosystem, not concentrated in a few
dominant entities [74].

One primary concern with natural monopolies, including Al is the potential for inefficiently
high pricing. Al-driven drug development could result in exorbitant fees for access to platforms or
data. Regulators can mitigate this by implementing rate regulation—similar to traditional approaches
with natural monopolists —to protect consumers and limit data collection to what’s necessary for
system improvement. This would address privacy concerns and prevent developers from extracting
personal information in exchange for services, which could deter privacy-conscious users from
benefiting from AI [75]. Another challenge is the risk of underinvestment in areas like safety, security,
and bias prevention. Monopolists in concentrated markets have less incentive to improve safety or
address discrimination, which is especially dangerous in healthcare. Regulators could impose
service-quality standards, requiring Al systems in drug development to meet accuracy, reliability,
and fairness benchmarks, ensuring Al aligns with social goals like accountability and equity [74]. Al
monopolies can also lead to inefficiencies in competition, mainly through wasteful duplication of
data collection and infrastructure investments. To promote competition without this waste,
regulators could adopt franchise bidding or mandate data-sharing and federated learning, allowing
multiple competitors to access shared datasets and infrastructure.

While AI has the potential to revolutionize drug development and lower therapeutic costs, its
monopolistic tendencies demand robust regulation. Policymakers can ensure Al-driven innovations
serve the public good without harming consumer welfare by addressing concerns over data privacy,
underinvestment, and inefficient competition. Al technologies should primarily operate under a
policy framework that encourages permissionless innovation while counseling against “command-
and-control regulation,” enabling humanity to fully harness the opportunities and benefits they offer
[76,77]. With appropriate oversight, the benefits of Al in FDA-recognized manufacturing platforms
can be realized while preventing the downsides of unchecked monopolies.

Navigating the Future - GDPR Compliance and Harmonization in Clinical Trials

The regulatory landscape for generative Al is rapidly evolving, with different countries and
regions adopting varying approaches. In the United States, the FDA has issued guidance on using Al
in medical device development [78], emphasizing the need for transparency, validation, and clinical
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evidence. The European Union has proposed the Al Act [46], establishing a risk-based framework for
regulating Al systems. The landscape of clinical trials is undergoing a profound transformation with
the integration of Al This technology promises to enhance drug development processes but also
introduces complex challenges related to data protection, regulatory compliance, and harmonization
across jurisdictions.

Several emerging regulations and policy initiatives are shaping the future of generative Al in
drug and biologics development [79]. These include addressing biases in Al algorithms to ensure
equitable outcomes, protecting intellectual property rights related to Al-generated content, ensuring
Al systems can provide understandable explanations for their decisions, and fostering collaboration
between regulators, industry, and academia to develop effective governance and regulatory
frameworks.

Ethical and Compliance Challenges on Al's Expanding Role in Clinical Trials

Al is increasingly used to optimize various aspects of clinical trials, from study design to patient
recruitment. By analyzing large datasets, Al can help researchers design more effective trials, predict
outcomes, and refine protocols. In patient recruitment, Al’s ability to process electronic health records
and other data sources streamlines the identification of eligible participants. Additionally, Al-
powered digital health technologies (DHTs) facilitate continuous monitoring, making decentralized
trials more feasible and inclusive.

Despite its potential, the integration of Al raises significant ethical and regulatory concerns,
particularly around data privacy and security [28]. Ensuring compliance with existing regulations is
crucial to protect patient information and maintain trust in the research process.

Ethical and Legal Considerations of Privacy and Nondiscrimination

Fundamental ethical principles, including transparency, fairness, and accountability, must
govern Al’s application in clinical trials. Compliance with regulations such as the General Data
Protection Regulation (GDPR) and the Health Insurance Portability and Accountability Act (HIPAA)
is essential for protecting patient privacy [31,80]. GDPR, with its rigorous data protection standards,
influences global Al governance and sets a benchmark for data privacy. Data privacy and security
are paramount in clinical research. The collection and use of personal health information require strict
adherence to regulations to mitigate legal risks and maintain participant trust [81]. The executive
order prioritizes individual privacy and non-discrimination in Al-enabled technology. It calls for
comprehensive privacy legislation and emphasizes the need to mitigate biases and prevent
discrimination in Al applications.

Regulatory and Compliance Framework for Al in Drug Development

The regulatory environment for using Al in drug development and clinical trials is rapidly
evolving to address these technologies” unique challenges and opportunities. In the European Union,
the EU Artificial Intelligence Act classifies Al systems according to their risk levels and sets stringent
requirements for high-risk applications [82]. This framework emphasizes vital principles such as
transparency, accountability, and data protection, which are essential for the ethical application of Al
in healthcare settings.

