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Abstract: In the domain of software engineering, the accurate and effective classification of requirements is of 

paramount importance. Proper classifications of these requirements enable developers to create robust and 

error-free software solution. Traditional methods of user requirements classification face the issue of the 

reliance on manual processes, which are time-consuming, labor-intensive, and prone to human error. The 

limitations of traditional methods underscore the need for more automated, scalable, and robust approaches 

to user requirements classification in order to meet the demands of modern software development practices. 

To improve the classification process, we employed a Deep Learning (DL) methodology termed the 

Bidirectional Long Short-Term Memory (Bi-LSTM) model to conduct feature extraction, after which we merged 

these feature vectors into ML classifiers. Our research methodology is structured around a five-step process. 

Initially, the textual input is tokenized and converted to lowercase. Subsequently, we eliminate all punctuation. 

The pre-processed text is then subjected to a Bi-LSTM (Bidirectional Long Short-Term Memory) model for 

feature vector extraction. After that, this feature vector is fed into different classifiers such as Medium KNN, 

Cubic KNN, Linear SVM, Quadratic SVM, and Cubic SVM and obtained an accuracy of around 99.60% to 

99.80% on a publicly available dataset of requirements.  

Keywords: Bi-LSTM; software engineering; functional requirements; non-functional requirements; 

machine learning 

 

1. Introduction 

The classification of the text refers to the categorization based on the attributes and properties 

belonging to each text. Text classification is utilized in various domains such as the identification of 

spam [1] and the categorization of news [2]. It is possible to do manual classification if the number of 

documents is limited. The task becomes difficult if these documents are in hundreds or thousands 

[3]. Manual requirement classification becomes cumbersome with increasing data volumes, 

necessitating efficient automated solutions. By Machine Learning (ML) and Deep Learning (DL) 

techniques aims to accelerate the accurate classification of Functional (FRs) and Non-functional 

Requirements (NFRs), ultimately contributing to improve software reliability and meeting project 

deadlines. Through automated classification, the goal is to empower software engineers to create 

efficient, error-free, and high-quality software within limited timeframes. The same is the case with 

software development requirement classification as the development of high-quality software is 

considered a costly and time taking task as it addresses the real-world problem [4]. There involve 

some software engineering tasks such as requirement identification, analyzing, designing, and final 

implementation. The requirements of the software, which are considered major properties of the 
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software, are also constrained by various factors. There are some other factors such as the tool of 

development, techniques, competency of a developer, and timeline that also add an additional layer 

of complexity. Due to these complexities, there come some defects in the software development life 

cycle (SDLC) [5]. One of the key challenges in requirements classification is accurately identifying 

relevant stakeholders during the elicitation phase, as misidentification can lead to incomplete or 

incorrect requirements, ultimately causing project failure. A systematic literature review highlights 

17 methodologies for stakeholder identification, emphasizing its importance in ensuring high-quality 

requirements classification [6]. According to authors of study [7], there is a fact that requirement 

engineers and software users use various terminologies and structures of sentences for a description 

of same kind of requirements. The high orders of inconsistency in the elicitation of requirements 

make the classification of requirements prone to error. There should be some optimal way to find 

automated classification. Inadequate collection, misunderstanding of requirements, inefficient 

architecture, and bad practices of coding may also create problems [8]. It will be very helpful in 

making good quality software as well in a limited time if these tasks are automized [9-12]. 

Identification of software requirements is considered a key task in the development of software. The 

Software Requirement Classification task is based on the classification of requirements of software 

[13]. The classification of the requirements can be considered as two categories as FRs and NFRs. 

Generally, the provision of the service that is considered mandatory is called FRs such as the function 

or behavior of a system and the quality of providing these services is referred as NFRs. The NFRs are 

based on performance, security, usability, and reliability. 

The user of software delivers their requirements in natural language and typically in words. 

After gathering of these requirements, this is the responsibility of analyst to extract the software 

requirements from the unstructured and ambiguous data to make the designer understand. The 

manual extraction of each requirement from ambiguous language is considered as daunting task. 

This difficulty comes due to ineffective extraction of features by human being. It is obvious that, if 

the FRs and NFRs are not extracted correctly, it will result in the failure of the project or software. 

