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Abstract: Today, the facility location planning issue mainly belongs to the long-term operational 

and strategic level of large public and private organizations, and the significant costs associated 

with facility location, construction, and operation have turned location research into long-term 

decision-making. Presenting a hub location model for the green supply chain can address the 

current status of facilities and significantly improve demand coverage at an acceptable cost. 

Therefore, in this study, a network of facilities for hub location in the service site domain, 

considering existing and potential facilities under probable scenarios, has been proposed. After 

presenting the mathematical model, validation was performed on a small scale, followed by 

sensitivity analysis of the main parameters of the model. Furthermore, a metaheuristic algorithm 

was employed to analyze the NP-Hardness of the model. Additionally, to demonstrate the efficiency 

of the model, two metaheuristic algorithms, NSGAII and MOPSO, were developed. Based on the 

conducted analysis, it can be observed that the computational time increases exponentially with the 

size of sample problems, indicating the NP-Hardness of the problem. However, the NSGAII 

algorithm performs better in terms of computational time for medium-sized problems compared to 

the MOPSO algorithm . 

Keywords: Facility Location; maximum coverage; telecommunication; Hub Location; NSGAII; 

MOPSO 

 

1. Introduction 

The issue of facility location planning, especially in the domain of public health facilities, is 

significant [1]. The term “facility location” refers to the process of determining the optimal locations 

for facilities where services are provided to a certain population. Facility location involves 

considerations such as accessibility, service coverage, cost-effectiveness, and the socio-economic 

impact of the facility location on the surrounding community. In the context of healthcare facility 

location, it entails determining the optimal locations for the establishment of medical facilities to 

provide timely and effective healthcare services to the population [2]. Several studies and research 

have been conducted in the field of hub location so far [3–6]. including both emergency and non-

emergency facilities. However, a crucial aspect that has received less attention so far is the 

comprehensive evaluation of facility locations’ efficiency [7,8]. This entails assessing whether the 

decisions made over time regarding the location of facilities, considering various needs and 

constraints, are collectively optimal. Therefore, it is essential to comprehensively examine whether 

the chosen hub locations are optimal across different time periods and in relation to each other [9]. 

Therefore, the topic of optimal hub location is raised in a multidimensional manner, where the aim 

is to comprehensively and systematically examine the optimality of hub locations across the entire 

target region, and if necessary, to carry out hub location [10]. This hub location may involve 

establishing new hubs, removing existing hubs, increasing or decreasing the capacity of a hub. If the 
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location is not considered for the target area, we will face a number of local optimal solutions, each 

obtained at a specific time, which not only may not provide us with a globally optimal solution but 

also does not consider the changes in demand over time in the covered areas after the location is 

determined [11]. One of the challenges in the hub location problem is considering the hubs at different 

points equally and with similar services and capacities. This is because the characteristics of the 

selected locations, constraints, and the type and amount of needs in each area are not necessarily 

similar to each other, and these differences make uniform facilities not have sufficient efficiency [12]. 

From these differences, we can, for example, mention the following: In an area with a high population 

density, there is a need for facilities with high capacity, or in an area where there are suitable and 

extensive access routes, the coverage radius of a hub can be greater than other hubs or the types of 

needs may vary in different areas and require hubs with different services [13]. Despite these 

conditions, to reach an optimal solution, facilities with different characteristics and capacities should 

be considered. This is known in location literature as hub location, and considering this feature can 

lead to a more suitable solution for the problem [14]. In the field of hub location in various domains, 

including healthcare, uncertainty is one of the influential factors. For various facilities, many 

parameters such as the amount, type, and timing of demand creation are uncertain, and considering 

this uncertainty in the parameters can increase the practicality of the problem [15]. One of the 

assumptions that has been prevalent in location problems in the past is the assumption of facilities 

operating under different conditions [16]. However, this assumption is not valid in the real world, 

and facilities may be disrupted due to various reasons such as pollution and environmental issues, 

causing their activities to be halted [17]. The reasons for disruptions can be natural, such as 

disruptions due to the failure of wastewater and air catalysts, or human-induced, such as disruptions 

in the performance of air, water, and soil settlement due to operational errors [18]. Therefore, 