The FDA’s discussion paper on Al and ML applications in drug development and clinical trials
in the United States outlines a comprehensive approach to regulating these technologies. The FDA
defines Al as a broad category encompassing algorithms and models capable of learning, decision-
making, and prediction [79]. ML, a subset of Al, creates models through data analysis. The FDA’s
discussion paper articulates a commitment to a risk-based regulatory framework that supports
innovation while prioritizing patient safety. It covers a wide array of drug development activities —
from initial discovery through post-market surveillance —and explores how AI/ML can be integrated
across various stages, including drug discovery, non-clinical and clinical research, post-marketing
safety monitoring, and advanced manufacturing. While recognizing the potential benefits of Al and
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ML, the FDA also addresses the risks associated with these technologies, such as data biases and
limited explainability of models. The discussion paper calls for clear guidance and standards for the
diverse applications of Al throughout the drug development process. It identifies critical concerns
such as data quality, model reliability, privacy, and transparency and emphasizes the need for
stakeholder engagement to address these issues. The FDA’s approach includes fostering dialogue
with industry, academia, and other stakeholders to develop guidelines that ensure Al's ethical and
practical use in drug development [28,83,84].

The discussion paper also highlights the transformative potential of Al and ML to enhance
various aspects of clinical trials, including participant selection, data management, and trial design
[83]. Al technologies can optimize participant selection by analyzing vast datasets to identify suitable
candidates, thereby improving the diversity and representativeness of trial populations [83]. This is
crucial for addressing historical bottlenecks in patient recruitment and retention, which have often
slowed the completion of clinical trials. Additionally, AI/ML can support innovative trial formats,
such as decentralized clinical trials (DCTs), which utilize digital health technologies (DHTs) to
facilitate more participant-centric approaches. These non-traditional trial designs can increase
accessibility and reduce participant burden, leading to more efficient and inclusive trials [85].

The FDA acknowledges the potential of AI/ML to improve trial design efficiency by using real-
world data (RWD) and other data sources to predict effective study protocols and identify optimal
participants. However, the FDA also emphasizes the need to maintain high standards for data quality
and ensure robust oversight to mitigate bias and data reliability risks. The agency stresses the
importance of ethical considerations, privacy protections, and transparency in developing and using
Al technologies in clinical trials [28,82,86]. Al technologies have the potential to revolutionize clinical
trials by extracting valuable data from unstructured reports and automatically annotating images or
lab results. Al can fill in missing data points through predictive modeling, allowing researchers to
identify unique subgroups within a population that respond differently to treatments.

Additionally, AI techniques can extract critical information from clinical trial reports, including
recovery outcomes, symptoms, side effects, and adverse incidents. This data extraction process can
streamline the formatting of eligibility requirements from trial descriptions into structured tables,
optimize site selection, refine eligibility criteria, and predict trial outcomes. Tasks traditionally
requiring a team of data scientists, such as data analysis or visualization coding, can now be
automated with Al significantly enhancing efficiency and reducing costs [28].

Integrating Al into healthcare brings significant benefits but poses serious privacy concerns. The
rise of large language models further expands the possibilities for Al in clinical trials. These models
can support healthcare professionals in various capacities, such as early disease detection, medical
image interpretation, drug discovery, treatment recommendations, and remote patient monitoring.
By automating repetitive tasks and providing decision support, Al can enable more accurate and
timely diagnoses, ultimately improving patient care and optimizing healthcare resource allocation.
This technological advancement facilitates a more personalized approach to medicine, where
treatments can be tailored to the specific needs of patients, enhancing both efficacy and safety. As
commercial entities gain increased access to patient health data, there is a growing risk of misuse or
insufficient protection of this sensitive information. The “black box” nature of many Al algorithms
complicates oversight, as their decision-making processes can be opaque [87]. Regulations must
emphasize patient agency to address these challenges, including recurrent informed consent and the
right to withdraw data. Additionally, innovative data protection measures and strict jurisdictional
controls are needed to safeguard privacy in an evolving technological landscape. Without robust
oversight, we risk falling behind the rapid pace of Al development.

The FDA has approved AI/ML applications in clinical care, such as software to detect diabetic
retinopathy from diagnostic images. This approval marks a significant step towards integrating Al
into everyday medical practices. Despite the promising capabilities of Al in healthcare, many
technological advancements still originate in academic research settings. Partnerships with
commercial entities are often necessary to bring these innovations from the lab to real-world
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application. These collaborations can help scale Al technologies and ensure they are accessible and
beneficial to the broader healthcare community [81,88].

The European Medicines Agency (EMA) has also been proactive in this area, issuing a draft
reflection paper on the application of Al and ML in developing, regulating, and using human and
veterinary medicines. This document, part of the HMA-EMA joint Big Data Steering Group’s
Workplan 2022-2025, explores the role of Al across the entire lifecycle of medicinal products —from
drug discovery to post-authorization. The reflection paper outlines various Al applications, such as
replacing animal models in preclinical development, optimizing patient selection in clinical trials,
and enhancing post-authorization pharmacovigilance activities. However, it also highlights
challenges like understanding algorithmic design, managing biases, and mitigating risks of technical
failures. The EMA advocates for a human-centric approach to Al development and deployment,
emphasizing compliance with existing legal requirements, ethical standards, and fundamental rights.
Developers are encouraged to seek early regulatory support, particularly if AI/ML systems could
impact the benefit-risk balance of a medicine.

Overall, both the FDA and EMA recognize the need for a balanced approach that fosters
innovation in Al applications while ensuring patient safety, ethical use, and regulatory compliance.
As Al technologies evolve, these regulatory bodies will likely continue to refine their frameworks
and guidelines to address emerging challenges and ensure the responsible use of Al in drug
development and clinical trials.