Therefore, it is important to extract the complete and accurate FRs and NFRs in limited time at initial 

stage of SDLC. This is the reason that manual extraction of requirement is considered inaccurate and 

ineffective. The accurate and faster classification of requirement can be performed with the help of 

Artificial Intelligence (AI) techniques. Currently, ML and DL have transformed personal computers 

in hard working and intelligent assistants. These assistants are helping people in different domains 

such as industry, medicine and in software engineering as well. Hence, it can be easily stated that 

these methods can help software engineers to successfully classify the software requirements.   

The primary contribution of this paper is the introduction and utilization of the Bi-LSTM model 

[14], an advanced type of Recurrent Neural Network (RNN). Traditional RNNs are adept at 

recognizing patterns in sequences of data but struggle with learning from data points that are far 

apart due to issues like vanishing and exploding gradients. The Bi-LSTM model addresses these 

limitations by incorporating both bidirectional processing and long-term memory capabilities, 

making it particularly effective for sequence-based classification tasks [15]. This approach enables the 

network to remember information over extended periods and capture dependencies within the data 

more effectively. 

This paper develops the Bi-LSTM Model specifically for classification tasks, where the principal 

objective is to determine the specific category or class to which a particular input belongs. Conventional 

machine learning (ML) techniques often face difficulties in handling such tasks due to their limited 

ability to manage temporal dependencies and contextual information within sequences. The Bi-LSTM 

model overcomes these hurdles by processing data in both forward and backward directions, thus 

utilizing the entire context of the sequence. This bidirectional approach, combined with the memory 

retention properties of LSTM networks, ensures a more comprehensive understanding of the 

sequence, leading to improved classification accuracy. 

Furthermore, the paper elaborates on the dual processing capability of Bi-LSTMs, which 

consents them to utilize together prior and impending contexts, providing a richer and more nuanced 

analysis of the sequence. This comprehensive context utilization is critical for accurately capturing 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2024 doi:10.20944/preprints202410.2129.v1

https://doi.org/10.20944/preprints202410.2129.v1


 3 

 

the intricacies of sequence-based data, which is often missed by conventional ML models. By 

addressing these challenges, the Bi-LSTM model enhances the performance and reliability of 

classification tasks, making it a robust solution for applications requiring precise and thorough 

sequence analysis. 

The rest of the paper is organized as follows: Section 2 reviews existing approaches and 

highlights the unique contributions of this research. Section 3,details the proposed framework, 

explaining the techniques and processes used. Section 4. presents the experimental results and 

discussion. Section 5 discusses the threats to validity and how they were addressed. Section 6 

concludes the paper with a summary of key findings and suggestions for future work. 

2. Literature Review 

Timely and correct identification of requirements is very important for high quality software 

development. For this purpose, many researchers have carried out a plenty of work. In recent years, 

ML techniques have been used in Requirement Engineering (RE) activities, offering new approaches. 

A systematic mapping by [16] identified 57 algorithms applied in eight key RE activities, including 

requirements analysis and failure prediction. The authors of study [17], employed a method for 

classification of NFRs to help the experts in development of a good quality software. The method is 

based on a combination of ML attributes computation and classification methods. The approach is 

comprised of seven ML based techniques and four selection methods for features. The aim was to 

automatically classify NFRs by finding suitable pairs. The scheme was assessed for precision, F1-

score, recall, accuracy and obtained results of 66, 61, 61, and 76 percent accordingly. In study [3], 

authors compared some of the ML based algorithms for feature extraction to classify the NFRs and 

FRs. Initially, the preprocessing is performed by cleaning the document. After cleaning, two methods 

for computation and one for selection of features is used such as Term Frequency–Inverse Document 

Frequency (TF-IDF), Bag of Words (BoW), and Chi Squared (CHI2). A new dataset called 

PROMISE_exp is used to test the scheme and obtained F1-score of 74 percent for general 

classification.  

To classify software requirements, a new method is presented by authors [18]. Initially, the 

dataset called PURE is manually annotated to make a new dataset based on FRs and NFRs. The fine 

tuning of the model called BERT is performed and results are compared with ELMo and fastText. 

The assessment of the system is performed by comparing the results of PURE and document of 

Request for Information (RFI). The system succeeded in obtaining a maximum F1-score of 86% on 

PURE dataset and 80% on RFI dataset. In another method [19], DL based technique is presented by 

authors for classification of requirement. The task of classification is performed by exploiting five DL 

methods with the help of two voting algorithm of classification. The experiments were conducted by 

creating data from PURE dataset having 2617 FRs and 2044 NFRs and achieved promising results. 

