Pre prints.org

Article Not peer-reviewed version

Bi-LSTM-Based Model for Classifying
Software Requirements

Jalil Abbas , Zhuoxuan Hu , Saima Kanwal , Arshad Ahmad ' , Ahmad Almogren , Ayman Altameem

Posted Date: 28 October 2024
doi: 10.20944/preprints202410.2129v1

Keywords:

Bi-LSTM; software engineering; functional requirements; non-functional requirements; machine learning

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/3712202
https://sciprofiles.com/profile/3962018
https://sciprofiles.com/profile/3962023
https://sciprofiles.com/profile/870509
https://sciprofiles.com/profile/3588281

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Bi-LSTM-Based Model for Classifying Software
Requirements

Jalil Abbas ¥*, Zhuoxuan Hu !, Saima Kanwal ?, Arshad Ahmad 3*, Ahmad Almogren *
and Ayman Altameem °

1 School of Computer Science and Technology, Anhui University, Hefei 230039, China

2 School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China

3 School of Computing Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology,
Haripur,22620 Pakistan

4 Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11633, Saudi Arabia

5 Department of Natural and Engineering Sciences, College of Applied Studies and Community Services,
King Saud University, Riyadh, 11543, Saudi Arabia

* Correspondence: jalil02085@stu.ahu.edu.cn (J.A.); yaarshad@gmail.com (A.A.)

Abstract: In the domain of software engineering, the accurate and effective classification of requirements is of
paramount importance. Proper classifications of these requirements enable developers to create robust and
error-free software solution. Traditional methods of user requirements classification face the issue of the
reliance on manual processes, which are time-consuming, labor-intensive, and prone to human error. The
limitations of traditional methods underscore the need for more automated, scalable, and robust approaches
to user requirements classification in order to meet the demands of modern software development practices.
To improve the classification process, we employed a Deep Learning (DL) methodology termed the
Bidirectional Long Short-Term Memory (Bi-LSTM) model to conduct feature extraction, after which we merged
these feature vectors into ML classifiers. Our research methodology is structured around a five-step process.
Initially, the textual input is tokenized and converted to lowercase. Subsequently, we eliminate all punctuation.
The pre-processed text is then subjected to a Bi-LSTM (Bidirectional Long Short-Term Memory) model for
feature vector extraction. After that, this feature vector is fed into different classifiers such as Medium KNN,
Cubic KNN, Linear SVM, Quadratic SVM, and Cubic SVM and obtained an accuracy of around 99.60% to
99.80% on a publicly available dataset of requirements.

Keywords: Bi-LSTM; software engineering; functional requirements; non-functional requirements;
machine learning

1. Introduction

The classification of the text refers to the categorization based on the attributes and properties
belonging to each text. Text classification is utilized in various domains such as the identification of
spam [1] and the categorization of news [2]. It is possible to do manual classification if the number of
documents is limited. The task becomes difficult if these documents are in hundreds or thousands
[3]. Manual requirement classification becomes cumbersome with increasing data volumes,
necessitating efficient automated solutions. By Machine Learning (ML) and Deep Learning (DL)
techniques aims to accelerate the accurate classification of Functional (FRs) and Non-functional
Requirements (NFRs), ultimately contributing to improve software reliability and meeting project
deadlines. Through automated classification, the goal is to empower software engineers to create
efficient, error-free, and high-quality software within limited timeframes. The same is the case with
software development requirement classification as the development of high-quality software is
considered a costly and time taking task as it addresses the real-world problem [4]. There involve
some software engineering tasks such as requirement identification, analyzing, designing, and final
implementation. The requirements of the software, which are considered major properties of the

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202410.2129.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

software, are also constrained by various factors. There are some other factors such as the tool of
development, techniques, competency of a developer, and timeline that also add an additional layer
of complexity. Due to these complexities, there come some defects in the software development life
cycle (SDLC) [5]. One of the key challenges in requirements classification is accurately identifying
relevant stakeholders during the elicitation phase, as misidentification can lead to incomplete or
incorrect requirements, ultimately causing project failure. A systematic literature review highlights
17 methodologies for stakeholder identification, emphasizing its importance in ensuring high-quality
requirements classification [6]. According to authors of study [7], there is a fact that requirement
engineers and software users use various terminologies and structures of sentences for a description
of same kind of requirements. The high orders of inconsistency in the elicitation of requirements
make the classification of requirements prone to error. There should be some optimal way to find
automated classification. Inadequate collection, misunderstanding of requirements, inefficient
architecture, and bad practices of coding may also create problems [8]. It will be very helpful in
making good quality software as well in a limited time if these tasks are automized [9-12].
Identification of software requirements is considered a key task in the development of software. The
Software Requirement Classification task is based on the classification of requirements of software
[13]. The classification of the requirements can be considered as two categories as FRs and NFRs.
Generally, the provision of the service that is considered mandatory is called FRs such as the function
or behavior of a system and the quality of providing these services is referred as NFRs. The NFRs are
based on performance, security, usability, and reliability.

The user of software delivers their requirements in natural language and typically in words.
After gathering of these requirements, this is the responsibility of analyst to extract the software
requirements from the unstructured and ambiguous data to make the designer understand. The
manual extraction of each requirement from ambiguous language is considered as daunting task.
This difficulty comes due to ineffective extraction of features by human being. It is obvious that, if
the FRs and NFRs are not extracted correctly, it will result in the failure of the project or software.
Therefore, it is important to extract the complete and accurate FRs and NFRs in limited time at initial
stage of SDLC. This is the reason that manual extraction of requirement is considered inaccurate and
ineffective. The accurate and faster classification of requirement can be performed with the help of
Artificial Intelligence (Al) techniques. Currently, ML and DL have transformed personal computers
in hard working and intelligent assistants. These assistants are helping people in different domains
such as industry, medicine and in software engineering as well. Hence, it can be easily stated that
these methods can help software engineers to successfully classify the software requirements.