A Global Regulatory Landscape: EU vs. US and Industry Initiatives

Al represents an emerging and transformative force in global healthcare, yet it still operates in a
landscape lacking a unified international legal and regulatory framework. The Global Initiative on
Ethics of Autonomous and Intelligent Systems [89] aims to establish a comprehensive set of standards
and principles designed to ensure that autonomous and intelligent systems are developed in a secure,
ethical, and beneficial manner to society. This initiative also seeks to engage the public in formulating
ethical frameworks, thereby enhancing societal understanding and awareness of the ethical issues
associated with these technologies. By fostering public participation, the initiative encourages a more
inclusive approach to addressing autonomous and intelligent systems” moral, social, and economic
implications, ensuring that these technologies serve the common good and reflect diverse societal
values and perspectives [90].

While Al offers immense potential, its rapid development has raised concerns about its ethical
and societal implications. As a result, governments worldwide are grappling with how to regulate
this powerful technology. The European Union (EU) and the United States (US) have taken distinct
approaches, each with strengths and weaknesses. EU law could guide the WHO in reforming the
International Health Regulations (IHR). The EU has adopted a risk-based approach to Al regulation,
embodied in the Al Act. This framework categorizes Al systems based on their potential risks to
individuals and society. High-risk Al systems, such as those used in critical infrastructure or law
enforcement, face stricter requirements, including mandatory human oversight and transparency. In
contrast, the US has taken a more sector-based approach, relying on existing regulations in areas like
healthcare, finance, and transportation to address Al-related concerns. This approach offers flexibility
but can also lead to fragmentation and inconsistencies.

Beyond government regulation, individual companies and industry associations have also taken
steps to address Al-related risks. Microsoft, for example, has developed its own internal Al principles
to guide its research and development. However, there is a growing recognition that broader,
industry-wide initiatives are needed to establish common guidelines and principles. Organizations
should develop internal standards and guidelines aligning with ethical principles and regulatory
requirements. These standards should cover various Al development and use aspects, including data
governance, risk assessment, and transparency. By establishing clear internal rules, organizations can
ensure that their Al activities are conducted ethically and responsibly.
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The EU’s AI Act establishes a robust enforcement mechanism, with significant fines for non-
compliance. While lacking a centralized regulatory body, the US relies on a combination of federal
agencies and industry self-regulation to oversee Al development and deployment.

The rapid pace of Al development and its global reach necessitate international cooperation.
While the EU and US have taken different approaches, a growing consensus exists on the need for
global standards and best practices. International organizations like the Organization for Economic
Co-operation and Development [91] and the Group of Seven (G7) are promoting responsible Al
development and addressing shared challenges. While the EU and US have adopted distinct
approaches, both recognize the importance of balancing innovation with ethical considerations. As
Al continues to advance, it will be crucial for governments, industry, and civil society to work
together to ensure that this powerful technology is developed and used responsibly for all benefit.

Comparative Perspective on Al in Clinical Manufacturing and Commercialization

When comparing the FDA’s guidance on the use of Alin clinical trials with that of the European
Medicines Agency (EMA), several key differences and similarities emerge, reflecting their respective
regulatory philosophies and priorities [13,83].

The FDA has taken a proactive approach in addressing the integration of Al in clinical trials,
recognizing the potential of Al to enhance drug development and patient outcomes. However, the
agency’s guidance has often been criticized for being broad and high-level, focusing more on
outlining expectations and concerns rather than offering specific, practical instructions for
implementation. While encouraging innovation, this approach has left some industry stakeholders
seeking more concrete direction on complying with regulatory standards when utilizing Al in clinical
research. The FDA has also emphasized the importance of data quality, transparency, and the need
for Al systems to be interpretable, ensuring that the technology’s use does not compromise patient
safety or trial integrity.

On the other hand, the EMA has been somewhat more cautious in its approach to Al in clinical
trials. The EMA’s guidance tends to be more detailed and prescriptive, ensuring that Al applications
in clinical trials adhere to stringent data protection and ethical standards, particularly in the context
of the General Data Protection Regulation (GDPR). The EMA has emphasized the importance of
maintaining patient data privacy, informed consent, and the ethical use of Al, with a strong focus on
ensuring that Al systems do not introduce bias or compromise the validity of clinical trial results. The
EMA also emphasizes the need for transparency and explainability of Al algorithms, ensuring that
all stakeholders, including regulators, can understand how Al-driven decisions are made.

The FDA'’s guidance is generally more high-level and flexible, allowing for a broader
interpretation of how Al can be integrated into clinical trials. In contrast, the EMA’s guidance is more
detailed, focusing more on specific regulatory compliance, particularly regarding data protection
under GDPR.

The FDA and EMA prioritize transparency and explainability in Al systems, but the EMA places
a heavier emphasis on these aspects, especially regarding ethical considerations and patient safety.
The opaque nature of many Al models, particularly those based on deep learning, makes it
challenging for regulators to assess and verify the decision-making processes. The EMA has stated
that transparent Al systems should be preferred, emphasizing the need for companies to invest in
explainable Al technologies and maintain detailed documentation of Al decision-making processes.