Study [20] presented a scheme based on 5 ML methods and classified FRs into different 6 classes such 

as empowerment, solution, feature limitation, action limitation, policy, and definition. The method 

was tested by exploiting dataset having 600 FRs. The ML algorithms along with vector counting and 

TF-IDF were used for experiments. In another method [21], a technique for classification of software 

requirement is employed which is based on ML. They investigated the application and design of two 

models such as convolutional neural network (CNN) and artificial neural network (ANN). The aim 

was to classify NFRs into 5 different categories such as usability, security, maintainability, 

performance, and operability. The method was tested by using a dataset having 1000 NFRs and 

obtained maximum precision of 94, recall of 97, and f-score of 92 percent. In another method [22], 

authors applied the amalgamation of LR, NB, and SVM, with Doc2Vec for classification of NFRs and 

FRs.  Another combination of CNN, Word2vec and the FastText method is also applied on the 

PROMISE dataset. The outcomes of the FastText technique were best. Authors also used the 

combination of LR, NB, and SVM with BoW, and TF-IDF. The combination of Word2Vec and CNN 

algorithms is also utilized. The outcome of LR and TF-IDF attained best performance. 

In the research [5], a method for prioritization of demand is presented for development of 

software. Initially, a dataset in Turkish language was introduced for demand prioritization. The 
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dataset was based on records of manually labeled demands obtained from an insurance company 

demand management system. after that, a DL method is designed for improvement and prioritization 

of demands for software development. It was observed through experiments that DL method 

perform well as compared to other ML methods. To consider maintainability as security requirement, 

a method for classification of software is presented by authors [23].  The data was extracted from the 

projects of student. The technique is also verified by utilized DOSSPRE which contains 1317 

requirements for software having both FRs and NFRs. The ML such as SVM, LR, Multinomial Nave 

Bayes (MNB) algorithms were used for classification. The accuracy of 86% is obtained on all of 

classifiers for both binary class and multiclass. In another method presented in [24], an automated 

method for quality attributes prioritization and extraction is presented. The attributes were 

considered in context of development of agile based method. The method is comprised of two 

components such as QAPrioritiser and QAExtractor. QAExtractor is based on natural language 

processing (NLP) and QAPrioritiser is used for ranking of computed attributes. The method is 

assessed by calculating F-score, recall and precision. In study [25], a fine tuning method based on 

three stages is presented for prediction of software requirement. The prediction is based on priority, 

type and severity of the text requirement initiated by user. The method is compared with various 

techniques such as Sentence BERT and pooling based on word embedding. The result shows that fine 

tunned model can perform well for data distribution. The study [26], proposed a hybrid model, Bi-

LSTM+CNN, to address the weaknesses of LSTM and CNN individually. This model incorporates an 

attention mechanism to enhance accuracy and reduce the number of learnable parameters. By 

utilizing a CNN to extract features from various sentence locations, the Bi-LSTM model effectively 

reduces input features, resulting in improved accuracy, especially with larger training data sizes and 

epochs, offering a potential solution to long-term dependency and data loss issues in existing models. 

Here is the state-of-the-art table summarizing various studies, techniques/models used, key 

findings, research gaps, and our contribution: 

The exploration of various methodologies for automated requirement classification includes 

leveraging ML attributes computation, employing diverse classification techniques, as well as 

utilizing Natural Language Processing (NLP) tools. The methods encompass both traditional ML 

algorithms, such as Support Vector Machine (SVM), Logistic Regression (LR), and Multinomial Naive 

Bayes (MNB), and advanced DL methods like Convolutional Neural Networks (CNN) and 

Bidirectional Encoder Representations from Transformers (BERT). It covers ensemble methods and 

explores the amalgamation of different techniques, such as combining LR, Naive Bayes (NB), and 

SVM classifiers with techniques like Bag of Words (BoW), Term Frequency-Inverse Document 

Frequency (TF-IDF), Doc2Vec, and Word2Vec.  

