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Abstract: Today, the facility location planning issue mainly belongs to the long-term operational
and strategic level of large public and private organizations, and the significant costs associated
with facility location, construction, and operation have turned location research into long-term
decision-making. Presenting a hub location model for the green supply chain can address the
current status of facilities and significantly improve demand coverage at an acceptable cost.
Therefore, in this study, a network of facilities for hub location in the service site domain,
considering existing and potential facilities under probable scenarios, has been proposed. After
presenting the mathematical model, validation was performed on a small scale, followed by
sensitivity analysis of the main parameters of the model. Furthermore, a metaheuristic algorithm
was employed to analyze the NP-Hardness of the model. Additionally, to demonstrate the efficiency
of the model, two metaheuristic algorithms, NSGAII and MOPSO, were developed. Based on the
conducted analysis, it can be observed that the computational time increases exponentially with the
size of sample problems, indicating the NP-Hardness of the problem. However, the NSGAII
algorithm performs better in terms of computational time for medium-sized problems compared to
the MOPSO algorithm.

Keywords: Facility Location; maximum coverage; telecommunication; Hub Location; NSGAIIL
MOPSO

1. Introduction

The issue of facility location planning, especially in the domain of public health facilities, is
significant [1]. The term “facility location” refers to the process of determining the optimal locations
for facilities where services are provided to a certain population. Facility location involves
considerations such as accessibility, service coverage, cost-effectiveness, and the socio-economic
impact of the facility location on the surrounding community. In the context of healthcare facility
location, it entails determining the optimal locations for the establishment of medical facilities to
provide timely and effective healthcare services to the population [2]. Several studies and research
have been conducted in the field of hub location so far [3-6]. including both emergency and non-
emergency facilities. However, a crucial aspect that has received less attention so far is the
comprehensive evaluation of facility locations” efficiency [7,8]. This entails assessing whether the
decisions made over time regarding the location of facilities, considering various needs and
constraints, are collectively optimal. Therefore, it is essential to comprehensively examine whether
the chosen hub locations are optimal across different time periods and in relation to each other [9].
Therefore, the topic of optimal hub location is raised in a multidimensional manner, where the aim
is to comprehensively and systematically examine the optimality of hub locations across the entire
target region, and if necessary, to carry out hub location [10]. This hub location may involve
establishing new hubs, removing existing hubs, increasing or decreasing the capacity of a hub. If the
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location is not considered for the target area, we will face a number of local optimal solutions, each
obtained at a specific time, which not only may not provide us with a globally optimal solution but
also does not consider the changes in demand over time in the covered areas after the location is
determined [11]. One of the challenges in the hub location problem is considering the hubs at different
points equally and with similar services and capacities. This is because the characteristics of the
selected locations, constraints, and the type and amount of needs in each area are not necessarily
similar to each other, and these differences make uniform facilities not have sufficient efficiency [12].
From these differences, we can, for example, mention the following: In an area with a high population
density, there is a need for facilities with high capacity, or in an area where there are suitable and
extensive access routes, the coverage radius of a hub can be greater than other hubs or the types of
needs may vary in different areas and require hubs with different services [13]. Despite these
conditions, to reach an optimal solution, facilities with different characteristics and capacities should
be considered. This is known in location literature as hub location, and considering this feature can
lead to a more suitable solution for the problem [14]. In the field of hub location in various domains,
including healthcare, uncertainty is one of the influential factors. For various facilities, many
parameters such as the amount, type, and timing of demand creation are uncertain, and considering
this uncertainty in the parameters can increase the practicality of the problem [15]. One of the
assumptions that has been prevalent in location problems in the past is the assumption of facilities
operating under different conditions [16]. However, this assumption is not valid in the real world,
and facilities may be disrupted due to various reasons such as pollution and environmental issues,
causing their activities to be halted [17]. The reasons for disruptions can be natural, such as
disruptions due to the failure of wastewater and air catalysts, or human-induced, such as disruptions
in the performance of air, water, and soil settlement due to operational errors [18]. Therefore,
considering the probability of disruptions in pollutant production and providing a model that can
continue its work under environmental disruption conditions is of paramount importance and high
applicability [14]. In this article, we also attempt to provide a model that addresses hub location in a
green state by considering environmental disruptions. Another aspect to consider in hub location is
the limitations present in facility capacities and communication routes. Each facility has a limited
capacity based on various factors, and it cannot provide services beyond this capacity. Therefore,
considering limited capacities for facilities is necessary, and if these constraints are not considered,
we deviate from real conditions, and the model will not be practical. On the other hand, many hub
location problems have multiple objectives [19-21].

The objectives commonly considered in hub location problems are summarized below. Cost is
one of the most common objectives in hub location problems [5]. Costs come in various types, divided
into variable and fixed costs. Variable costs include installation expenses, while fixed costs include
relocation expenses [15]. Typically, in hub location problems, a unified objective comprising all types
of costs is considered. Another objective is coverage, which is used in maximal coverage problems.
In this case, an objective is added to the model to maximize demand coverage. Other objectives exist
in hub location problems, but we will not delve into them here. In this study, we aim to establish a
balance between objectives such as maximizing demand coverage, minimizing costs, and maximizing
greenness in the hub location.