The primary contribution of this paper is the introduction and utilization of the Bi-LSTM model
[14], an advanced type of Recurrent Neural Network (RNN). Traditional RNNs are adept at
recognizing patterns in sequences of data but struggle with learning from data points that are far
apart due to issues like vanishing and exploding gradients. The Bi-LSTM model addresses these
limitations by incorporating both bidirectional processing and long-term memory capabilities,
making it particularly effective for sequence-based classification tasks [15]. This approach enables the
network to remember information over extended periods and capture dependencies within the data
more effectively.

This paper develops the Bi-LSTM Model specifically for classification tasks, where the principal
objective is to determine the specific category or class to which a particular input belongs. Conventional
machine learning (ML) techniques often face difficulties in handling such tasks due to their limited
ability to manage temporal dependencies and contextual information within sequences. The Bi-LSTM
model overcomes these hurdles by processing data in both forward and backward directions, thus
utilizing the entire context of the sequence. This bidirectional approach, combined with the memory
retention properties of LSTM networks, ensures a more comprehensive understanding of the
sequence, leading to improved classification accuracy.

Furthermore, the paper elaborates on the dual processing capability of Bi-LSTMs, which
consents them to utilize together prior and impending contexts, providing a richer and more nuanced
analysis of the sequence. This comprehensive context utilization is critical for accurately capturing

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

the intricacies of sequence-based data, which is often missed by conventional ML models. By
addressing these challenges, the Bi-LSTM model enhances the performance and reliability of
classification tasks, making it a robust solution for applications requiring precise and thorough
sequence analysis.

The rest of the paper is organized as follows: Section 2 reviews existing approaches and
highlights the unique contributions of this research. Section 3,details the proposed framework,
explaining the techniques and processes used. Section 4. presents the experimental results and
discussion. Section 5 discusses the threats to validity and how they were addressed. Section 6
concludes the paper with a summary of key findings and suggestions for future work.

2. Literature Review

Timely and correct identification of requirements is very important for high quality software
development. For this purpose, many researchers have carried out a plenty of work. In recent years,
ML techniques have been used in Requirement Engineering (RE) activities, offering new approaches.
A systematic mapping by [16] identified 57 algorithms applied in eight key RE activities, including
requirements analysis and failure prediction. The authors of study [17], employed a method for
classification of NFRs to help the experts in development of a good quality software. The method is
based on a combination of ML attributes computation and classification methods. The approach is
comprised of seven ML based techniques and four selection methods for features. The aim was to
automatically classify NFRs by finding suitable pairs. The scheme was assessed for precision, F1-
score, recall, accuracy and obtained results of 66, 61, 61, and 76 percent accordingly. In study [3],
authors compared some of the ML based algorithms for feature extraction to classify the NFRs and
FRs. Initially, the preprocessing is performed by cleaning the document. After cleaning, two methods
for computation and one for selection of features is used such as Term Frequency—Inverse Document
Frequency (TF-IDF), Bag of Words (BoW), and Chi Squared (CHI2). A new dataset called
PROMISE_exp is used to test the scheme and obtained Fl-score of 74 percent for general
classification.

To classify software requirements, a new method is presented by authors [18]. Initially, the
dataset called PURE is manually annotated to make a new dataset based on FRs and NFRs. The fine
tuning of the model called BERT is performed and results are compared with ELMo and fastText.
The assessment of the system is performed by comparing the results of PURE and document of
Request for Information (RFI). The system succeeded in obtaining a maximum F1-score of 86% on
PURE dataset and 80% on RFI dataset. In another method [19], DL based technique is presented by
authors for classification of requirement. The task of classification is performed by exploiting five DL
methods with the help of two voting algorithm of classification. The experiments were conducted by
creating data from PURE dataset having 2617 FRs and 2044 NFRs and achieved promising results.
Study [20] presented a scheme based on 5 ML methods and classified FRs into different 6 classes such
as empowerment, solution, feature limitation, action limitation, policy, and definition. The method
was tested by exploiting dataset having 600 FRs. The ML algorithms along with vector counting and
TE-IDF were used for experiments. In another method [21], a technique for classification of software
requirement is employed which is based on ML. They investigated the application and design of two
models such as convolutional neural network (CNN) and artificial neural network (ANN). The aim
was to classify NFRs into 5 different categories such as usability, security, maintainability,
performance, and operability. The method was tested by using a dataset having 1000 NFRs and
obtained maximum precision of 94, recall of 97, and f-score of 92 percent. In another method [22],
authors applied the amalgamation of LR, NB, and SVM, with Doc2Vec for classification of NFRs and
FRs. Another combination of CNN, Word2vec and the FastText method is also applied on the
PROMISE dataset. The outcomes of the FastText technique were best. Authors also used the
combination of LR, NB, and SVM with BoW, and TF-IDF. The combination of Word2Vec and CNN
algorithms is also utilized. The outcome of LR and TF-IDF attained best performance.

In the research [5], a method for prioritization of demand is presented for development of
software. Initially, a dataset in Turkish language was introduced for demand prioritization. The