considering the probability of disruptions in pollutant production and providing a model that can 

continue its work under environmental disruption conditions is of paramount importance and high 

applicability [14]. In this article, we also attempt to provide a model that addresses hub location in a 

green state by considering environmental disruptions. Another aspect to consider in hub location is 

the limitations present in facility capacities and communication routes. Each facility has a limited 

capacity based on various factors, and it cannot provide services beyond this capacity. Therefore, 

considering limited capacities for facilities is necessary, and if these constraints are not considered, 

we deviate from real conditions, and the model will not be practical. On the other hand, many hub 

location problems have multiple objectives [19–21]. 

The objectives commonly considered in hub location problems are summarized below. Cost is 

one of the most common objectives in hub location problems [5]. Costs come in various types, divided 

into variable and fixed costs. Variable costs include installation expenses, while fixed costs include 

relocation expenses [15]. Typically, in hub location problems, a unified objective comprising all types 

of costs is considered. Another objective is coverage, which is used in maximal coverage problems. 

In this case, an objective is added to the model to maximize demand coverage. Other objectives exist 

in hub location problems, but we will not delve into them here. In this study, we aim to establish a 

balance between objectives such as maximizing demand coverage, minimizing costs, and maximizing 

greenness in the hub location. 

This article presents a multi-objective mathematical programming model in which the objectives 

of cost, demand coverage, and greenness of location are considered, aiming to address hub location 

under a comprehensive perspective to examine the optimality of the current facility locations and, if 

necessary, relocate existing facilities or locate new facilities. In order to find an effective and efficient 

solution, factors of uncertainty are also addressed. Given the nature of the problem under study and 

researchers’ opinions, the hub location model is NP-HARD. To validate the mathematical model, 

initially, the Pareto front of optimal solutions will be evaluated using an epsilon-constraint approach, 

and ultimately, to validate the model on larger scales, metaheuristic algorithms will be utilized. This 

article consists of five sections. The first section discusses the problem under study. The second 

section reviews the research literature, and the third section presents the mathematical model. The 
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fourth section analyzes the mathematical model, and finally, conclusions and future research 

recommendations are provided. 

2. Problem Description 

In this proposed model, it is assumed that there are several facilities at different levels in the 

region under study. Given that the existing facilities have been established over a long period 

spanning several years and considering that changes have occurred in the level and concentration of 

demand for services by customers during these years, it is necessary to comprehensively evaluate all 

existing hubs. In this section, initially, the existing hubs in the region for transporting network 

equipment are classified into three levels, and then the demand coverage by these facilities is 

examined. If there is a justifiable change in the capacity or location of the facilities in terms of cost, 

these changes are made in the location and capacity of the existing facilities. Finally, a new structure 

of hub location is proposed in which the location and capacity of some hubs have changed, but in 

return, the demand coverage for telecom services has increased. Improving demand coverage is not 

only done by examining the capacity level of existing hubs and adjusting their locations. In this 

article, three levels of capacity are also considered for the hubs, and if necessary, a hub is upgraded 

to a higher capacity level, or a new hub is located. To improve the quality of demand coverage for 

customers, the coverage radius is also considered for each hub. The coverage radius helps allocate 

demand to hubs in such a way that the distance from the demand point to the hub is optimized and 

acceptable. In this article, the coverage radius is considered as a variable. Since the level of demand 

coverage is directly related to the distance from the demand point to the hub and the variable 

coverage cost, efforts are made to minimize the coverage radius of each hub. In improving the current 

situation, only changes to existing hubs are not addressed, and if there is a need for locating a new 

hub, a new hub is established. In this problem, we aim to examine the efficiency of existing hubs in 

terms of coverage capacity and locate new hubs with the goal of reaching a higher level of demand 

coverage, reducing costs, and maximizing the level of greenness in hub locations. To this end, in our 

analysis, we consider the economic feasibility of the following actions: establishing new hubs, 

removing previous or existing hubs, and increasing or decreasing the capacity of hubs. 

2.1. Assumptions of the Problem 

The study area is divided into several regions. Regions are subsets of a larger area called zones, 

which are covered by hubs. 