This article presents a multi-objective mathematical programming model in which the objectives
of cost, demand coverage, and greenness of location are considered, aiming to address hub location
under a comprehensive perspective to examine the optimality of the current facility locations and, if
necessary, relocate existing facilities or locate new facilities. In order to find an effective and efficient
solution, factors of uncertainty are also addressed. Given the nature of the problem under study and
researchers’ opinions, the hub location model is NP-HARD. To validate the mathematical model,
initially, the Pareto front of optimal solutions will be evaluated using an epsilon-constraint approach,
and ultimately, to validate the model on larger scales, metaheuristic algorithms will be utilized. This
article consists of five sections. The first section discusses the problem under study. The second
section reviews the research literature, and the third section presents the mathematical model. The
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fourth section analyzes the mathematical model, and finally, conclusions and future research
recommendations are provided.

2. Problem Description

In this proposed model, it is assumed that there are several facilities at different levels in the
region under study. Given that the existing facilities have been established over a long period
spanning several years and considering that changes have occurred in the level and concentration of
demand for services by customers during these years, it is necessary to comprehensively evaluate all
existing hubs. In this section, initially, the existing hubs in the region for transporting network
equipment are classified into three levels, and then the demand coverage by these facilities is
examined. If there is a justifiable change in the capacity or location of the facilities in terms of cost,
these changes are made in the location and capacity of the existing facilities. Finally, a new structure
of hub location is proposed in which the location and capacity of some hubs have changed, but in
return, the demand coverage for telecom services has increased. Improving demand coverage is not
only done by examining the capacity level of existing hubs and adjusting their locations. In this
article, three levels of capacity are also considered for the hubs, and if necessary, a hub is upgraded
to a higher capacity level, or a new hub is located. To improve the quality of demand coverage for
customers, the coverage radius is also considered for each hub. The coverage radius helps allocate
demand to hubs in such a way that the distance from the demand point to the hub is optimized and
acceptable. In this article, the coverage radius is considered as a variable. Since the level of demand
coverage is directly related to the distance from the demand point to the hub and the variable
coverage cost, efforts are made to minimize the coverage radius of each hub. In improving the current
situation, only changes to existing hubs are not addressed, and if there is a need for locating a new
hub, a new hub is established. In this problem, we aim to examine the efficiency of existing hubs in
terms of coverage capacity and locate new hubs with the goal of reaching a higher level of demand
coverage, reducing costs, and maximizing the level of greenness in hub locations. To this end, in our
analysis, we consider the economic feasibility of the following actions: establishing new hubs,
removing previous or existing hubs, and increasing or decreasing the capacity of hubs.

2.1. Assumptions of the Problem

The study area is divided into several regions. Regions are subsets of a larger area called zones,
which are covered by hubs.

In this study, three levels of hubs are considered: level w hubs, which have the lowest capacity
level and provide primary services. Level ¢ hubs provide complementary services. Finally, level h
hubs provide the most advanced services and also provide level ¢ hub services.

Each demand point must be covered by one level w hub, one level c hub, and one level h hub.
However, Level H hubs can also provide Level C hub services. Therefore, if a demand point is
covered by a level h hub, there is no need for it to be covered by a level c hub.

In each region, there must be at least one level w hub.

In a region, it is not possible to have both level c and level h hubs simultaneously.

In a zone, there cannot be more than one level h hub.

Demand is considered to be point-wise.

In Figure 1, different scenarios of demand coverage based on the assumptions are depicted. In
the first scenario, the demand point is allocated to all three available levels of hubs. In this case, the
demand for each level is assigned to hubs of the same level. In the second scenario, the demand point
is allocated to two hubs at levels w and h. In this case, as described in the assumptions, the demand
for level c is covered by the level h hub because level h hubs can provide services for level c hubs as
well.
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Figure 1. Different scenarios of demand point coverage.

2.2. Mathematical Model

In this proposed model, it is assumed that there are several hubs at different levels in the studied
area, and the level of demand coverage by these hubs needs to be examined. If there are changes in
the capacity or location of the hubs that are economically justified, these changes in the location and
capacity of the existing hubs are made. Ultimately, a new structure of hubs is presented, where the
location and capacity of some hubs have changed, but the demand coverage has increased. In this
section, the mathematical model of the research is presented.

We seek to examine the efficiency of existing hubs with the goal of achieving a higher level of
demand coverage. To this end, in our analysis, we consider the economic viability of the following
actions: establishment of hubs, removal of hubs, increase, and decrease in facility capacity.

Sets, indices, parameters, and decision variables in this section are introduced.

Sets and Indices

N Set of Network Points
B Set of Regions in the Model
R Set of Zones in the Model
S Set of Uncertainty Scenarios
E Set of nodes available in region r
i Index representing demand points. i € N
j Index representing candidate points for establishing hubs. j € N
l Index related to the level of hubs. I € {w, &, c}
Index related to the level of hub capacity.
b Index related to the region.
Ny Nodes present in the region. b <N, € N
r Index related to the region.
s Index related to each scenario.
Parameters.
h; Demand of a point. i
F}, The fixed cost of establishing a hub at level ] at point j with capacity level t.
Gjl,t The level of greenness of the hub at level 1 at point j with capacity level t.
level, The capacity level associated with level t.
Qe 1if a hub at level 1 exists at point j with capacity level t; 0 otherwise.