Regarding data integrity and privacy, the EMA’s guidance is more stringent due to GDPR
requirements, while the FDA has a slightly different focus despite similar concerns. Both agencies
recognize the importance of data reliability and accuracy, and manufacturers should establish
procedures for data collection and selection. Companies should consider improving traditional tools
like encryption, access controls, and audit trails to ensure data integrity and handle more extensive
and complex datasets. Investing in advanced cybersecurity measures and establishing rigorous data
governance protocols is also essential.

Manufacturers must validate critical aspects of their operations through product and process
lifecycle validation. AI/ML-specific features, such as continuous learning, pose challenges as Al
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systems evolve based on new data. We anticipate regulators will update their frameworks to
encompass continuous monitoring and revalidation protocols for Al systems. Companies should
implement robust change control systems to manage updates to Al algorithms and consider
developing validation protocols that define objectives, scope, and acceptance criteria. These may
include performance testing, comparison against reference methods, evaluation of algorithm
robustness, and maintaining detailed records of algorithmic changes and performance metrics.

Using Al brings new and unknown risks, such as unfair or unreliable results due to untested
algorithms. Manufacturers should implement thorough risk assessment procedures, adopt specific
controls, enhance cybersecurity measures, and establish contingency plans for system failures.

While both the FDA and EMA recognize the transformative potential of Al in clinical trials, their
approaches differ in terms of the level of detail, focus on data privacy, and the provision of practical
guidance. The FDA’s more flexible, high-level guidance contrasts with the EMA’s detailed,
prescriptive approach, reflecting the U.S. and Europe’s different regulatory landscapes and priorities.
Understanding these differences is crucial for companies operating in both regions to navigate the
regulatory environment and successfully integrate Al into clinical trials.

WHO Guidelines and Perspectives on Al

The WHO has released multilateral reports in 2021 and 2023 emphasizing the need for ethical
and responsible use of Al in healthcare. These reports advocate for Al systems that uphold human
dignity, equity, fairness, and accountability while highlighting significant legal and ethical
challenges. The WHO highlights the need to ensure Al systems are safe and effective, quickly provide
these systems to those in need, and encourage dialogue among all stakeholders, including
developers, regulators, manufacturers, health workers, and patients. A key issue identified is the lack
of harmonized standards and coordination among countries and stakeholders, particularly
concerning data privacy and governance, underscoring the need for global collaboration to ensure
Al benefits all fairly and inclusively [33,92].

The WHO guidelines on Al in clinical trials, drug and biologics product development, and
manufacturing emphasize the importance of ethical considerations, data privacy, and addressing
biases to prevent health disparities. Al should augment rather than replace human decision-making,
and robust validation is crucial to ensure Al systems are accurate, reliable, and meet safety and
efficacy standards. Transparency in Al algorithms, with clear documentation of their development
and usage, is strongly advocated. In manufacturing, WHO recommends that Al be integrated within
existing Good Manufacturing Practices (GMP), ensuring it enhances rather than compromises
product quality, with continuous monitoring to detect and resolve any issues. Compared to the FDA
and EMA, the WHO’s guidelines align closely, with all three organizations emphasizing ethics,
validation, transparency, and the integration of Al within existing regulatory frameworks. However,
the specific approaches and requirements differ slightly, reflecting each organization’s regulatory
context.

The FDA and EMA provide comprehensive guidelines for integrating Al in clinical trials, drug
and biologics product development, and manufacturing processes, with a strong emphasis on ethics,
validation, and transparency. The FDA’s guidelines specifically focus on the validation and
verification of Al algorithms to ensure they meet clinical decision support standards, and it integrates
Al into GMP frameworks to maintain human oversight in manufacturing. Similarly, the EMA aligns
its guidance with WHO's principles, stressing the importance of rigorous validation, documentation,
and continuous monitoring of Al systems to ensure accuracy, reliability, and safety in drug
development and manufacturing. While both agencies emphasize ethical considerations and robust
validation, their guidelines reflect nuanced differences due to their distinct regulatory environments.
Many Al applications and methods do not significantly affect how current regulations or policies are
interpreted or applied, making them largely policy agnostic. However, the advancements toward
achieving parity between machine processing and human cognition have revealed instances where
existing public policies fall short in addressing societal challenges, a phenomenon known as
regulatory gaps.
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Despite its expertise and constitutional mandate to regulate global health, the WHO'’s role in
setting new norms is limited to issuing non-binding guidelines and recommendations. Although
these “soft” standards are influential and can shape national legislation and regulations, they fail to
create enforceable legal norms. In contrast, the International Health Regulations (IHR) are an essential
advancement in international law, providing a more formal framework for global health governance.
Since states have a general obligation to cooperate under the UN Charter, including in health matters,
the WHO should be empowered with enforcement authority to ensure compliance with the
International Health Regulations (IHR), which should be amended to address the integration of Al
in healthcare.