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

dataset was based on records of manually labeled demands obtained from an insurance company
demand management system. after that, a DL method is designed for improvement and prioritization
of demands for software development. It was observed through experiments that DL method
perform well as compared to other ML methods. To consider maintainability as security requirement,
a method for classification of software is presented by authors [23]. The data was extracted from the
projects of student. The technique is also verified by utilized DOSSPRE which contains 1317
requirements for software having both FRs and NFRs. The ML such as SVM, LR, Multinomial Nave
Bayes (MNB) algorithms were used for classification. The accuracy of 86% is obtained on all of
classifiers for both binary class and multiclass. In another method presented in [24], an automated
method for quality attributes prioritization and extraction is presented. The attributes were
considered in context of development of agile based method. The method is comprised of two
components such as QAPrioritiser and QAExtractor. QAExtractor is based on natural language
processing (NLP) and QAPrioritiser is used for ranking of computed attributes. The method is
assessed by calculating F-score, recall and precision. In study [25], a fine tuning method based on
three stages is presented for prediction of software requirement. The prediction is based on priority,
type and severity of the text requirement initiated by user. The method is compared with various
techniques such as Sentence BERT and pooling based on word embedding. The result shows that fine
tunned model can perform well for data distribution. The study [26], proposed a hybrid model, Bi-
LSTM+CNN, to address the weaknesses of LSTM and CNN individually. This model incorporates an
attention mechanism to enhance accuracy and reduce the number of learnable parameters. By
utilizing a CNN to extract features from various sentence locations, the Bi-LSTM model effectively
reduces input features, resulting in improved accuracy, especially with larger training data sizes and
epochs, offering a potential solution to long-term dependency and data loss issues in existing models.

Here is the state-of-the-art table summarizing various studies, techniques/models used, key
findings, research gaps, and our contribution:

The exploration of various methodologies for automated requirement classification includes
leveraging ML attributes computation, employing diverse classification techniques, as well as
utilizing Natural Language Processing (NLP) tools. The methods encompass both traditional ML
algorithms, such as Support Vector Machine (SVM), Logistic Regression (LR), and Multinomial Naive
Bayes (MNB), and advanced DL methods like Convolutional Neural Networks (CNN) and
Bidirectional Encoder Representations from Transformers (BERT). It covers ensemble methods and
explores the amalgamation of different techniques, such as combining LR, Naive Bayes (NB), and
SVM classifiers with techniques like Bag of Words (BoW), Term Frequency-Inverse Document
Frequency (TF-IDF), Doc2Vec, and Word2Vec.

Our contribution focuses on addressing these gaps by utilizing the Bidirectional Long Short-
Term Memory (Bi-LSTM) model, which offers significant improvements over the techniques and
models discussed in the previous studies. Bi-LSTM's ability to capture and learn from sequential data
more effectively enables it to enhance classification accuracy, improve context utilization, and
provide a more robust solution for handling complex data dependencies. This model's bidirectional
processing capability also allows for a more comprehensive understanding of input data, leading to
better performance in classification tasks. By leveraging the strengths of Bi-LSTM, we aim to
overcome the limitations identified in earlier studies, providing a more scalable, generalizable, and
precise approach to machine learning classification.

These methods are assessed using metrics like precision, recall, F1-score, and accuracy to gauge
their effectiveness in classifying requirements. The utilization of advanced techniques like BERT,
CNN, and DL methods enables accurate categorization, which in turn enhances software reliability
and quality. However, the drawbacks are also acknowledged, including challenges related to
imbalanced data, feature extraction, and the complexity of requirement classification due to the
diversity of terminologies and sentence structures. This research aims to address these limitations
and provide insights into the optimal utilization of automated techniques to attain accurate and
efficient requirement classification, thus contributing to the advancement of software engineering
practices.

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

The state-of-the-art studies presented in the Table 1 summarize various techniques and
models used in machine learning and deep learning for classification tasks, with each study
contributing unique insights and advancements in the field. Despite these contributions, several
research gaps have been identified, including limited precision and recall rates, challenges in pre-
processing and feature extraction, complexity in managing multiple deep learning methods,
handling of imbalanced data, and the need for better generalization across datasets.

Table 1. Summary of ML Classification Techniques and Research Gaps.

Study Techniques/Models Key Findings Research Gaps
Haque, Combination of ML attributes | Achieved precision 66%, Fl-score | Limited precision and recall rates
and computation and | 61%, recall 61%, ,accuracy 76%

Rehman classification methods

(15]
Diasand | Comparison of ML | Fl-score 74% for general classification | Challenges with preprocessing
Cordeiro | algorithms for feature | using PROMISE_exp dataset and feature extraction

[3] extraction

Ivanov et | Fine-tuned BERT compared | Fl-score 86% on PURE dataset, 80% | Need for better generalization

al.[16] with ELMo and fastText on RFI dataset across datasets

Khayashi | DL methods with voting | Promising results with PURE dataset | Complexity in managing multiple

etal,[17] algorithm having 2617 FRs and 2044 NFRs DL methods
Baker et al, | CNN and ANN models Maximum precision 94%, recall 97%, | Handling of imbalanced data
[19] F1-score 92%

Tiunetal, | Combination of LR, NB, SVM | FastText technique showed best | Complexity in integrating various

[20] with Doc2Vec and Word2Vec | outcomes techniques

Tunaliand | DL method for demand | DL method performed better than | Scalability and generalization to

Volkan [5] | prioritization other ML methods different domains

Kadebu et | Classification using SVM, LR, | Accuracy 86% for both binary and | Requirement for larger and

al,[21] MNB multiclass classification diverse datasets

Ahmed et | Automated method for | Assessed using F-score, recall, and | Improvement in context-aware
al,[22] quality attributes | precision classification

prioritization and extraction

Yildirim et | Fine-tuning method for | Fine-tuned model outperformed | Need for robust evaluation

al,[23] software requirement | other techniques metrics

prediction
Jang et Hybrid model Bi-LSTM+CNN | Improved accuracy with larger | Addressing long-term
al,[24] with attention mechanism training data sizes and epochs dependency and data loss issues

3. Proposed Framework

In this research, a Bi-LSTM model is used for requirements classification. The proposed model
is based on some basic steps such as Tokenization the input, converting to lower case, removing the
punctuation, feature extraction and classification. After the preprocessing of the data, the Bi-LSTM
model is used to compute features, classifying the sequence into NFR or FR and training the model
using carefully selected hyper-parameters to ensure optimal performance. Finally, the computed
feature vector is fed into multiple classifiers for final classification as illustrated in Figure 1.