Our contribution focuses on addressing these gaps by utilizing the Bidirectional Long Short-

Term Memory (Bi-LSTM) model, which offers significant improvements over the techniques and 

models discussed in the previous studies. Bi-LSTM's ability to capture and learn from sequential data 

more effectively enables it to enhance classification accuracy, improve context utilization, and 

provide a more robust solution for handling complex data dependencies. This model's bidirectional 

processing capability also allows for a more comprehensive understanding of input data, leading to 

better performance in classification tasks. By leveraging the strengths of Bi-LSTM, we aim to 

overcome the limitations identified in earlier studies, providing a more scalable, generalizable, and 

precise approach to machine learning classification. 

These methods are assessed using metrics like precision, recall, F1-score, and accuracy to gauge 

their effectiveness in classifying requirements. The utilization of advanced techniques like BERT, 

CNN, and DL methods enables accurate categorization, which in turn enhances software reliability 

and quality. However, the drawbacks are also acknowledged, including challenges related to 

imbalanced data, feature extraction, and the complexity of requirement classification due to the 

diversity of terminologies and sentence structures. This research aims to address these limitations 

and provide insights into the optimal utilization of automated techniques to attain accurate and 

efficient requirement classification, thus contributing to the advancement of software engineering 

practices. 
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 The state-of-the-art studies presented in the Table 1 summarize various techniques and 

models used in machine learning and deep learning for classification tasks, with each study 

contributing unique insights and advancements in the field. Despite these contributions, several 

research gaps have been identified, including limited precision and recall rates, challenges in pre-

processing and feature extraction, complexity in managing multiple deep learning methods, 

handling of imbalanced data, and the need for better generalization across datasets. 

Table 1. Summary of ML Classification Techniques and Research Gaps. 

3. Proposed Framework 

In this research, a Bi-LSTM model is used for requirements classification. The proposed model 

is based on some basic steps such as Tokenization the input, converting to lower case, removing the 

punctuation, feature extraction and classification. After the preprocessing of the data, the Bi-LSTM 

model is used to compute features, classifying the sequence into NFR or FR and training the model 

using carefully selected hyper-parameters to ensure optimal performance. Finally, the computed 

feature vector is fed into multiple classifiers for final classification as illustrated in Figure 1. 

Study Techniques/Models Key Findings Research Gaps 

Haque, 

and 

Rehman 

[15] 

Combination of ML attributes 

computation and 

classification methods 

Achieved precision 66%, F1-score 

61%, recall 61%, ,accuracy 76% 

Limited precision and recall rates 

Dias and 

Cordeiro 

[3] 

Comparison of ML 

algorithms for feature 

extraction 

F1-score 74% for general classification 

using PROMISE_exp dataset 

Challenges with preprocessing 

and feature extraction 

Ivanov et 

al.[16] 

Fine-tuned BERT compared 

with ELMo and fastText 

F1-score 86% on PURE dataset, 80% 

on RFI dataset 

Need for better generalization 

across datasets 

Khayashi 

et al,[17] 

DL methods with voting 

algorithm 

Promising results with PURE dataset 

having 2617 FRs and 2044 NFRs 

Complexity in managing multiple 

DL methods 

Baker et al, 

[19] 

CNN and ANN models Maximum precision 94%, recall 97%, 

F1-score 92% 

Handling of imbalanced data 

Tiun et al, 

[20] 

Combination of LR, NB, SVM 

with Doc2Vec and Word2Vec 

FastText technique showed best 

outcomes 

Complexity in integrating various 

techniques 

Tunali and 

Volkan [5] 

DL method for demand 

prioritization 

DL method performed better than 

other ML methods 

Scalability and generalization to 

different domains 

Kadebu et 

al,[21] 

Classification using SVM, LR, 

MNB 

Accuracy 86% for both binary and 

multiclass classification 

Requirement for larger and 

diverse datasets 

Ahmed et 

al,[22] 

Automated method for 

quality attributes 

prioritization and extraction 

Assessed using F-score, recall, and 

precision 

Improvement in context-aware 

classification 

Yildirim et 

al,[23] 

Fine-tuning method for 

software requirement 

prediction 

Fine-tuned model outperformed 

other techniques 

Need for robust evaluation 

metrics 

Jang et 

al,[24] 

Hybrid model Bi-LSTM+CNN 

with attention mechanism 

Improved accuracy with larger 

training data sizes and epochs 

Addressing long-term 

dependency and data loss issues 
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Figure 1. Proposed Architecture. 