P! The number of hubs at level 1 that must exist at the end.
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d; j The distance between two points i and j.
Ryax Maximum acceptable coverage radius.
Acceptable deviation level from the optimal amount for each scenario in
Ps the original model.

Decision variables

Ps Optimal demand coverage level in each scenario
T3 Optimal cost in each scenario
z; €{0,1} 1lif demand at point i is covered; 0 otherwise
X, €01 1if level-i hub at point j with capacity level t does not exist previously; 0
' otherwise
7 The coverage radius of the hub existing at point j
aﬁj € {0,1} 1lif demand point i is allocated to hub j at level 1 in scenario s; 0 otherwise.
y ;,t € {01} 1lif hub of level 1 exists at point j with capacity level t; 0 otherwise.

Objective Functions and Constraints
Given the sets, indices, parameters, and decision variables presented in the previous section, the
objective functions and constraints of the proposed model are provided as follows.

Max Z h;z! 1)

Min Z Fjl,tx},t + z T}l(§0) (2)

Ljt Lj
Max Z Gjl,tle,t (3)
Ljt
s.t.
Ls > S
Gij =% Vi€ N, bEB,l€{w,h},s (4
JENp
( cs + h,s) > S )
Qij T j) =2 Vi € F,7 €ER,s (5)
JEFr
yie =1 vb € B (6)
JENp,t
Z Yiet z ye<1 vb € B )
JENp,t JENp,t
h
Vie=1 Vr € R (8)
JEFt
l
PR vj ©)
Lt
z aish < (Z levelty}_t> vj,l,s (10
i t
> Z dyja;; Vi l,j (11)
S
7' < Ryax Z Vi vl j (12)
t
l l
Z Ve <P VIEL (13)
it

x}‘t = |y},t - Q]l-,t| vl j,t (14)
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Z hizi = (1 - ps)ps Vs € 5/0 (15)
i

D Flade+ ) 1 @) < A +po Vs € 5/0 (16)
Lj

INE:

Objective Function (1) represents the amount of demand covered. Objective Function (2)
represents the cost incurred due to changes in the structure of hubs, where a binary variable x|, takes
a value of one if a new hub is located or if there is a change in the capacity of a hub or its relocation,
and the cost of this change is calculated. In the second part of the equation, the cost of the coverage
radius of each hub is calculated as a function of the radius. Objective Function (3) maximizes the level
of greenness in the hub location. Each demand point is covered only if it is allocated to at least one
hub at level w and one hub at level h in its own region; this condition is considered in equation (4).
According to the model assumptions, a hub at level h can make a demand point unnecessary to be
allocated to a hub at level c; therefore, in equation (), this assumption is applied that allocating a
demand point to a hub at level h in one region does not necessarily require assigning that point to a
hub at level c.

Equation (5) expresses the requirement to establish at least one level-w hub in each region. The
assumption of the prohibition of simultaneously establishing two hubs at levels h and c in one region
is considered in equation (7). Equation (8) limits the establishment of more than one level-h hub in
one region. Equation (9) restricts the establishment of more than one hub at a single point. Equation
(10) represents constraints on the availability and capacity of hubs, preventing the allocation of more
than the optimal capacity level to hubs and also preventing demand allocation to hubs in scenarios
where the hub is unavailable. Equations (11) and (12) determine the coverage radius of each hub.
Equation (13) indicates the permissible number of network changes at each level. Equation (14)
identifies whether a hub has undergone changes during hub location or remained unchanged.
Equations (15) and (16) ensure that the objective function value does not deviate by more than the
allowable percentage from the optimal value in each scenario.

2.3. Solving the Proposed Model (Modified Epsilon-Constrained Approach)

In multi-objective problems, there is generally no single optimal solution that simultaneously
optimizes all objective functions. Therefore, the concept of optimality is replaced with Pareto
optimality or efficiency. Pareto optimal solutions (efficient, non-dominated) are solutions that cannot
improve one objective function without worsening the performance of at least one other objective
function (Fonseca, 2016). The Pareto set is a set of Pareto optimal solutions.

According to Huang and Masoud (2012), there are three main approaches for solving multi-
objective optimization problems based on decision maker preference elicitation: a priori methods, a
posteriori or generative methods, and interactive methods. In a priori methods, the decision maker
provides their preferences before the process begins. This method has the drawback of reducing
preferences determined by the decision maker. A posteriori methods involve optimizing all objective
functions simultaneously. In this approach, the Pareto set is first generated. Then, at the end of the
search process, the decision maker selects a preferred Pareto set. In interactive methods, the decision
maker engages in the computation stages instead of expressing preferences in the dialogue stages. In
this method, after several iterations, the process usually converges to a more desirable solution. The
decision maker sequentially guides the search towards the preferred solution based on their
responses.