The current legal framework reveals the limitations of global public health and the relatively
constrained role of the WHO despite its historical regulatory efforts. With the rise of international
tech companies and evolving healthcare technologies, there is a pressing need for a new paradigm to
address these global expansions. The WHO must enhance its authority and normative powers to
address emerging issues related to Al in healthcare. Al can improve healthcare access and strengthen
health systems, particularly in developing countries. However, challenges such as bias, data
protection, and explainability must be addressed [93]. European regulations like GDPR, the Data Act,
and the AI Act offer robust frameworks for ethical Al use [33]. WHO members need to collaborate
on developing new, legally binding guidelines under the International Health Regulations (IHR) to
ensure effective and responsible Al integration in healthcare.

Integration and Regulation of AL/ML in Pharmaceutical Manufacturing

Integrating Al and ML technologies into pharmaceutical manufacturing has introduced
significant quality control and operational efficiency advancements. The rapid rise and expansion of
biologics, including living drugs such as cell and gene therapy (CGT), presents additional
opportunities and challenges in this area. For example, manufacturing engineered T-cells, a
promising cancer therapy, faces unique challenges due to their complexity and regulatory
requirements [79]. These products face lengthy approval times in both the US and EU, with the
timeline expected to worsen due to a technological shift in CGT drugs, especially for cancer. Using
mathematical modeling and Al, we can simulate product behaviors, quantify the relationship
between product attributes, patient physiology, and clinical outcomes, optimize treatments, and
accelerate personalized medicine development [94]. As the field grows, regulatory frameworks must
continuously adapt to manage emerging technologies effectively, balancing risks, benefits, and
unique characteristics for traditional biologics and advanced medicinal product manufacturing.
Although several guidelines exist for establishing these programs, they do not address the specific
challenges of manufacturing CGT products or offer real-world evidence of the program’s
effectiveness. In a GxP-regulated environment—including that regulating CGT, where Good Practice
guidelines are essential to ensure product quality and patient safety—AI/ML tools have
demonstrated their ability to enhance compliance by automating critical tasks and reducing human
error. For instance, Al systems can scrutinize every step of the manual vial-filling process in aseptic
processing, analyzing each segment to detect potential contamination risks. Similarly, Al introduces
precision through image recognition technologies in environmental monitoring, moving beyond the
traditional manual counting of microbial colonies [95]. In quality control testing, Al is now being
used to automate the integration of chromatographic peaks and the visual inspection of injectable
drugs, ensuring adherence to stringent regulatory standards [96].

Al's impact extends beyond routine manufacturing processes to producing advanced therapy
medicinal products (ATMP), medicines based on genes, tissue, cells, or combination, such as CGT.
Its ability to automate critical steps in the manufacturing process improves the scalability and
reliability of treatments, which is particularly beneficial in hospital settings, making personalized
medicine more accessible and practical. However, adopting AI/ML in GxP environments requires
careful consideration of regulatory requirements and validation processes.

As regulatory agencies work to develop and update guidelines that address the unique
challenges posed by AI/ML, particularly in the context of generative Al, stakeholders must ensure
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that Al-driven processes comply with current Good Manufacturing Practices (GMP) and other GxP
standards. Efforts to harmonize Al-related regulations across global platforms, such as those by the
International Society for Pharmaceutical Engineering (ISPE) and the International Council on
Harmonization (ICH), aim to reduce complexity for multinational companies and enhance
operational efficiencies while maintaining compliance. The evolving regulatory landscape
underscores the need for clear guidance on Al applications in Chemistry, Manufacturing, and
Controls (CMC), process control, and quality assurance, ensuring these technologies can be safely
integrated into pharmaceutical production [97].

Regulators are already gathering experience with AI/ML applications in the pharmaceutical
industry. For example, the FDA has published a white paper describing how various centers,
including CBER, CDER, CDRH, and OCP, collaborate to safeguard public health while fostering
responsible and ethical innovation. The EMA has established a Quality Innovation Group (QIG) to
support innovative medicine design, manufacturing, and quality control approaches. Both agencies
are updating or creating new guidelines to align with the digital age, such as the FDA’s draft guidance
on “Computer Software Assurance for Production and Quality System Software” and the EMA’s
concept paper for revising GMP Annex 11 (computerized systems). Despite these efforts, the
regulatory framework has not kept pace with the rapidly advancing field of AI/ML applications in
GMP settings, especially in the pharmaceutical context, creating a need for continuous monitoring
and adaptation.

The FDA and EMA also focus on specific guidance for the life sciences sector. The EMA has
issued a draft reflection paper on using Al in the drug life cycle, which includes recommendations
for model development and performance assessment based on quality risk management principles
and ICH Q8, Q9, and Q10 guidelines. The FDA has initiated discussions with stakeholders to gather
feedback on areas requiring clarity, such as regulatory oversight of Al in drug manufacturing and
standards for developing and validating AI models used for process control [97,83]

As Al continues to evolve, its applications in pharmaceutical manufacturing will require
ongoing regulatory attention and adaptation. Engaging with regulators early and shaping these
evolving guidelines will be crucial for stakeholders to navigate the complexities and harness the full
potential of Al in this highly regulated industry.