A. Data Pre-processing 

In this section, a datasets available at [27] is obtained then we prepared a programming 

environment on the computer for the analysis and process of the dataset. In the preprocessing phase, 

we've selected techniques that are particularly effective for NFR classification. We also make sure 

that these techniques work well with our deep neural network. The benefits of employing these 

techniques include an increase in model accuracy and a decrease in both resource consumption and 

computation time. After preprocessing the data is divided into training and validation sets.  The 

detail of these preprocessing steps is mentioned in Figure 2.  

 

Figure 2. Preprocessing Phase. 

B. Extraction of Features Vector by employing Bi-LSTM Model 

The Bi-LSTM model is a powerful type of neural network used for sequential data processing, 

and is utilized for extraction of the features from input data. The Bi-LSTM model is based on the six 

layers as illustrated in Figure 3. These layers are Sequence Input, Word Embedding Layer [28], LSTM 

[29], Fully Connected [30], Softmax [31], and classification output. 

 

Figure 3. Bi-LSTM Layers. 

The model is trained using the training dataset. For training the model, hyper-parameters such 

as the number of LSTM units in each layer, learning rate, batch size, and the number of epochs are 

specified. These parameters are finalized after extensive experiments. Sequence Input Layer and 

Word Embedding Layer, these two layers form the foundational part of Bi-LSTM model for feature 
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extraction. We used input layer to capture the raw text sequences, and the embedding layer converted 

these sequences into meaningful dense representations that can be processed by the subsequent Bi-

LSTM layers.  

LSTM networks are considered an improvement over traditional Recurrent Neural Networks 

(RNNs), especially in tasks involving learning from sequences of data. Traditional RNNs struggle 

with long-term dependencies due to the vanishing gradient problem. The gating mechanisms in 

LSTMs allow for focusing on the most relevant features in a sequence. The LSTM is based on four 

gates such as (i) input gate, (ii) forget gate, (iii) output gate, and (iv) cell candidate gate. In the context 

of an LSTM network, the four gates along with the two key additional components Cell State and the 

LSTM Output work together to regulate the flow of information through the LSTM cell and the details 

are provided in Table 2. 

Table 2. LSTM Network Detail. 

LSTM Layer Role Formula 

Input gate (it) Determines which parts of the current input x(t) are relevant to 

be added to the cell state. 

it = σ (Wi [ht−1 , xt] +bi) 

Forget gate (ft) Decides which parts of the previous cell state C(t−1) should be 

forgotten. 

ft = σ (Wf [ht−1 , xt] + bf) 

Output gate (Ot) Determines which parts of the cell state will be outputted in the 

LSTM output ht 

Ot = σ (Wo [ht−1 , xt] + bo) 

Cell candidate gate (ct) Generates a candidate vector of values that could be added to 

the cell state. The tanh function helps to keep these values 

normalized. 

ct = tanh (Wc [ht−1 , xt] + bc) 

Cell  

State( st) 

Updates the cell state by combining the old state (modulated by 

the forget gate) and the new candidate values (modulated by 

the input gate). 

�� = � ⊙ ���� + �� ⊙ ��           

LSTM Output (ht) Determines the final output of the LSTM unit at time t. The 

output gate controls which parts of the cell state are outputted. 

ht = Ot ⊙ tanh(ct) 

Here, Wx and bx represents the weights and biases of the respective gates. 

� =

⎣
⎢
⎢
⎡

�������

��������

������ ���������

�������� ⎦
⎥
⎥
⎤

 ,    �� =

⎣
⎢
⎢
⎢
⎡

������

�������

����� ���������

������� ⎦
⎥
⎥
⎥
⎤

 

σ is the sigmoid function that squishes values between 0 and 1, effectively deciding how much of the 

past information to keep. 

ht−1 represents the output of the LSTM block at time step t-1 

xt represents the time at current time step t 

⊙ Represents the Hadamard product (element-wise multiplication) and it is used as the operation 

for combining the outputs of the gates with the cell state or candidate values. 

In the LSTM, time steps of layers of LSTM are utilized to compute the feature vectors and give 

us input to the next block. The nth block output is used to predict the next class label, in which the 

hidden unit is given to the fully connected, SoftMax, and the output. After extracting feature vectors 

with the Bi-LSTM, we fed these vectors into different classifiers, including Medium KNN (MKNN), 

Cubic KNN (CKNN), Linear SVM (LSVM), Quadratic SVM (QSVM), and Cubic SVM (CSVM). Each 

of these classifiers has its own approach to making predictions based on the feature vectors. Each 

classifier is trained on the training data and evaluated on the testing data. The performance of each 
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classifier is assessed, and the best classifier is selected for the specific task. This process allows us for 

comparing different classification methods and choosing the one that works best. 