To solve this three-objective model, the epsilon-constrained method for exact solution is used.
In this method, one of the objective functions is kept as the primary objective, and the other objective
functions are transformed into inequality constraints based on minimization or maximization of the
primary objective function as follows.

max ax - ax = ¢ 17)

min ax - ax < ¢ (18)
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In this model, the first constraint, which maximizes the covered demand, is kept as the objective
function, while the second and third objectives, which minimize the cost and the amount of changes
and maximize the greenness, are considered as constraints and are transformed as follows:

Z Fiyxj, + Z 1) <& (19)
J

Ljt
1.1
Z Gj_txj't > &y (20)

Lit
As a result, the first objective function is modified as follows:

. S2 | S3 Si Sn
Min/Max(fy(x) + 9 * <— + =+t —+ —)) (21)
rn 13 Ti Th

As a result, the first objective function is modified as follows:

M Zh- 04 19*(5—2+ 5—3)
ax ) iz . ) (22)
L
Z F}'l,tle,t + Z 1i(@p) — s, =& (23)
Ljt J
Z Gjl,tle,t +S3 = & (23)

Lyt
s; € RT

According to the above equation, the Pareto optimal solutions are obtained, where ri is the range
of the ith objective function, 3is a small number between 0.001 to 0.000001, and Si is a non-negative
auxiliary variable. First, the values of NIS;; (worst value) and PISy; (best value) for each objective
function are determined. Then, the value of the domain of the ith objective function is calculated
according to the following equation:

1y = PIS;;—NISy; (25)

Afterward, n; is divided into equal intervals [;. Then, [;+1 points are obtained, and according
to the following equation, the values of epsilon are determined based on these points (Grid points).
In this method, the model must be solved for all obtained epsilons, where 1 is the number of grid
points obtained according to the equation.

n i
& = NiSpi+7+n (26)

Linearization:

In the model presented in this paper, equations (14) are nonlinear, and by linearizing these
equations, we obtain a mixed-integer linear model (MIP). The presence of an absolute value sign in
this nonlinearity has led to the nonlinearity of the model. Considering the existence of an equivalent
variable for the absolute value, linearization is performed as follows:

First, we introduce two binary variables X'},t and X}t Then, equations (14) are rewritten as

follows:

! ”

y]‘l,t - Q]lt = x’j.t - X jl',t (27)
x},t = xljl',t + x”]l',t (28)
This way, the model presented in this paper is transformed into a mixed-integer linear model.

3. Research Findings

Based on the mathematical model presented for evaluating the proposed mathematical model,
it has been evaluated and analyzed using the MOPSO and NSGAII algorithms. Therefore, in this
section, in order to solve sample problems in larger sizes, metaheuristic algorithms NSGA II and
MOPSO with priority-based encoding have been utilized. Consequently, at the beginning of this
section, initial solutions used in solving the problem and the operators of metaheuristic algorithms
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are presented. Towards the end of this section, the adjustment of metaheuristic algorithm parameters
using the Taguchi method is discussed. Therefore, the mathematical model is initially minimized
using the weighted objective function approach for the second and third objective functions.

3.1. Parameter Tuning for Metaheuristic Algorithms

To tune the parameters, a response variable has been utilized. This response variable is a
combination of 5 provided criteria, and its value is calculated using the following formula. Since the
criteria do not have equal importance, weighting coefficients are assigned to them.

NPF, + MSI, + SM; + CPU — time
- wy +w, +ws +w,
Factors and Levels for the NSGA-II Algorithm

The factors and their corresponding levels used for the NSGA-II algorithm are defined according
to Table 1.

(29)

i

Table 1. Levels of Factors Used for the NSGA-II Algorithm.

Levels of Factors

Parameters 1 2 3

nPop 50 70 100
pc 0.2 0.5 0.8
pm 0.2 0.3 0.4

By referring to the standard array tables in the Taguchi method and using Minitab software,
L9(34) orthogonal arrays are selected as the most suitable design for models with three to six factors.
The orthogonal arrays for this design are shown in Table 2.

Table 2. Orthogonal Arrays L9(33) for NSGA-II Algorithm.

Experiment number nPop Pc Pm
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

Since the value of R; varies in each problem and is not directly usable, the Relative Percent
Deviation (RPD) is used for each problem.
Alg  —Min,
RPD = sl Tl (30)

Mo)
In the above equation, Algsol and Minsol represent the values of R; for each iteration of the
experiment and the best solution obtained, respectively. After converting the value of R_i to RPD,
according to the Taguchi parameter design structure, the S/N ratio is calculated based on RPD. Then,
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the average S/N ratio of the experiments is calculated for each parameter level. The best value for
each parameter is the one with the lowest average among these averages; in other words, the optimal
levels of factors are those that yield the minimum average ratio. After conducting the Taguchi
experiment, the results, the average of averages, and the average S/N ratio for each level of factors in
the NSGA-II algorithm for the model presented in Figures 1 and 2 are shown.

Main Effects Plot for Means
Data Means

nPop Pc Pm

5000

3000

s /

Mean of Means

1000

Figure 1. Average of Averages Plot for NSGA II Algorithm.

Main Effects Plot for SN ratios

Data Means
nPop Pc Pm

30

-40-
w
.9
=
o
& o / /\
—
) L
p ;\/ \
©
QU
= 60

-70-

1 2 3 1 2 3 1 2 3

Signal-to-noise: Smaller is better

Figure 2. Average S/N Ratio Plot for NSGA II Algorithm.

Based on the obtained plots, the optimal levels of the NSGA-II algorithm factors are:

3.2. Factors and Levels for the MOPSO Algorithm

are defined as presented in Table 2. Moreover, the orthogonal arrays corresponding to Table 3
are defined as Table 4:

Table 3. Optimal Levels of Factors Used for the NSGA-II Algorithm.