5.3.1. Digital Twins and Predictive Modeling

The pharmaceutical industry is increasingly adopting Al to enhance various stages of drug
development, from discovery to post-marketing surveillance. Digital twins represent a cutting-edge
application of Al in manufacturing process control by creating virtual simulations of physical systems
based on real-time sensor data [98,99]. A DT is a virtual representation of a real-world object or
system designed to reflect its behavior in real time and is continuously updated based on historical
data [100]. Unlike traditional simulations, DTs run in parallel with their real-world counterparts and
can simultaneously simulate multiple processes, allowing for enhanced process optimization and
development. Advanced cloud technologies support DTs in managing highly controlled industrial
environments, facilitating continuous data exchange and self-monitoring. This multidirectional
information flow enables DTs to provide comprehensive and accurate representations of a system’s
status, predict outcomes, suggest necessary actions, and even support closed-loop process control,
making them more effective than classical simulations [5]. A key advantage of Al-driven models is
their ability to perform counterfactual analyses, which involve rapidly simulating hypothetical
scenarios to predict possible outcomes. This capability allows pharmaceutical companies to conduct
virtual experiments, explore different manufacturing conditions, and understand the potential
impacts of various interventions without requiring extensive physical trials. By simulating “what-if”
scenarios, these models can identify the optimal process parameters that minimize waste, reduce
costs, and improve overall efficiency.

Furthermore, Al models enhance decision-making by integrating vast amounts of data from
diverse sources, such as sensor networks and historical databases, enabling a more holistic and data-
driven approach to process optimization [101]. Critical challenges in applying Al in
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biopharmaceutical manufacturing include the absence of clear regulatory guidelines, gaps in data
completeness, complexities in conducting risk assessments, a lack of specialized tools tailored for
biopharma, and a shortage of skilled professionals. These issues are compounded by the rapidly
evolving landscape of Al technologies, which demands continuous updates to regulatory
frameworks and increased training for personnel to utilize Al tools effectively [102].

Integrating DT technology early in product development, with a phase-appropriate and change
management approach, enables pharmaceuticals to adopt faster processes, achieve higher
efficiencies, and enhance customer engagement. As DTs and patient-specific data drive
advancements in clinical trials, they accelerate ATMP/CGT product development processes such as
safety and efficacy assessments, improve outcomes, and reduce costs. A key example is in silico
clinical trials for TCR-engineered T-cell therapies for cancer. Using a quantitative system
pharmacology model, patient-specific digital twins were developed to stimulate T cell kinetics,
created for patients with metastatic HPV-associated cancers, and identified stem cell-like memory T
cells (Tscm) as crucial for persistence and functional outcomes. Simulating the in silico trials, the
model predicted that enriching Tscm in the infused product could improve persistence and allow for
lower dosing [103]. This application illustrates how digital twins can optimize therapeutic strategies,
reduce variability, and accelerate drug development.

DT models face significant challenges, particularly regarding the availability of clinical data
necessary for algorithmically generating clinical decision support and trust reliability of the treatment
options evaluated [104-106]. To tackle these issues, a collaborative approach can effectively mitigate
the regulatory and ethical concerns of integrating Al-based decision-making tools into clinical
practices. This strategy emphasizes the need for high-quality data, effective historical data
management and awareness of synthetic biases, and thorough documentation and evaluation of
model validation to ensure effectiveness and equitable outcomes in drug development.

In biomanufacturing, Al-driven digital twins are precious for optimizing complex and sensitive
processes [107]. For example, these tools can precisely control bioreactor conditions by continuously
analyzing data streams related to temperature, pH, and nutrient levels. The models can predict the
impact of slight variations on the quality and yield of the biological product, allowing for real-time
adjustments that maintain optimal production conditions [108]. This intelligent closed-loop control
ensures consistent product quality and significantly reduces the likelihood of batch failures, which
can be costly and time-consuming. By providing real-time insights and recommendations, Al-driven
digital twins enable pharmaceutical manufacturers to maintain high precision and reliability in their
operations [109].

Additionally, integrating Al in biomanufacturing fosters innovation by accelerating the
development of new therapies and enhancing the scalability of production processes. Al models can
analyze patterns and trends in vast datasets to identify novel drug candidates, optimize formulation
compositions, and predict how changes in the manufacturing process could affect drug efficacy and
safety. This capability is critical as the industry shifts towards more personalized medicine
approaches, where small-batch production and rapid adjustments to manufacturing processes are
crucial. By optimizing these processes, Al helps bring new therapies to market faster and supports
the production of complex biologics tailored to individual patient needs [110]. Integrating Al and
digital twins into the pharmaceutical industry revolutionizes how complex data is handled, analyzed,
and utilized. It enables more precise and efficient manufacturing processes, reduces time-to-market
for new drugs, and ultimately leads to better patient outcomes. As Al technology advances, its role
in the pharmaceutical landscape is expected to expand, driving further innovations and setting new
standards for drug development and production [111].

5.3.2. Emerging Al-Focused Standards for Advanced Manufacturing Technologies

Integrating Al into advanced manufacturing technologies (AMT) has been transformative in
healthcare drug and biological product development. Al enhances precision, efficiency, and
adaptability, addressing critical challenges in producing complex therapeutics such as biologics, gene
therapies, and personalized medicine. Regulatory bodies, including the U.S. Food and Drug
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Administration (FDA) and organizations like the National Institute of Standards and Technology
(NIST), play a crucial role in guiding the effective and safe implementation of Al in these processes
[108].