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

Feature Extraction
R S R
" — s —s
Pre-processing v [
. >
BEIRE:
[5 T
; : | § Classification
Input Converting Removing | - -cE= s using
Dapta | Tokenization [—»| tolower [—»(the |— | 8= & [P E Classifiers
case Punctuation| | i 3
VBl |3
D2 = e
R S S A AT A S

Figure 1. Proposed Architecture.

A. Data Pre-processing

In this section, a datasets available at [27] is obtained then we prepared a programming
environment on the computer for the analysis and process of the dataset. In the preprocessing phase,
we've selected techniques that are particularly effective for NFR classification. We also make sure
that these techniques work well with our deep neural network. The benefits of employing these
techniques include an increase in model accuracy and a decrease in both resource consumption and
computation time. After preprocessing the data is divided into training and validation sets. The

detail of these preprocessing steps is mentioned in Figure 2.

b= ™
Tokenization

documents =

Breaks text into tokenizedDocumeni(textData),
individual words or disp({documents);
ez symbols)
Y i
Lowercase
Pre-Processing lowercaseText = lower(texiData),
Phase Mormalizes the > disp(lowercaseText),
text data
p A

(= = ™
Removing Punctuation
cleanText =

Removes symbols _J-) regexprep(textData, [*\w's]’, ")
that are irrelevant disp{cleanTaxt);

N _

Figure 2. Preprocessing Phase.

B. Extraction of Features Vector by employing Bi-LSTM Model

The Bi-LSTM model is a powerful type of neural network used for sequential data processing,
and is utilized for extraction of the features from input data. The Bi-LSTM model is based on the six
layers as illustrated in Figure 3. These layers are Sequence Input, Word Embedding Layer [28], LSTM

.
.
H .
. H
' = - —
H & s = :
" = = W .
- ok | =] e -1 .
: e 5 E & s :
= = = S = e 5
= 2 > H
5 Sl & || £ = £ |—=| = - 8 |—!
L = - © S = @B .
= = S = = @ H
: < = = 3 =5 :
[(] .
H H
H H
w .

Figure 3. Bi-LSTM Layers.

The model is trained using the training dataset. For training the model, hyper-parameters such
as the number of LSTM units in each layer, learning rate, batch size, and the number of epochs are
specified. These parameters are finalized after extensive experiments. Sequence Input Layer and
Word Embedding Layer, these two layers form the foundational part of Bi-LSTM model for feature

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

extraction. We used input layer to capture the raw text sequences, and the embedding layer converted
these sequences into meaningful dense representations that can be processed by the subsequent Bi-
LSTM layers.

LSTM networks are considered an improvement over traditional Recurrent Neural Networks
(RNNSs), especially in tasks involving learning from sequences of data. Traditional RNNs struggle
with long-term dependencies due to the vanishing gradient problem. The gating mechanisms in
LSTMs allow for focusing on the most relevant features in a sequence. The LSTM is based on four
gates such as (i) input gate, (ii) forget gate, (iii) output gate, and (iv) cell candidate gate. In the context
of an LSTM network, the four gates along with the two key additional components Cell State and the
LSTM Output work together to regulate the flow of information through the LSTM cell and the details
are provided in Table 2.

Table 2. LSTM Network Detail.

Input gate (i) Determines which parts of the current input x(t) are relevant to it= o (Wi[he1,xe] +bi)

be added to the cell state.

Forget gate (fr) Decides which parts of the previous cell state C(t-1) should be ft=0 (Ws[he1,x] + br)
forgotten.

Output gate (Or) Determines which parts of the cell state will be outputted inthe =~ Ot=0 (Wo [he-1, x] + bo)
LSTM output he

Cell candidate gate (ct) Generates a candidate vector of values that could be added to ¢t =tanh (Wc[he1,xt] + be)

the cell state. The tanh function helps to keep these values

normalized.
Cell Updates the cell state by combining the old state (modulated by s, =F O s,; +I; O ¢,
State(st) the forget gate) and the new candidate values (modulated by

the input gate).
LSTM Output (he) Determines the final output of the LSTM unit at time t. The hi=0O¢ © tanh(ct)

output gate controls which parts of the cell state are outputted.

Here, W, and by represents the weights and biases of the respective gates.

R Winput b input
_ RWforget , bforget
W = s bi =
chell candidate bcell candidate

R Woutput

c is the sigmoid function that squishes values between 0 and 1, effectively deciding how much of the
past information to keep.

hi-| represents the output of the LSTM block at time step t-1

x;represents the time at current time step t

© Represents the Hadamard product (element-wise multiplication) and it is used as the operation
for combining the outputs of the gates with the cell state or candidate values.

In the LSTM, time steps of layers of LSTM are utilized to compute the feature vectors and give
us input to the next block. The nth block output is used to predict the next class label, in which the
hidden unit is given to the fully connected, SoftMax, and the output. After extracting feature vectors
with the Bi-LSTM, we fed these vectors into different classifiers, including Medium KNN (MKNN),
Cubic KNN (CKNN), Linear SVM (LSVM), Quadratic SVM (QSVM), and Cubic SVM (CSVM). Each
of these classifiers has its own approach to making predictions based on the feature vectors. Each
classifier is trained on the training data and evaluated on the testing data. The performance of each

b output

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

classifier is assessed, and the best classifier is selected for the specific task. This process allows us for
comparing different classification methods and choosing the one that works best.

4. Experimental Results

In this study, we rigorously evaluated the performance of a Bi-LSTM model for feature
extraction from our dataset, followed by the application of these features to various classifiers to
assess their efficacy in predictive analytics. Our experimental framework was structured to first fine-
tune and train the Bi-LSTM model, ensuring optimal feature extraction, and then to employ these
features in different classification algorithms. The results section is presented in two main parts:
firstly, the training and optimization of the Bi-LSTM model, and secondly, the classification results
obtained from deploying various classifiers , including Medium KNN (MKNN) [32], Cubic KNN
(CKNN) [33], Linear SVM (LSVM) [34], Quadratic SVM (QSVM) [35], and Cubic SVM (CSVM) [36]
using the extracted features. The Bi-LSTM model was trained on a comprehensive dataset [27]. The
dataset is comprised of a total of 12 classes and are represented in Table 3 along with their class
symbols.