Levels of Factors

Optimal Level
Parameters 1 2 3 of Factors
nPop 50 70 100 70

pc 0.2 0.5 0.8 0.2
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pm 0.2 0.3 0.4 0.2

Table 3. Levels of factors used for the MOPSO algorithm.

Levels of factors

Parameters 1 2 3

nPop 50 75 100
nRep 70 100 150
\%Y 0.5 0.6 0.7
C1 1 1.25 1.5
C2 1 1.25 1.5

Table 4. Orthogonal Arrays L9(35) for MOPSO Algorithm.

2 C1 \%Y nRep nPop Experiment
Number

1 1 1 1 1 1
2 1 1 1 1 2
3 1 1 1 1 3
1 2 2 2 1 4
2 2 2 2 1 5
3 2 2 2 1 6
1 3 3 3 1 7
2 3 3 3 1 8
3 3 3 3 1 9
1 1 1 1 2 10
2 1 1 1 2 11
3 1 1 1 2 12
1 2 2 2 2 13
2 2 2 2 2 14
3 2 2 2 2 15
1 3 3 3 2 16
2 3 3 3 2 17
3 3 3 3 2 18
1 1 1 1 3 19
2 1 1 1 3 20
3 1 1 1 3 21
1 2 2 2 3 22
2 2 2 2 3 23
3 2 2 2 3 24
1 3 3 3 3 25
2 3 3 3 3 26
3 3 3 3 3 27
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After conducting the Taguchi experiment, the results of the average means and the average S/N
ratio for each level of the factors in the MOPSO algorithm for the presented model are shown in

Figures 3 and 4.
Main Effects Plot for Means
Data Means
nPop nRep w c c2

3500-|

3000-
2500-|
0] J \\

1500

Mean of Means

Figure 3. Average Means Plot for the MOPSO Algorithm.

Main Effects Plot for SN ratios
Data Means

nPop nRep w c1 c2

R

Mean of SN ratios
iy
)

2

&
b

$

2

68

12 3 1 2 3 1 2 3 1 2 3 1 2 3

Signal-to-noise: Smaller is better

Figure 4. Average S/N Ratio Plot for the MOPSO Algorithm.
Based on the above plots, the optimal levels of factors are obtained as described in Table 5.

Table 5. Levels of Factors Used for MOPSO Algorithm.

Optimal Levels of Factors
Level of
2 1 Parameters
Factors
100 100 75 50 nPop
70 150 100 70 nRep
0.7 0.7 0.6 0.5 Y
1 1.5 1.25 1 C1

1 1.5 1.25 1 C2
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3.3. Evaluation of NSGA 11 and MOPSO Algorithms

To assess and validate the implemented code in MATLAB, a sample problem has been designed
on a smaller scale for the proposed algorithms. Output variables obtained from the first successful
run of each algorithm are shown; therefore, the size of the problem set for initial validation is
determined based on randomly generated parameters following a uniform distribution. After
designing the problem and generating random data, the designed problem is solved using
metaheuristic algorithms in 100 iterations, and performance metrics for comparing multi-objective
metaheuristic algorithms are determined for each algorithm. Table 6 shows the average and
performance metrics obtained from the execution of NSGA II and MOPSO algorithms.

Table 6. Comparison Metrics of Metaheuristic Algorithms in Solving the Sample Problem.

MOPSO algorithm NSGA-II algorithm Index

6.64 18.88 Computational time

569563.9 573954.2 Average of the first objective function
Average of the second objective

49371.86 49622.11
function

9 10 NPF

35751.92 36643.3 MSI

0.381 0.476 SM

According to the results in Table 6, the computational time obtained from solving the sample
problem with the MOPSO algorithm is less than that with the NSGA II algorithm. However, the
NSGA II algorithm has performed better in finding a greater number of viable solutions. Therefore,
the Pareto front obtained from solving the sample problem with the NSGA II and MOPSO algorithms
is shown in Figure 5.

65T T T T T T T
* #  NSGAIN
* MOFPS0O

541 4

52+ * 1

51

Second Objective
3

4.8

4.7

L L | . . 1 L
6.5 555 5.6 565 5.7 575 58 585 59
First Objective <10°

Figure 5. Pareto Front obtained from solving the small-sized problem using NSGA II and MOPSO
algorithms.
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4. Solving Sample Problems in Larger Sizes with MOPSO and NSGA II Algorithms

In this section, to solve the sample problems in larger sizes, 15 sample problems have been
designed based on random data generated according to a uniform distribution. Additionally, from
each sample problem, 5 problems of the same size have been designed within the defined data range,
and the averages of each of the indicators have been evaluated and compared as the basis for
comparison. Then, a T-Test statistical test has been used to assess the significance of the difference
between the means of each of the indicators. Finally, the TOPSIS method has been employed to
determine the most efficient algorithm for solving the portfolio optimization problem. The sizes
designed for problem solving have been created randomly using MATLAB software.

Table 7. Size of sample problems in larger sizes.

r t j i Sample problem
6 4 4 1
6 4 2
10 7 4 3
12 8 5 10 4
16 9 10 12 5
17 11 12 15 6
18 12 14 15 7
20 12 15 15 8
21 13 16 16 9
24 14 16 16 10
25 15 16 17 11
26 15 17 18 12
27 16 17 19 13
28 16 17 19 14
30 20 20 20 15

For solving each sample problem, in order to prevent random data generation, 5 additional
problems have been solved using the same data and with the same problem using the NSGA-II and
MOPSO algorithms. Tables 8 and 9 respectively show the average objective functions and comparison
indices of the metaheuristic algorithms for each sample problem.