4. Experimental Results 

In this study, we rigorously evaluated the performance of a Bi-LSTM model for feature 

extraction from our dataset, followed by the application of these features to various classifiers to 

assess their efficacy in predictive analytics. Our experimental framework was structured to first fine-

tune and train the Bi-LSTM model, ensuring optimal feature extraction, and then to employ these 

features in different classification algorithms. The results section is presented in two main parts: 

firstly, the training and optimization of the Bi-LSTM model, and secondly, the classification results 

obtained from deploying various classifiers , including Medium KNN (MKNN) [32], Cubic KNN 

(CKNN) [33], Linear SVM (LSVM) [34], Quadratic SVM (QSVM) [35], and Cubic SVM (CSVM) [36] 

using the extracted features. The Bi-LSTM model was trained on a comprehensive dataset [27]. The 

dataset is comprised of a total of 12 classes and are represented in Table 3 along with their class 

symbols. 

Table 3. Dataset Classes used for Experiment. 

Dataset was divided into a training set and a testing set in a 70: 30 ratio. This means that 70% of 

the data was used for training the Bi-LSTM model, and the remaining 30% was used for evaluating 

the model's performance. The 10-fold cross-validation method was utilized in which the training data 

was further divided into 10 equal parts (folds). The model was trained and evaluated 10 times, each 

time using a different fold as the test set and the remaining nine folds as the training set. This helped 

in assessing the model's generalization performance. A learning rate of 0.001 was used during the 

training of the Bi-LSTM model. The learning rate is a hyper-parameter that controls the step size at 

which the model's parameters are updated during training. A smaller learning rate can lead to slower 

but more stable convergence during training. The entire experimentation and analysis were carried 

out using MATLAB 2021A. The experiments were conducted on a computer system with specific 

hardware specifications. We used a Core i7 system with 16GB of RAM (Random Access Memory) 

and an NVIDIA 940MX GPU (Graphics Processing Unit) with 4GB of memory. The GPU can 

significantly speed up DL tasks due to its parallel processing capabilities. For computing features we 

used Matcovnet [37] as the DL toolbox. This toolbox is likely used to implement and train the Bi-

LSTM model and perform feature extraction. 

During of our proposed Bi-LSTM model, we undertook a series of extensive experiments to 

select the optimal hyper-parameters for training. This involved conducting various experiments, each 

designed to evaluate the effectiveness of varying hyper-parameter configurations. The results of four 

experiments are organized in Table 4.  

Table 4. Parameters used in Experiments and the Corresponding Training Accuracies. 

Class Name Class Symbol Class Name Class Symbol 

Functional F Operational O 

Availability A Performance PE 

Fault Tolerance FT Portability PO 

Legal L Scalability SC 

Look & Feel LF Security SE 

Maintainability MN Usability US 
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Exper. Batch Size Learning Rate Epochs Accuracy (%) Figure 

1 16 0.001 50 61.26 4 

2 16 0.001 100 66.67 5 

3 16 0.001 150 72.97 6 

4 16 0.001 200 66.67 7 

These experiments collectively demonstrate how varying the number of epochs while holding 

other parameters steady can impact the training effectiveness of the Bi-LSTM model. A lot of padding 

is occurred while training the model which results the overhead and also affects classification. This 

problem is addressed by limiting the length of sequence to 60. Experiment 3 emerged as the most 

successful, achieving the highest accuracy among all trials. Based on these findings, we selected the 

hyper-parameters used in Experiment 3 for our final model configuration. 

This includes setting the model with 150 hidden units, a manageable batch size of 16, a learning 

rate of 0.001, and a comprehensive training duration of 150 epochs. The decision to adopt these 

specific parameters was driven by their demonstrated ability to significantly enhance the model's 

performance. 

 

Figure 4. Training Accuracy of Bi-LSTM in Experiment 1. 

 

Figure 5. Training Accuracy of Bi-LSTM in Experiment 2. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 October 2024 doi:10.20944/preprints202410.2129.v1

https://doi.org/10.20944/preprints202410.2129.v1


 10 

 

 

 

Figure 6. Training Accuracy of Bi-LSTM in Experiment 3 . 