Al algorithms are increasingly employed to monitor and optimize manufacturing processes in
real time. Continuous data collection and analysis enable Al to predict potential deviations and adjust
parameters to maintain optimal conditions, ensuring consistent product quality. This capability is
essential in biologics production, where even minor process variations can significantly affect
product efficacy and safety. The FDA’s guidelines stress the importance of Al-driven process control,
advocating for Al to complement existing technologies such as Process Analytical Technology (PAT)
and continuous manufacturing systems [112]. Al also facilitates the transition from traditional batch
manufacturing to constant manufacturing—a method endorsed by the FDA for its efficiency and
flexibility. Continuous manufacturing allows uninterrupted production, reducing lead times and
minimizing human error. Al systems are integral to monitoring and controlling material flow
maintaining quality throughout the process. The FDA’s guidance highlights Al’s role in enabling
rapid scaling to meet market demands, particularly for vaccines and other time-sensitive therapies
[84,113].

The ability of Al to analyze extensive datasets enhances the sophistication of quality assurance
measures. Machine learning models can identify patterns and anomalies that traditional methods
might overlook, allowing for early detection of potential quality issues. The FDA and NIST
emphasize Al's role in quality assurance, especially in preventing defects and ensuring compliance
with regulatory standards. Additionally, Al is pivotal in predictive maintenance, analyzing
equipment data to forecast and prevent failures, thus minimizing downtime and maintaining
operational efficiency. In the highly regulated drug and biological product manufacturing field,
adherence to regulatory standards is critical. Al can streamline documentation processes, ensuring
all manufacturing steps are accurately recorded in real time. This digital traceability simplifies audits
and provides a robust framework for demonstrating compliance with regulations from agencies like
the FDA and the European Medicines Agency (EMA). Al-driven systems also aid in preparing
regulatory submissions by automatically generating reports that meet required data standards and
formatting. Al is incredibly transformative in producing personalized medicine and advanced
therapeutics, such as CAR-T cell therapies and gene editing technologies. These treatments demand
highly specialized manufacturing processes tailored to individual patients. Al helps manage the
complexity of these processes, ensuring that each therapeutic product meets stringent quality and
safety standards. The FDA’s guidelines on advanced therapeutics underscore Al’s role in enabling
scalable production of personalized treatments, thereby increasing accessibility to these advanced
therapies. As Al technology continues to evolve, its integration into manufacturing processes is
expected to deepen, leading to the developing of “smart” manufacturing environments. These
environments will feature fully automated, Al-driven production lines capable of quickly adapting
to new challenges and innovations. Collaborative efforts by the FDA, NIST, and the National Institute
for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) are crucial in shaping these
advancements. NIST’s development of Al standards and performance metrics, combined with the
FDA'’s regulatory frameworks, will ensure that intelligent manufacturing in drug and biologic
production adheres to the highest safety and quality standards [84].

The FDA has also addressed the potential of AI/ML to enhance pharmaceutical manufacturing,
as highlighted in its Second Discussion Paper. This paper elaborates on how advanced analytics using
AI/ML can support various aspects of manufacturing, including process controls, equipment
reliability, and early warning systems for process deviations. The FDA identifies four critical areas
for AI/ML applications: process design optimization, advanced process control implementation,
intelligent monitoring and maintenance, and trending activities [83]. The FDA acknowledges the
need for robust standards for trustworthy Al focusing on characteristics such as explainability,
reliability, privacy, safety, security, and bias mitigation. The agency seeks feedback from stakeholders
to refine these standards and ensure they address specific concerns in drug development, including
governance, data quality, and model performance. While Al and ML hold immense potential for
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revolutionizing drug development and manufacturing, realizing this potential requires a balanced
approach to regulatory compliance and ethical standards. Addressing these challenges head-on,
coupled with global harmonization efforts, will enable the industry to harness the benefits of Al while
maintaining the highest standards of data protection and patient care.

5.3.3. Al-Enhanced Manufacturing Processes Monitoring

Al technologies rapidly advance in pharmaceutical manufacturing, offering significant potential
to enhance process monitoring, quality assurance, and operational efficiency. NIST has been at the
forefront of exploring Al-enhanced monitoring to optimize manufacturing processes, providing real-
time insights and predictive analytics that traditional methods could not achieve. Al systems can
analyze vast amounts of data from sensors and control systems, enabling continuous real-time
monitoring and adjustments to critical parameters, which is crucial for maintaining quality and
compliance in pharmaceutical production.