In this study, three levels of hubs are considered: level w hubs, which have the lowest capacity 

level and provide primary services. Level c hubs provide complementary services. Finally, level h 

hubs provide the most advanced services and also provide level c hub services. 

Each demand point must be covered by one level w hub, one level c hub, and one level h hub. 

However, Level H hubs can also provide Level C hub services. Therefore, if a demand point is 

covered by a level h hub, there is no need for it to be covered by a level c hub. 

In each region, there must be at least one level w hub. 

In a region, it is not possible to have both level c and level h hubs simultaneously. 

In a zone, there cannot be more than one level h hub. 

Demand is considered to be point-wise. 

In Figure 1, different scenarios of demand coverage based on the assumptions are depicted. In 

the first scenario, the demand point is allocated to all three available levels of hubs. In this case, the 

demand for each level is assigned to hubs of the same level. In the second scenario, the demand point 

is allocated to two hubs at levels w and h. In this case, as described in the assumptions, the demand 

for level c is covered by the level h hub because level h hubs can provide services for level c hubs as 

well. 
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Figure 1. Different scenarios of demand point coverage. 

2.2. Mathematical Model 

In this proposed model, it is assumed that there are several hubs at different levels in the studied 

area, and the level of demand coverage by these hubs needs to be examined. If there are changes in 

the capacity or location of the hubs that are economically justified, these changes in the location and 

capacity of the existing hubs are made. Ultimately, a new structure of hubs is presented, where the 

location and capacity of some hubs have changed, but the demand coverage has increased. In this 

section, the mathematical model of the research is presented . 
We seek to examine the efficiency of existing hubs with the goal of achieving a higher level of 

demand coverage. To this end, in our analysis, we consider the economic viability of the following 

actions: establishment of hubs, removal of hubs, increase, and decrease in facility capacity. 
Sets, indices, parameters, and decision variables in this section are introduced. 
Sets and Indices 

� Set of Network Points 

� Set of Regions in the Model 

� Set of Zones in the Model 

� Set of Uncertainty Scenarios 

�� Set of nodes available in region r 

� Index representing demand points. � ∈ � 

� Index representing candidate points for establishing hubs. � ∈ � 

� Index related to the level of hubs. � ∈ {�, ℎ, �} 

� Index related to the level of hub capacity . 

� Index related to the region . 

�� Nodes present in the region. � ،�� ∈ � 

� Index related to the region . 

� Index related to each scenario . 

Parameters. 

ℎ� Demand of a point. � 

��,�
�  The fixed cost of establishing a hub at level l at point j with capacity level t . 

��,�
�  The level of greenness of the hub at level l at point j with capacity level t . 

������ The capacity level associated with level t . 

��,�
�  1 if a hub at level l exists at point j with capacity level t; 0 otherwise . 

��  The number of hubs at level l that must exist at the end. 

Demand Points 

Level w 

Level C 

Level H 

Allocation 
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��,� The distance between two points i and j . 

���� Maximum acceptable coverage radius. 

�� 
Acceptable deviation level from the optimal amount for each scenario in 

the original model . 

Decision variables 

��
∗ Optimal demand coverage level in each scenario 

��
∗ Optimal cost in each scenario 

��
� ∈ {0,1} 1 if demand at point i is covered; 0 otherwise 

��,�
� ∈ {0,1} 

1 if level-i hub at point j with capacity level t does not exist previously; 0 

otherwise 

�� The coverage radius of the hub existing at point j 

��,�
�,� ∈ {0,1} 1 if demand point i is allocated to hub j at level l in scenario s; 0 otherwise . 

��,�
� ∈ {0,1} 1 if hub of level l exists at point j with capacity level t; 0 otherwise . 

Objective Functions and Constraints 

Given the sets, indices, parameters, and decision variables presented in the previous section, the 

objective functions and constraints of the proposed model are provided as follows. 

Max � ℎ���
�

�

  
(1) 

Min � ��,�
� ��,�

� + � ��
�(�)

�,��,�,�

  
(2) 

M�� � ��,�
� ��,�

�

�,�,�

  
 (3) 

s.t.   