Table 8. Average Objective Functions and Comparison Indices in Solving with NSGA II Algorithm.

Sum of the
Number
First Second and Maximum  Diversity .
Sample o ) of ) Computational
Objective Third . Spread Distance )
problem . o Feasible . . Time
Functions Objective . Indicator Indicator
] Solutions
Functions
1 633806.72 62601.70 9 270273.91 0.37 36.46
2 778692.87 78381.54 19 585593.25 0.77 108.00
3 881581.31 85446.74 20 479316.63 0.7 170.30
4 1033814.58 90080.84 14 850298.87 0.57 242.53
5 1674913.50 103382.09 14 1129077.89  0.41 335.50
6 2369557.62 114251.75 22 1508175.51  0.55 434.40
7 2500890.63 125554.34 23 1797128.03  0.53 545.77
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3416474.10 132080.49 18 2739770.14  0.57 669.07
9 4301935.98 140272.83 21 2529228.60  0.40 819.60
10 4860023.44 159821.22 23 3529017.44  0.75 959.67
11 5040590.70 163061.03 23 3087180.76  0.74 1040.13
12 8540218.42 178342.69 23 4883033.12  0.69 1326.00
13 8887924.17 182872.57 30 3839628.23  0.66 1528.37
14 10361985.83  193154.36 21 456422.62 0.77 1802.27
15 12608666.41  207290.80 24 538709.71 0.87 2640.00

Table 9. Average Objective Functions and Comparison Metrics in Solving with MOPSO Algorithm.

Sum of the
Number

First Second and Maximum Diversity )
Sample o ) of ] Computational

Objective Third . Spread Distance .
problem ] o Feasible ] ] Time

Functions Objective . Indicator Indicator

. Solutions
Functions

1 635858.69 60567.22 8 109850.13 0.46 34.40
2 776699.89 71074.60 14 329845.53 0.62 39.07
3 871134.25 89693.95 8 370471.43 0.23 51.66
4 1046187.49 94437.00 16 463108.57 0.59 95.93
5 1653146.41 107002.93 18 817523.73 0.35 131.20
6 2353344.22 11541591 23 15261236.70  0.49 280.50
7 2450251.68 123910.36 16 2008648.76 0.55 349.16
8 3434001.90 136349.08 31 2559860.14 0.75 494.70
9 4334688.39 148225.98 28 3694417.30 0.64 723.16
10 4817592.14 151730.43 19 2215230.18 0.59 980.40
11 5020566.34 165792.57 12 2437807.90 0.76 1328.75
12 8500502.39 175673.57 25 3887334.58 0.44 1834.56
13 8759033.18 187113.32 12 3757576.19 0.72 2337.30
14 10251098.76 ~ 192138.59 12 4593286.90 0.66 2983.04
15 12554017.27  207281.68 17 5138916.08 0.51 3957.90

In Tables 7 and 8, the averages of objective functions and comparison metrics for the
metaheuristic algorithms NSGA II and MOPSO are presented for each sample problem. To compare
the obtained results, a T-Test was conducted at a 95% confidence level to assess significant differences
between the means of each metric. Therefore, if the P-value obtained for each metric is less than 0.05,
the null hypothesis is rejected, indicating a significant difference between the means of that metric.
Conversely, if the P-value is greater than 0.05, the null hypothesis is accepted, indicating no
significant difference between the means of that metric.

4.1. Investigation of the t-Test on the Means of the First Objective Function

Table 9 displays the output results of the T-Test conducted on the averages of the first objective
function. Additionally, Figures 6 and 7 show comparative plots of the averages of the first objective
function for each sample problem, along with box plots indicating the acceptance or rejection of the
null hypothesis in the T-Test.

Table 9. Results of the T-Test output on the means of the first objective function.
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Sample Standard 95% confidence  T-test
Algorithm Mean P-value
size deviation interval statistic
NSGA II 15 5626072 3852039
(4041*53686) 2.49 0.026
MOPSO 15 4497208 3821250

According to Table 10 and considering the p-value, it is observed that there is a significant
difference between the mean values of the first objective function obtained from solving with NSGA
ITand MOPSO algorithms. With these interpretations, based on the minimization of the first objective
function, it can be concluded that in this criterion, the MOPSO algorithm has achieved better results
compared to the NSGA II algorithm.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample problems

mean Value of first Objective function

—&— NSGAIl - ® = MOPOS

Figure 6. Comparison of Mean Values of the First Objective Function in Sample Problems with
Metaheuristic Algorithms.
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Figure 7. Boxplot for confirming or rejecting the null hypothesis for the means of the first objective
function.
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According to the observations in Figure 6, it can be inferred that the MOPSO algorithm has
achieved better results compared to the NSGA II algorithm in sample problems (12) to (15). This
indicates that the performance of the MOPSO algorithm in obtaining results for the first objective
function will be even better in much larger dimensions.

According to the boxplot in Figure 7, since the null hypothesis is not within the obtained interval,
there is a significant difference between the means of the first objective function obtained from
solving with NSGA II and MOPSO algorithms.