Table 3. Dataset Classes used for Experiment.

Functional F Operational @)
Availability A Performance PE
Fault Tolerance FT Portability PO
Legal L Scalability SC
Look & Feel LF Security SE
Maintainability MN Usability us

Dataset was divided into a training set and a testing set in a 70: 30 ratio. This means that 70% of
the data was used for training the Bi-LSTM model, and the remaining 30% was used for evaluating
the model's performance. The 10-fold cross-validation method was utilized in which the training data
was further divided into 10 equal parts (folds). The model was trained and evaluated 10 times, each
time using a different fold as the test set and the remaining nine folds as the training set. This helped
in assessing the model's generalization performance. A learning rate of 0.001 was used during the
training of the Bi-LSTM model. The learning rate is a hyper-parameter that controls the step size at
which the model's parameters are updated during training. A smaller learning rate can lead to slower
but more stable convergence during training. The entire experimentation and analysis were carried
out using MATLAB 2021A. The experiments were conducted on a computer system with specific
hardware specifications. We used a Core i7 system with 16GB of RAM (Random Access Memory)
and an NVIDIA 940MX GPU (Graphics Processing Unit) with 4GB of memory. The GPU can
significantly speed up DL tasks due to its parallel processing capabilities. For computing features we
used Matcovnet [37] as the DL toolbox. This toolbox is likely used to implement and train the Bi-
LSTM model and perform feature extraction.

During of our proposed Bi-LSTM model, we undertook a series of extensive experiments to
select the optimal hyper-parameters for training. This involved conducting various experiments, each
designed to evaluate the effectiveness of varying hyper-parameter configurations. The results of four
experiments are organized in Table 4.

Table 4. Parameters used in Experiments and the Corresponding Training Accuracies.

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

1 16 0.001 50 61.26 4
2 16 0.001 100 66.67 5
3 16 0.001 150 72.97 6
4 16 0.001 200 66.67 7

These experiments collectively demonstrate how varying the number of epochs while holding
other parameters steady can impact the training effectiveness of the Bi-LSTM model. A lot of padding
is occurred while training the model which results the overhead and also affects classification. This
problem is addressed by limiting the length of sequence to 60. Experiment 3 emerged as the most
successful, achieving the highest accuracy among all trials. Based on these findings, we selected the
hyper-parameters used in Experiment 3 for our final model configuration.

This includes setting the model with 150 hidden units, a manageable batch size of 16, a learning
rate of 0.001, and a comprehensive training duration of 150 epochs. The decision to adopt these
specific parameters was driven by their demonstrated ability to significantly enhance the model's
performance.

! 'Nrb wp.wwww

2 MJ\ 2 R AR J"“v-“',.-—f""“* ______ —pm =
% ; W
:al s w
i kL
. s
L)

Figure 4. Training Accuracy of Bi-LSTM in Experiment 1.

3
A O PR S gL
L " -t
! "

Figure 5. Training Accuracy of Bi-LSTM in Experiment 2.

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

10

e e S ‘,‘u-; e
¥

e
PR
0

1

s -.aluna--m-.c-.u.m-"?""“‘- et
; angragttey
f Ayt gt

\
M___._..L i bt L ﬂlk_.___..

| SHALEES

Figure 6. Training Accuracy of Bi-LSTM in Experiment 3 .

TSI T r——y IW T T B Ty T N ey

i .’..“".....I.‘_I_ﬁ\’.'.l"’“-W‘f"ﬂ'.mwmml'a.wuﬁ- ’

Figure 7. Training Accuracy of Bi-LSTM in Experiment 4.

After the successful extraction of features, the resultant feature vector (FV) was subjected to a
series of classification tests to evaluate the efficacy of the extracted features. Utilizing MATLAB, we
applied several well-established classifiers, namely Medium KNN (MKNN), Cubic KNN (CKNN),
Linear SVM (LSVM), Quadratic SVM (QSVM), and Cubic SVM (CSVM). This phase was crucial to
determine the predictive power of the features under various classification schemes. The
computational cost, measured in seconds (sec), is also evaluated. This indicates how much time it
takes for the system to perform the experiments and computations, which is important for assessing
the system's efficiency and response time. When feature vectors are fed into classifiers, the classifier's
performance evaluation relies heavily on metrics such as Recall (Rec), Precision (Pr), and Accuracy
(Acc). These metrics are essential for understanding how well the model can classify and predict
outcomes, providing insights into different aspects of its effectiveness. Table 5 summarizes the key
aspects of these metrics.

TP (True Positives): Instances correctly identified as positive.

TN (True Negatives): Instances correctly identified as negative.
FP (False Positives): Instances incorrectly identified as positive.
FN (False Negatives): Instances incorrectly identified as negative.

To visually assess and compare the performance of these classifiers, scatter plots are utilized.
Such plotting allows a graphical representation of the classifier's outcomes in a two-dimensional
space. Each point on the scatter plot corresponds to a feature vector and is colored according to the
classifier's prediction. This visualization technique enables a quick and intuitive way to understand

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024

doi:10.20944/

reprints202410.2129.v1

11

how well each classifier is segregating the data points. The legend of a scatter plot helps to understand
the plot by providing information about the different colors represented within the plot. The
verification of the results by using namely MKNN, CKNN, LSVM, QSVM, and CSVM classifiers is
presented with the help of scatter plots as shown in Figures 8-12. The detailed information about
how each classifier performs in terms of these metrics and how long it takes them to compute their
results is described in Table 5.

Table 5. Information about Recall,Precision and Accuracy.