� ��,�
�,� ≥

�∈��

��
� ∀� ∈ ��, � ∈ �, � ∈ {�, ℎ}, � (4) 

����,�
�,� + ��,�

�,�� ≥

�∈��

��
� ∀� ∈ ��, � ∈ �, � (5) 

� ��,�
� ≥ 1

�∈��,�

 ∀� ∈ � (6) 

� ��,�
� + � ��,�

�

�∈��,�

≤ 1  

�∈��,�

 ∀� ∈ � (7) 

� ��,�
� ≤ 1

�∈��,�

 ∀� ∈ � (8) 

� ��,�
� ≤ 1

�,�

 ∀� (9) 

� ��,�
�,�

�

ℎ� ≤ �� ��������,�
�

�

� ∀�, �, � (10) 

��
� ≥ � ��,���,�

�

�

 ∀�, �, � (11) 

��
� ≤ ����  � ��,�

�

�

 ∀�, � (12) 

� ��,�
� ≤ �� 

�,�

 ∀� ∈ � (13) 

��,�
� = ���,�

� − ��,�
� � ∀�, �, � (14) 
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� ℎ���
� ≥ (1 − ��)��

∗

�

 ∀� ∈ �/0 (15) 

� ��,�
� ��,�

� + � ��
�(�)

�,�

≤ (1 + ��)��
∗

�,�,�

 ∀� ∈ �/0 (16) 

Objective Function (1) represents the amount of demand covered. Objective Function (2) 

represents the cost incurred due to changes in the structure of hubs, where a binary variable ��,�
�  takes 

a value of one if a new hub is located or if there is a change in the capacity of a hub or its relocation, 

and the cost of this change is calculated. In the second part of the equation, the cost of the coverage 

radius of each hub is calculated as a function of the radius. Objective Function (3) maximizes the level 

of greenness in the hub location. Each demand point is covered only if it is allocated to at least one 

hub at level w and one hub at level h in its own region; this condition is considered in equation (4). 

According to the model assumptions, a hub at level h can make a demand point unnecessary to be 

allocated to a hub at level c; therefore, in equation (), this assumption is applied that allocating a 

demand point to a hub at level h in one region does not necessarily require assigning that point to a 

hub at level c . 
Equation (5) expresses the requirement to establish at least one level-w hub in each region. The 

assumption of the prohibition of simultaneously establishing two hubs at levels h and c in one region 

is considered in equation (7). Equation (8) limits the establishment of more than one level-h hub in 

one region. Equation (9) restricts the establishment of more than one hub at a single point. Equation 

(10) represents constraints on the availability and capacity of hubs, preventing the allocation of more 

than the optimal capacity level to hubs and also preventing demand allocation to hubs in scenarios 

where the hub is unavailable. Equations (11) and (12) determine the coverage radius of each hub. 

Equation (13) indicates the permissible number of network changes at each level. Equation (14) 

identifies whether a hub has undergone changes during hub location or remained unchanged. 

Equations (15) and (16) ensure that the objective function value does not deviate by more than the 

allowable percentage from the optimal value in each scenario. 

2.3. Solving the Proposed Model (Modified Epsilon-Constrained Approach) 

In multi-objective problems, there is generally no single optimal solution that simultaneously 

optimizes all objective functions. Therefore, the concept of optimality is replaced with Pareto 

optimality or efficiency. Pareto optimal solutions (efficient, non-dominated) are solutions that cannot 

improve one objective function without worsening the performance of at least one other objective 

function (Fonseca, 2016). The Pareto set is a set of Pareto optimal solutions . 
According to Huang and Masoud (2012), there are three main approaches for solving multi-

objective optimization problems based on decision maker preference elicitation: a priori methods, a 

posteriori or generative methods, and interactive methods. In a priori methods, the decision maker 

provides their preferences before the process begins. This method has the drawback of reducing 

preferences determined by the decision maker. A posteriori methods involve optimizing all objective 

functions simultaneously. In this approach, the Pareto set is first generated. Then, at the end of the 

search process, the decision maker selects a preferred Pareto set. In interactive methods, the decision 

maker engages in the computation stages instead of expressing preferences in the dialogue stages. In 

this method, after several iterations, the process usually converges to a more desirable solution. The 

decision maker sequentially guides the search towards the preferred solution based on their 

responses . 
To solve this three-objective model, the epsilon-constrained method for exact solution is used. 