 

Figure 7. Training Accuracy of Bi-LSTM in Experiment 4. 

After the successful extraction of features, the resultant feature vector (FV) was subjected to a 

series of classification tests to evaluate the efficacy of the extracted features. Utilizing MATLAB, we 

applied several well-established classifiers, namely Medium KNN (MKNN), Cubic KNN (CKNN), 

Linear SVM (LSVM), Quadratic SVM (QSVM), and Cubic SVM (CSVM). This phase was crucial to 

determine the predictive power of the features under various classification schemes. The 

computational cost, measured in seconds (sec), is also evaluated. This indicates how much time it 

takes for the system to perform the experiments and computations, which is important for assessing 

the system's efficiency and response time. When feature vectors are fed into classifiers, the classifier's 

performance evaluation relies heavily on metrics such as Recall (Rec), Precision (Pr), and Accuracy 

(Acc). These metrics are essential for understanding how well the model can classify and predict 

outcomes, providing insights into different aspects of its effectiveness. Table 5 summarizes the key 

aspects of these metrics.  

TP (True Positives): Instances correctly identified as positive. 

TN (True Negatives): Instances correctly identified as negative. 

FP (False Positives): Instances incorrectly identified as positive. 

FN (False Negatives): Instances incorrectly identified as negative. 

To visually assess and compare the performance of these classifiers, scatter plots are utilized. 

Such plotting allows a graphical representation of the classifier's outcomes in a two-dimensional 

space. Each point on the scatter plot corresponds to a feature vector and is colored according to the 

classifier's prediction. This visualization technique enables a quick and intuitive way to understand 
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how well each classifier is segregating the data points. The legend of a scatter plot helps to understand 

the plot by providing information about the different colors represented within the plot. The 

verification of the results by using namely MKNN, CKNN, LSVM, QSVM, and CSVM classifiers is 

presented with the help of scatter plots as shown in Figures 8–12. The detailed information about 

how each classifier performs in terms of these metrics and how long it takes them to compute their 

results is described in Table 5. 

Table 5. Information about Recall,Precision and Accuracy. 

Metric Formula Role 

Recall (Rec) TP / (TP + FN) 
Measures the classifier's ability to identify all 

relevant instances. 

Precision (Pr) TP / (TP + FP) 
Assesses the accuracy of the classifier when it 

predicts a positive class. 

Accuracy 

(Acc) 

(TP + TN) / (TP + TN + FP 

+ FN) 

Gives an overall idea of how often the classifier is 

correct. 

 

 

Figure 8. Scatter Plot of MKNN Results. 

 
 

 

Figure 9. Scatter plot of CKNN Results. 
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Figure 10. Scatter plot of  LSVM Results. 

 
 

Figure 11. Scatter plot of  LSVM Results. 

 
 

Figure 12. Scatter plot of  CSVM Results. 

According to the results chart Table 6, the MKNN classifier outperforms the others, achieving 

the highest precision and recall scores compared to other classifiers. Additionally, MKNN 

demonstrates competitive computational efficiency, with a relatively low time of 1.5199 seconds. 

Therefore, MKNN emerges as a good classifier due to its balanced performance in recall, precision 

and significantly faster computation time.  

Table 6. Results by using the Proposed Classifiers. 

Classifier Recall Precision Accuracy Time (Sec) 

MKNN 91.48 91.56 99.60 1.5199 

CKNN 91.48 91.43 99.60 2.3769 

LSVM 91.43 91.38 99.60 10.3560 

QSVM 91.43 91.38 99.80 9.5692 

CSVM 91.26 90.56 99.80 7.3273 

Discussion 

In this study, we present a system for classification of requirements such as FRs and NFRs 

employing a Bi-LSTM model. Our approach involves training the model with various parameter 

configurations, including learning rate, epochs, and mini-batch size. Throughout our experiments, 

all parameters remain consistent except for the number of epochs, which varies across different trials: 

50 epochs in Experiment 1, 100 epochs in Experiment 2, 150 epochs in Experiment 3, and 200 epochs 

in Experiment 4. While training the model, it is observed that the accuracy of the model was gradually 

increasing when number of epochs changes from 50 to 100. More improvement was observed when 

the number of epochs was increased to 150. But when the number of epochs was set to 200 resulted 

in the decline of system performance. During experiments, it is observed that the most affecting 
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parameter for training the model is the number of epochs. Specifically, we find that the highest 

training accuracy of 72.97% is achieved with 150 epochs, signifying an optimal balance between 

training duration and model effectiveness. Consequently, we designate the parameter configuration 

from Experiment-3 as the final setting for subsequent requirement classification tasks. This empirical 

exploration elucidates the importance of fine-tuning training parameters, particularly the number of 

epochs, in optimizing the performance of Bi-LSTM models for requirement classification. 