Measures the classifier's ability to identify all

Recall (Rec) TP / (TP + FN)]
relevant instances.
Assesses the accuracy of the classifier when it
Precision (Pr) TP/ (TP +FP)
predicts a positive class.
Accuracy (TP+TN)/(TP+TN+FP Gives an overall idea of how often the classifier is
(Acc) +FN) correct.
Srow Crrme Predictions: medel 1.15
A ..
= L aif
= i -. ‘: : 4
ol i e
. -
B B w: [0 s
™
2
A
] I8
Figure 9. Scatter plot of CKNN Results.
B = hat
u B 1 .l o
5 il

(<M MLl
r ¢ W

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

12

Figure 10. Scatter plot of LSVM Results.

column

Figure 11. Scatter plot of LSVM Results.

i
o
{
g
i
|

]

YL]
1]

.
LW B
L0
5
:
1
;
s
7
|
F =

T
3
o

2

son

Figure 12. Scatter plot of CSVM Results.

According to the results chart Table 6, the MKNN classifier outperforms the others, achieving
the highest precision and recall scores compared to other classifiers. Additionally, MKNN
demonstrates competitive computational efficiency, with a relatively low time of 1.5199 seconds.
Therefore, MKNN emerges as a good classifier due to its balanced performance in recall, precision
and significantly faster computation time.

Table 6. Results by using the Proposed Classifiers.

MKNN 91.48 91.56 99.60 1.5199

CKNN 91.48 91.43 99.60 2.3769

LSVM 91.43 91.38 99.60 10.3560

QSVM 91.43 91.38 99.80 9.5692

CSVM 91.26 90.56 99.80 7.3273
Discussion

In this study, we present a system for classification of requirements such as FRs and NFRs
employing a Bi-LSTM model. Our approach involves training the model with various parameter
configurations, including learning rate, epochs, and mini-batch size. Throughout our experiments,
all parameters remain consistent except for the number of epochs, which varies across different trials:
50 epochs in Experiment 1, 100 epochs in Experiment 2, 150 epochs in Experiment 3, and 200 epochs
in Experiment 4. While training the model, it is observed that the accuracy of the model was gradually
increasing when number of epochs changes from 50 to 100. More improvement was observed when
the number of epochs was increased to 150. But when the number of epochs was set to 200 resulted
in the decline of system performance. During experiments, it is observed that the most affecting

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

13

parameter for training the model is the number of epochs. Specifically, we find that the highest
training accuracy of 72.97% is achieved with 150 epochs, signifying an optimal balance between
training duration and model effectiveness. Consequently, we designate the parameter configuration
from Experiment-3 as the final setting for subsequent requirement classification tasks. This empirical
exploration elucidates the importance of fine-tuning training parameters, particularly the number of
epochs, in optimizing the performance of Bi-LSTM models for requirement classification.

V. Threats to Validity

When employing a Bi-LSTM model for feature extraction followed by the utilization of different
ML classifiers for feature classification, several threats to validity must be considered. Firstly, there
is a risk of external validity threat if the dataset used for training and evaluation does not adequately
represent the real-world distribution of feature vectors. To mitigate the risk of external validity threat
associated with dataset representativeness, several measures have been implemented. The efforts
have been made to collect or generate a diverse and representative dataset that reflects the real-world
distribution of feature vectors. Furthermore, the dataset is split into training and testing subsets, with
careful consideration given to maintaining the integrity of the distribution across these partitions.
Cross-validation techniques are also utilized to assess model generalization across multiple folds of
the data. Secondly, there is a potential threat to internal validity arising from the selection of hyper-
parameters during the training of the Bi-LSTM model, such as the number of layers, hidden units,
and learning rate, which could influence the quality and relevance of the extracted features. A
systematic approach to hyper-parameter selection has been adopted, involving cross-validation
techniques to ensure robustness and generalizability of the Bi-LSTM model. This process ensures
thorough evaluation and comparison of various combinations of hyper-parameters, techniques such
as early stopping have been implemented to prevent over fitting and enhance generalization
performance. Additionally, the choice of ML classifiers introduces another layer of complexity, as
different algorithms may perform variably based on the nature of the extracted features. This leads
to a potential threat to construct validity, as the classifiers may not accurately capture the underlying
structure of the data, resulting in biased comparisons. To mitigate the threat posed by the variability
in ML classifier performance and its potential impact on construct validity, we evaluated each
classifier thoroughly using standard performance metrics such as accuracy, precision, recall, and F1-
score. By systematically comparing the performance of multiple classifiers on the same set of
extracted features, we aim to mitigate biases and ensure a more accurate representation of the
underlying data structure, thus enhancing the construct validity of our analysis. By implementing
these measures, we aim to enhance the validity and generalizability of our findings when applying
Bi-LSTM models for feature extraction and classification using different machine learning classifiers.

6. Conclusion

In this work, our aim was to classify the user requirement in the field of RE. Traditional methods
of user requirements classification often struggle to handle the complexity and variability present in
natural language, making it difficult to capture context-dependent features of user requirements.
Furthermore, these methods may lack scalability, as they may not be equipped to handle large
volumes of requirements data efficiently. We utilized a DL technique named as Bi-LSTM model for
feature extraction followed by the integration of these feature vectors into five distinct ML classifiers
namely MKNN, CKNN, LSVM, QSVM, and CSVM. We observed that MKNN stands out as an
effective classifier due to its balanced performance in recall, precision and notably accelerated
computation time. The adoption of this technique promises to revolutionize requirement
classification by enabling efficient and accurate identification of NRFs and FRs. Notably, our
approach surpasses previous methodologies due to several key factors. Firstly, Bi LSTM has a
bidirectional processing capability of capturing both forward and backward contextual dependencies
ensured a more comprehensive understanding of the input sequence. Secondly, the utilization of
multiple ML classifiers offered a robust evaluation framework, ensuring a comprehensive analysis of
the model's performance across various algorithms. Furthermore, our emphasis on both performance

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

14

metrics and computational efficiency underscores our commitment to practical applicability and
scalability. Overall, our study represents a significant contribution to the domain by offering a refined
methodology that outperforms previous approaches in terms of accuracy, versatility, and
computational efficiency.