To further advance the integration of Al in manufacturing, NIST announced plans to establish a
Manufacturing USA institute in Spring 2024. The agency aims to select an applicant team “most
capable of establishing and leading a Manufacturing USA institute to accelerate the use of Al for
strengthening the resilience of manufacturing processes for the nation’s manufacturers.” This
initiative encourages collaboration among industry stakeholders, academia, federal laboratories, and
state and local governments, ensuring a broad base of expertise and resources to drive innovation in
Al applications. A key component of Al-focused manufacturing process monitoring is testing and
validating new data streams and system enhancements in a controlled, low-risk environment.
Platforms like CROW (Cyber-physical Research on Working setups) provide a benchtop setup where
pharmaceutical manufacturers can evaluate various Al tools and systems without fearing losing time
or resources in a full-scale production facility. This “try before you buy” philosophy is crucial for
facilities with limited resources, allowing them to invest confidently in technologies that promise the
highest returns.Experiments conducted on setups like CROW enable developers to test and
benchmark Al-based products and allow manufacturers to understand these products’ effects better,
compare solutions, and identify potential pain points. These efforts also help develop best practice
guides and standard operating procedures (SOPs) to manage, maintain, and sustain intelligent
automation now and in the futureSpecific areas targeted by Al-enhanced monitoring efforts include:

¢ Implementation of manufacturing data exchange standards

e  Cybersecurity monitoring to safeguard network and information integrity

¢ Digital twin or digital surrogate simulations for process testing and control

e  Reliability, prognostics, and health management of manufacturing equipment

e  Product quality monitoring to ensure compliance with regulatory standards

e  System-level evaluations to assess overall process efficiency and effectiveness

¢  Human interactivity and feedback mechanisms through natural language processing
e  Trust and trustworthiness requirements for Al systems

Future initiatives also anticipate enhancements in robot and co-bot control, advanced material
handling, standardization and implementation of data exchange protocols, and digital thread
mapping and utilization. By leveraging these advanced monitoring capabilities, pharmaceutical
manufacturers can detect anomalies or deviations from standard operating procedures more quickly
than human inspectors, reducing waste and preventing costly recalls or compliance violations.

Moreover, Al-enhanced monitoring supports predictive maintenance strategies by anticipating
equipment failures before they occur, minimizing downtime, and extending the lifecycle of critical
manufacturing equipment. In a highly regulated environment, such as pharmaceutical
manufacturing, these capabilities help maintain compliance with GMP by providing continuous
oversight and control over the production environment. As regulatory bodies continue to develop
guidelines for Al applications in manufacturing, the pharmaceutical industry must engage in
collaborative efforts, such as those encouraged by NIST’s upcoming Manufacturing USA institute.
This collaboration will be crucial in establishing best practices and standards for Al-enhanced
monitoring technologies, ensuring these tools are effective and compliant with regulatory
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requirements. Proactively integrating Al technologies into their monitoring systems, pharmaceutical
manufacturers can enhance their process monitoring capabilities and maintain a competitive edge in
a rapidly evolving industry.

Conclusions and Path Forward

Integrating Al and ML in drug development and clinical trials presents a double-edged sword,
offering transformative potential while posing significant challenges. On one hand, Al technologies
promise to enhance operational efficiency, improve trial design, and accelerate the development of
new therapies. On the other hand, they introduce ethical, regulatory, and data protection challenges
that must be carefully managed to ensure patient safety and data integrity.

Rules-based Al, operating on predefined rules and requirements, provides stability and
transparency but is limited by the knowledge and capabilities of its creators. In contrast, data-driven
responsible Al, such as machine learning algorithms, adapts and learns from data, offering flexibility
and the ability to handle complex scenarios. However, their effectiveness depends on the quality of
data and the system’s ability to manage and interpret it correctly. Misapplications or data issues can
lead to poor results, underscoring the need for rigorous testing and validation. Using a risk
assessment framework in model development helps determine the appropriate balance between
automation and human oversight, enhancing safety and overall system performance.

The FDA and EMA have proactively addressed these challenges, highlighting the importance of
collaboration among regulators, industry stakeholders, and data protection experts. The recent FDA
workshop emphasized the need to manage biases, ensure data quality, and maintain rigorous
validation and transparency of Al algorithms. Continuous monitoring and adaptation are essential
to navigate the evolving landscape of Al in drug development, along with robust regulatory
frameworks that prioritize ethical considerations related to data integrity, privacy, and risk-based
decision-making.

Key areas of focus moving forward should include:

e  Personalization: Leveraging Al to advance personalized medicine, ensuring treatments are
tailored to individual patient profiles.

¢ Regulatory Frameworks: Developing and refining robust Al validation and monitoring
frameworks to ensure compliance and safety.

e  Ethical Considerations: Addressing data privacy, security, and decision-making issues to
maintain public trust and uphold patient rights.

The National Institute of Standards and Technology (NIST) has been instrumental in developing
testing methods and metrics to differentiate useful Al tools from ineffective ones, emphasizing the
importance of good data and community feedback in this process. Our regulatory frameworks must
adapt as Al technologies evolve to ensure innovation is pursued ethically and with patient safety at
the forefront.

In conclusion, while Al and ML are promising to revolutionize drug development and clinical
trials, realizing this potential requires a balanced approach to regulatory compliance and ethical
standards. By addressing these challenges head-on and working towards global harmonization, the
industry can harness the benefits of Al while upholding the highest standards of data protection and
patient care. As we look to the future, the role of Al and ML in clinical trials and drug development
is poised for significant growth, ushering in an exciting new era of innovation and enhanced patient
outcomes.
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