4.2. Investigating the t-Test on the Means of the Sum of the Second and Third Objective Functions

Table 11 presents the output results of the T-Test on the means of the second objective function.
Additionally, Figures 8 and 9 depict the comparative plots of the means of the second objective
function in each sample problem, along with boxplot diagrams for accepting or rejecting the null
hypothesis in the T-Test.

Table 11. Output results of the T-Test on the means of the second objective function.

. Sample Standard ~ 95% confidence T-test
Algorithm . Mean o . o P-value
size deviation  interval statistic
NSGA I 15 134440 45240
(-3156*1848) 0.56 0.584
MOPSO 15 135094 45418

With a p-value of 0.584 obtained from Table 11, it can be concluded that there is no significant
difference between the means of the second objective function. Therefore, to compare the most
efficient algorithm, multi-criteria decision-making methods such as TOPSIS should be used.
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Mean Value of Second objective
Function
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Sample Problems
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Figure 8. Comparison of the mean values of the second objective function in sample problems using
metaheuristic algorithms.
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Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)
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Figure 9. illustrates the boxplot for confirming or rejecting the null hypothesis for the means of the
second objective function.

Figure 8 displays the comparison of mean values of the second objective function in different
sample problems, indicating no significant difference among the obtained results. Therefore, it is not
straightforward to assess the performance of the algorithms in achieving the second objective
function results.

Figure 9 also complements the results presented in Table 11. Given that the null hypothesis falls
within the 95% confidence interval, it can be concluded that there is no significant difference between
the means of the second objective function obtained by the NSGA II and MOPSO algorithms.

4.3. Investigation of t-Test on the Means of Efficient Solutions

Statistical comparisons have been conducted on the performance metrics of the metaheuristic
algorithms. Table 12 presents the output results of the T-Test on the means of efficient solutions at a
95% confidence level.

Table 12. Output Results of T-Test on the Means of Efficient Solutions.

Sample Standard 95% confidence T-test

Algorithm ] Mean o ) o P-value
size deviation interval statistic
NSGA II 15 20.27 5.04
(-1.48*7.48) 1.43 0.173
MOPSO 15 17.27 6.91

Based on the fact that the p-value is greater than the conventional threshold of 0.05, we can
conclude that the null hypothesis (equality of the means of efficient solutions) is accepted. Therefore,
there is no significant difference between the means of efficient solutions obtained from solving
problems using metaheuristic algorithms.

Figure 10 also compares the averages of efficient solutions for NSGA II and MOPSO algorithms.
As depicted in Figure 10, the number of efficient solutions varies across different sample problems,
and no definitive conclusion can be drawn regarding the performance of the algorithms in achieving
better results for this metric.
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Figure 10. Comparison of average number of efficient solutions in sample problems using
metaheuristic algorithms.

Figure 11 illustrates a box plot for confirming or rejecting the null hypothesis for the averages of
the number of efficient solutions. Based on the observations, it can be concluded that the null
hypothesis is rejected due to its placement outside the confidence interval.
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(with Ho and 95% t-confidence interval for the mean)
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Figure 11. Box plot to confirm or reject the null hypothesis for the averages of the number of efficient
solutions.

Table 13 presents the statistical comparisons using the T-Test on the means of the maximum
spread indicator. Additionally, Figure 12 illustrates the comparisons of the means of the maximum
spread indicator across all sample problems, categorized by the NSGA II and MOPSO algorithms.

Table 13. Results of T-Test on the Means of the Maximum Spread Indicator.

. Sample Standard ~ 95% confidence T-test
Algorithm ] Mean o ) o P-value
size deviation  interval statistic
NSGA I 15 2478417 1496766
(-88459*523960) 1.53 0.149

MOPSO 15 2260667 1661211



https://doi.org/10.20944/preprints202410.2111.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2111.v1

19

The results in Table 13 indicate no significant difference in the means of the maximum spread
indicator obtained by the NSGA II and MOPSO algorithms. In this test, the value of the test statistic
P is greater than the chosen level of confidence.
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Figure 12. Comparison of the means of the maximum spread indicator in sample problems with
metaheuristic algorithms.

As observed in Figure 12, the MOPSO algorithm has obtained a higher value of MSI (Maximum
Spread Indicator) compared to the NSGA II algorithm in most sample problems. This indicates that
the solutions obtained from the first and second objective functions using the MOPSO algorithm have
a greater spread compared to the NSGA II algorithm.

In Figure 13, it can also be observed that the null hypothesis value falls within the 95%
confidence interval for the Maximum Spread Indicator.
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Figure 13. Box plot to confirm or reject the null hypothesis for the means of the Maximum Spread
Indicator.

4.4. Examining the t-Test test on the Averages of the Spacing Index


https://doi.org/10.20944/preprints202410.2111.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 October 2024 d0i:10.20944/preprints202410.2111.v1

20

Table 14 presents the statistical comparisons using the T-Test on the means of the Diversity
Distance indicator. Additionally, Figure 14 illustrates the comparisons of the mean Diversity Distance
indicators across all sample problems, categorized by the NSGA II and MOPSO algorithms.

Table 14. Output results of the T-Test test on average spacing index.