Future Work

Our aim is to test this technique on some other datasets exploring its adaptability across various
contexts within the software engineering domain. Through persistent refinement efforts and
extensive testing endeavors, our ambition is to catalyze the progression of automated requirement
classification, bringing about heightened levels of accuracy and increased efficiency in software
development practices.

Author Contributions: Conceptualization, Jalil Abbas, Zhuoxuan hu, & Saima Kanwal; methodoogy, Jalil
Abbas.; software,. Jalil Abbas & Arshad Ahmad ; writing —original draft preparation, Jalil Abbas.; writing —
review and editing, Jalil Abbas,Saima Kanwal & Arshad Ahmad.; funding acquisition: Ahmad Almogren &

Ayman Altameem. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by King Saud University, Riyadh, Saudi Arabia, through Researchers
Supporting Project number (RSP2024R498).

Data Availability Statement: The data that support the findings of this study are publicly available on:
https://www kaggle.com/datasets/iamsouvik/software-requirements-dataset.

Data Availability Statement: The data used in this work are available at Kaggle.

Conflicts of Interest: The authors confirm there are no conflicts of interest associated with this research.

Acknowledgement: This work was supported by King Saud University, Riyadh, Saudi Arabia, through
Researchers Supporting Project number (RSP2024R498).

References

[1] Ahmed, H.; Traore, 1.; Saad, S. Detecting opinion spams and fake news using text classification. Secur. Priv. 2018, 1, €9.

[2] Mallick, P.K.; Mishra, S.; Chae, G.S. Digital media news categorization using Bernoulli document model for web content

convergence. Pers. Ubiquit. Comput. 2023, 27, 1087-1102. https://doi.org/10.1007/s00779-020-01461-9.

[3] Dias Canedo, E.; Cordeiro Mendes, B.Software Requirements Classification ~Using Machine Learning
Algorithms.Entropy 2020, 22(9), 1057. https://doi.org/10.3390/¢22091057.

[4] Tunali, V.; Tiiysiiz, M.A.A.J.P.UM.B.D. Analysis of Function-Call Graphs of Open-Source Software Systems Using Complex
Network Analysis. Pamukkale Univ. J. Eng. Sci. 2020, 26(2), 352-358.

[5] Tunali, V.JI.A. Improved Prioritization of Software Development Demands in Turkish with Deep Learning-Based NLP. /IEEE
Access 2022, 10, 40249-40263.

[6] Khan, F.M.; Khan, J.A.; Assam, M.; Almasoud, A.S.; Abdelmaboud, A.; Hamza, M.A.M. A Comparative Systematic Analysis of
Stakeholder’s Identification Methods in Requirements Elicitation. /EEE Access 2022, 10, 30982-31011.

[7] Abad, Z.S.H.; Karras, O.; Ghazi, P.; Glinz, M.; Ruhe, G.; Schneider, K. What Works Better? A Study of Classifying Requirements.
In Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference (RE), Sep. 2017, pp. 496-501.
IEEE. https://doi.org/10.1109/RE.2017.36.

[8] Kanwal, J.; Magbool, O. Bug Prioritization to Facilitate Bug Report Triage. J. Comput. Sci. Technol. 2012, 27,397-412.

[9] Sepahvand, R.; Akbari, R.; Hashemi, S.; Boushehrian, O. An Effective Model to Predict the Extension of Code Changes in Bug Fixing
Process Using Text Classifiers. [ran. J. Sci. Technol. Trans. Electr. Eng. 2022, 1-18.

[10] Javidi, Z.; Akbari, R.; Bushehrian, O. A New Method Based on Formal Concept Analysis and Metaheuristics to Solve Class
Responsibility Assignment Problem. /ran J. Comput. Sci. 2021, 4, 221-240.

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

15

[11] Etemadi, V.; Bushehrian, O.; Akbari, R.; Robles, G. A Scheduling-Driven Approach to Efficiently Assign Bug Fixing Tasks to
Developers. J. Syst. Softw. 2021, 178, 110967. https://doi.org/10.1016/j.jss.2021.110967.

[12] Yousefi, M.; Akbari, R.; Moosavi, S.M.R. Using Machine Learning Methods for Automatic Bug Assignment to Developers. J.
Electr. Comput. Eng. Innov. 2020, 8(2), 263-272.https://doi.org/10.22061/JECEL V8I2.2853.

[13]Lima, M.; Valle, V.; Costa, E.; Lira, F.; Gadelha, B. Software Engineering Repositories: Expanding the Promise Database.
In Proceedings of the XXXIII Brazilian Symposium on Software Engineering, Sep. 2019, pp. 427-436.

[14] Rahman, M.A.; Haque, M.A.; Tawhid, M.N.A.; Siddik, M.S. Classifying Non-Functional Requirements Using RNN Variants for
Quality Software Development. In Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques
for Software Quality Evaluation, Aug. 2019, pp. 25-30.

[15] Habibullah, K.M.; Gay, G.; Horkoff, J. Non-Functional Requirements for Machine Learning: Understanding Current Use and
Challenges Among Practitioners. Req. Eng. 2023, 28(2), 283-316. https://doi.org/10.1007/s00766-022-00374-5.

[16] Hassan, S., et al. A systematic mapping to investigate the application of machine learning techniques in requirement engineering

activities. CAAI Transactions on Intelligence Technology 2024, 1-23. https://doi.org/10.1049/cit2.1234.

[17] Haque, M.A.; Rahman, M.A.; Siddik, M.S. Non-Functional Requirements Classification with Feature Extraction and Machine
Learning: An Empirical Study. In Proceedings of the 2019 st International Conference on Advances in Science, Engineering and

Robotics Technology (ICASERT), May 2019, pp. 1-5. IEEE. https://doi.org/10.1109/ICASERT.2019.8934578.