V. Threats to Validity 

When employing a Bi-LSTM model for feature extraction followed by the utilization of different 

ML classifiers for feature classification, several threats to validity must be considered. Firstly, there 

is a risk of external validity threat if the dataset used for training and evaluation does not adequately 

represent the real-world distribution of feature vectors. To mitigate the risk of external validity threat 

associated with dataset representativeness, several measures have been implemented. The efforts 

have been made to collect or generate a diverse and representative dataset that reflects the real-world 

distribution of feature vectors. Furthermore, the dataset is split into training and testing subsets, with 

careful consideration given to maintaining the integrity of the distribution across these partitions. 

Cross-validation techniques are also utilized to assess model generalization across multiple folds of 

the data. Secondly, there is a potential threat to internal validity arising from the selection of hyper-

parameters during the training of the Bi-LSTM model, such as the number of layers, hidden units, 

and learning rate, which could influence the quality and relevance of the extracted features. A 

systematic approach to hyper-parameter selection has been adopted, involving cross-validation 

techniques to ensure robustness and generalizability of the Bi-LSTM model. This process ensures 

thorough evaluation and comparison of various combinations of hyper-parameters, techniques such 

as early stopping have been implemented to prevent over fitting and enhance generalization 

performance. Additionally, the choice of ML classifiers introduces another layer of complexity, as 

different algorithms may perform variably based on the nature of the extracted features. This leads 

to a potential threat to construct validity, as the classifiers may not accurately capture the underlying 

structure of the data, resulting in biased comparisons. To mitigate the threat posed by the variability 

in ML classifier performance and its potential impact on construct validity, we evaluated each 

classifier thoroughly using standard performance metrics such as accuracy, precision, recall, and F1-

score. By systematically comparing the performance of multiple classifiers on the same set of 

extracted features, we aim to mitigate biases and ensure a more accurate representation of the 

underlying data structure, thus enhancing the construct validity of our analysis. By implementing 

these measures, we aim to enhance the validity and generalizability of our findings when applying 

Bi-LSTM models for feature extraction and classification using different machine learning classifiers. 

6. Conclusion 

In this work, our aim was to classify the user requirement in the field of RE. Traditional methods 

of user requirements classification often struggle to handle the complexity and variability present in 

natural language, making it difficult to capture context-dependent features of user requirements. 

Furthermore, these methods may lack scalability, as they may not be equipped to handle large 

volumes of requirements data efficiently. We utilized a DL technique named as Bi-LSTM model for 

feature extraction followed by the integration of these feature vectors into five distinct ML classifiers 

namely MKNN, CKNN, LSVM, QSVM, and CSVM. We observed that MKNN stands out as an 

effective classifier due to its balanced performance in recall, precision and notably accelerated 

computation time. The adoption of this technique promises to revolutionize requirement 

classification by enabling efficient and accurate identification of NRFs and FRs. Notably, our 

approach surpasses previous methodologies due to several key factors. Firstly, Bi LSTM has a 

bidirectional processing capability of capturing both forward and backward contextual dependencies 

ensured a more comprehensive understanding of the input sequence. Secondly, the utilization of 

multiple ML classifiers offered a robust evaluation framework, ensuring a comprehensive analysis of 

the model's performance across various algorithms. Furthermore, our emphasis on both performance 
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metrics and computational efficiency underscores our commitment to practical applicability and 

scalability. Overall, our study represents a significant contribution to the domain by offering a refined 

methodology that outperforms previous approaches in terms of accuracy, versatility, and 

computational efficiency. 

Future Work 

Our aim is to test this technique on some other datasets exploring its adaptability across various 

contexts within the software engineering domain. Through persistent refinement efforts and 

extensive testing endeavors, our ambition is to catalyze the progression of automated requirement 

classification, bringing about heightened levels of accuracy and increased efficiency in software 

development practices. 
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