. Sample Standard 95% confidence T-test
Algorithm . Mean o . o P-value
size deviation interval statistic

NSGA II 15 0.623 0.152
MOPSO 15 0.557 0.148

(-0.0405*0.1725) 1.33 0.205
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oo N o b ok

average spacing index
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Figure 14. Comparison of average spacing index in example problems with meta-heuristic
algorithms.

The results of Table 14 and the value of the obtained P test statistic (0.205 value) show that there
is no significant difference between the average spacing index obtained by NSGA II and MOPSO
algorithms.

The observation of the graph in Figure 14 shows that the NSGA II algorithm has performed
better than the MOPSO algorithm in obtaining the distance index results. These results mean that the
dispersion of the first and second objective function results in the NSGA II algorithm is more and
more regular than the MOPSO algorithm.

The graph of Figure 15 also completes the results of Table 14 and shows the rejection of
hypothesis one and the absence of significant differences in the comparison of the averages of the
spacing index.
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Figure 15. Box plot to confirm or reject the null hypothesis for the averages of distance index.

Examining the T-Test on average computing time

Table 15 shows the output results of the T-Test test on average computing time. Also, Figures 16
and 17 show the comparative graph of average computing time in each sample problem and also the
box graph for rejecting or accepting the null hypothesis in the T-Test.

Table 15. Output results of the T-Test test on average computing time.

. Sample Standard 95% confidence  T-test
Algorithm ] Mean o ) o P-value
size deviation interval statistic
NSGA I 15 844 730

MOPSO 15 1041 1220

(-483*88) 1.48 0.160
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Figure 16. Comparison of computing time averages in example problems with meta-heuristic
algorithms.

According to the value of the P-test statistic obtained from the comparisons of the T-Test test on
the computing time averages, it can be acknowledged that there is no significant difference between
the computing time averages obtained from solving sample problems with NSGA II and MOPSO
algorithms.
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Carefully in the diagram of Figure 16, we can see that the computational time increases
exponentially with the increase in the size of the sample problems, which is a proof of the NP-
Hardness of the problem body. However, the MOPSO algorithm is better than the NSGA II algorithm
in terms of computing time for medium-sized problems, but with the increase in the size of the
problem, the computing time obtained by this algorithm has greatly increased.

Finally, the diagram in Figure 17 shows that the null hypothesis is placed in the 95% confidence
interval, which is a reason for the one hypothesis. Therefore, it can be concluded that there is no
significant difference between the average computing time obtained by NSGA II and MOPSO
algorithms.

Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)
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Figure 17. Box plot for confirming or rejecting the null hypothesis for computing time averages.

Table 16 also shows an overview of the significant difference between the average comparison
indicators. According to the previous results obtained and the following table, it can be stated that
there is a significant difference only between the averages of the first objective function obtained from
solving sample problems with NSGA II and MOPSO algorithms.

Table 16. Overview of the significant difference between the average comparison indicators.

A significant difference between the averages of

index
the indicators

Computational time Yes
Average of the first objective function No
Average of the second objective function No
NPF No
MsI No
SM No

4.5. Choosing the Most Efficient Algorithm with TOPSIS Method

In the previous section, meaningful comparisons were made in order to determine the significant
difference between the averages of the computational index obtained from solving sample problems
with NSGA II and MOPSO algorithms, and the results showed that there is a significant difference
only between the averages of the first objective function. In this section, in order to select the most
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efficient algorithm, the TOPSIS multi-criteria decision-making method is used. Therefore, Table 17
shows the overall averages obtained from 15 sample problems.

Table 17. Average indices obtained from meta-heuristic algorithms.

Sum of
the Number
First Maximum  Diversity
Second of Computational

Algorithm  Objective Spread Distance

and Third Feasible Time
Functions Indicator Indicator
Objective  Solutions
Functions
NSGA II 4526072 45240 20.27 2478417 0.623 844
MOPSO 4497208 45418 17.27 2260667 0.557 1041
Weight 0.4 0.4 0.05 0.05 0.05 0.05

After de-scaling the results of Table 17, the information was entered into the MCD Mengine
software and the output result showed the efficiency of the NSGA II algorithm with a favorability
weight of 0.6945 compared to the MOPSO algorithm with a weight of 0.3055. Therefore, considering
all the indicators and results, it is recommended to use the NSGA 1II algorithm.

5. Discussion

The current research has been done to provide a network of facilities for locating the hub by
considering existing facilities and new facilities under possible scenarios. Also, the appropriate and
reasonable coverage radius and the optimal capacity level are obtained by solving the proposed
model of this research. According to the studies, a mathematical model was presented for locating
the hub by considering the probability of possible scenarios. More precisely, in this research, the
proposed model provides solutions to improve demand coverage by examining the available
facilities in the network. Improvement solutions include: establishing new facilities, removing
existing facilities and making changes in existing facilities. In the proposed model, the probability of
occurrence of possible scenarios for locating the hub is considered. By solving the model, the
characteristics of each facility including: the level of the facility in the hierarchical structure, the
coverage radius of the facility and its capacity level are determined. Finally, in order to solve the
model in real dimensions and in an acceptable time, the exact solution algorithm and the meta-
heuristic algorithm NSGAII and MOPSO have been implemented on the model.

According to the analysis of two meta-heuristic algorithms, NSGAII and MOPSO, to evaluate
the mathematical model, it was shown that the NSGAII algorithm has a better performance.
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