[18] Ivanov, V.; Sadovykh, A.; Naumchev, A.; Bagnato, A.; Yakovlev, K. Extracting software requirements from unstructured documents.
In Proceedings of the International Conference on Analysis of Images, Social Networks and Texts, Cham, Switzerland, December
2021; Springer International Publishing, pp. 17-29.

[19] Khayashi, F.; Jamasb, B.; Akbari, R.; Shamsinejadbabaki, P. Deep learning methods for software requirement classification: A
performance study on the pure dataset. arXiv 2022, arXiv:2211.05286.

[20] Rahimi, N.; Eassa, F.; Elrefaci, L. An Ensemble Machine Learning Technique for Functional Requirement
Classification. Symmetry 2020, 12, 1601. https://doi.org/10.3390/sym12101601.

[21] Baker, C.; Deng, L.; Chakraborty, S.; Dehlinger, J. Automatic Multi-Class Non-Functional Software Requirements Classification
Using Neural Networks. Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC) 2019, 2, 610-615. https://doi.org/10.1109/COMPSAC.2019.00105.

[22] Tiun, S.; Mokhtar, U.A.; Bakar, S.H.; Saad, S. Classification of Functional and Non-Functional Requirements in Software
Requirement Using Word2vec and FastText.J. Phys. Conf. Ser.2020, 1529, 042077. https://doi.org/10.1088/1742-
6596/1529/4/042077.

[23] Kadebu, P.; Sikka, S.; Tyagi, R.K.; Chiurunge, P. A Classification Approach for Software Requirements Towards Maintainable
Security. Sci. Afr. 2023, 19, €01496. https://doi.org/10.1016/j.sciaf.2023.e01496.

[24] Ahmed, M.; Khan, S.U.R.; Alam, K.A. An NLP-Based Quality Attributes Extraction and Prioritization Framework in Agile-Driven
Software Development. Autom. Sofiw. Eng. 2023, 30(1), 7. https://doi.org/10.1007/s10515-023-00357-7.

[25] Yildirim, S.; Cevik, M.; Parikh, D.; Basar, A. Adaptive Fine-Tuning for Multiclass Classification Over Software Requirement
Data. arXiv 2023, arXiv:2301.00495.

[26] Jang, B.; Kim, M.; Harerimana, G.; Kang, S.U.; Kim, J.W. Bi-LSTM Model to Increase Accuracy in Text Classification: Combining
Word2vec CNN and Attention Mechanism. Appl. Sci. 2020, 10(17), 5841. https://doi.org/10.3390/app10175841.

[27] Software Requirements Dataset. Kaggle, 2022. [Online]. Available: https://www.kaggle.com/datasets/iamsouvik/software-

requirements-dataset. [Accessed: Sep. 18, 2024].

[28] Peters, M.E.; Neumann, M.; Zettlemoyer, L.; Yih, W.T. Dissecting Contextual Word Embeddings: Architecture and
Representation. arXiv 2018, arXiv:1808.08949.

[29]Kwon, B.S.; Park, R.J.; Song, K.B. Short-Term Load Forecasting Based on Deep Neural Networks Using LSTM Layer. J. Electr.
Eng. Technol. 2020, 15, 1501-1509. https://doi.org/10.1007/s42835-020-00478-0.

https://doi.org/10.20944/preprints202410.2129.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2129.v1

16

[30] Basha, S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of Fully Connected Layers on Performance of Convolutional Neural
Networks for Image Classification. Neurocomputing 2020, 378,112—119. https://doi.org/10.1016/j.neucom.2019.10.008.

[3 1] Hu, R.; Tian, B.; Yin, S.; Wei, S. Efficient Hardware Architecture of Softmax Layer in Deep Neural Network. In Proceedings of the
2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, November 2018; IEEE, pp. 1-
5. https://doi.org/10.1109/ICDSP.2018.8631621.

[32] Ali, A.; Alrubei, M.A.; Hassan, L.F.M.; Al-Ja'afari, M.A.; Abdulwahed, S.H. Diabetes Diagnosis Based on KNN. [[UM Eng.
J. 2020, 21(1), 175-181. https://doi.org/10.31436/itumej.v21i1.1226.

[33]Maghari, A. Prediction of Student's Performance Using Modified KNN Classifiers. In Proceedings of the First International
Conference on Engineering and Future Technology (ICEFT 2018), Cairo, Egypt, 2018; pp. 143-150.

[34] Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem Formulations and Solvers in Linear SVM: A Review. Artif. Intell. Rev.2019, 52,
803-855. https://doi.org/10.1007/s10462-018-9614-6.

[35] Altay, O.; Ulas, M.; Alyamac, K.E. Prediction of the Fresh Performance of Steel Fiber Reinforced Self-Compacting Concrete Using
Quadratic SVM and Weighted KNN Models. IEEE Access 2020, 8, 92647-92658. https://doi.org/10.1109/ACCESS.2020.2994730.

[3 6] Jain, U.; Nathani, K.; Ruban, N.; Raj, A.N.J.; Zhuang, Z.; Mahesh, V.G. Cubic SVM Classifier Based Feature Extraction and Emotion
Detection from Speech Signals. In Proceedings of the 2018 International Conference on Sensor Networks and Signal Processing

(SNSP), Xi'an, China, October 2018; IEEE, pp. 386-391. https://doi.org/10.1109/SNSP.2018.00076

[37] Vedaldi, A.; Lenc, K. MatConvNet: Convolutional Neural Networks for MATLAB. In Proceedings of the 23rd ACM International
Conference on Multimedia, Brisbane, Australia, October 2015; pp. 689—692. https://doi.org/10.1145/2733373.2807412.

https://doi.org/10.20944/preprints202410.2129.v1