In this method, one of the objective functions is kept as the primary objective, and the other objective 

functions are transformed into inequality constraints based on minimization or maximization of the 

primary objective function as follows. 

max ��         →         �� ≥ � (17) 

min ��          →        �� ≤ � (18) 
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In this model, the first constraint, which maximizes the covered demand, is kept as the objective 

function, while the second and third objectives, which minimize the cost and the amount of changes 

and maximize the greenness, are considered as constraints and are transformed as follows: 

� ��,�
� ��,�

� + � ��(�) ≤ ��

��,�,�

 (19) 

� ��,�
� ��,�

�

�,�,�

≥  �� (20) 

As a result, the first objective function is modified as follows : 

���/���(��(�) +  � ∗ �
��

��

+ 
��

��

+ ⋯ +
��

��

… +
��

��
�) (21) 

 

As a result, the first objective function is modified as follows : 

Max � ℎ���
�

�

 +  � ∗ �
��

��

+  
��

��
�) (22) 

� ��,�
� ��,�

� + � ��(�) − �� = ��

��,�,�

 (23) 

� ��,�
� ��,�

�

�,�,�

+�� =  �� (23) 

��  ∊  �� 
According to the above equation, the Pareto optimal solutions are obtained, where ri  is the range 

of the ith objective function, ϑ is a small number between 0.001 to 0.000001, and Si is a non-negative 

auxiliary variable. First, the values of �����  (worst value) and �����  (best value) for each objective 

function are determined. Then, the value of the domain of the ith objective function is calculated 

according to the following equation: 

�� = �����−����� (25) 

Afterward,  �� is divided into equal intervals ��. Then, ��+1  points are obtained, and according 

to the following equation, the values of epsilon are determined based on these points (Grid points). 

In this method, the model must be solved for all obtained epsilons, where ƞ  is the number of grid 

points obtained according to the equation . 

��
ƞ

= ����� +
��

��
∗ ƞ (26) 

Linearization : 
In the model presented in this paper, equations (14) are nonlinear, and by linearizing these 

equations, we obtain a mixed-integer linear model (MIP). The presence of an absolute value sign in 

this nonlinearity has led to the nonlinearity of the model. Considering the existence of an equivalent 

variable for the absolute value, linearization is performed as follows : 

First, we introduce two binary variables x�
�,�
�

 and x”�,�
� . Then, equations (14) are rewritten as 

follows : 

��,�
� − ��,�

� = ��
�,�
�

− �”�,�
�  (27) 

��,�
� = ��

�,�
�

+ �”�,�
�  (28) 

This way, the model presented in this paper is transformed into a mixed-integer linear model . 

3. Research Findings 

Based on the mathematical model presented for evaluating the proposed mathematical model, 

it has been evaluated and analyzed using the MOPSO and NSGAII algorithms. Therefore, in this 

section, in order to solve sample problems in larger sizes, metaheuristic algorithms NSGA II and 

MOPSO with priority-based encoding have been utilized. Consequently, at the beginning of this 

section, initial solutions used in solving the problem and the operators of metaheuristic algorithms 
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are presented. Towards the end of this section, the adjustment of metaheuristic algorithm parameters 

using the Taguchi method is discussed. Therefore, the mathematical model is initially minimized 

using the weighted objective function approach for the second and third objective functions. 

3.1. Parameter Tuning for Metaheuristic Algorithms 

To tune the parameters, a response variable has been utilized. This response variable is a 

combination of 5 provided criteria, and its value is calculated using the following formula. Since the 

criteria do not have equal importance, weighting coefficients are assigned to them. 

�� =
����
������� + ����

������� + ���
������ + ��� − ��������������������

�� + �� + �� + ��
 (29) 

Factors and Levels for the NSGA-II Algorithm 

The factors and their corresponding levels used for the NSGA-II algorithm are defined according 

to Table 1. 

Table 1. Levels of Factors Used for the NSGA-II Algorithm. 

Levels of Factors 

Parameters 1 2 3 

nPop 50 70 100 

pc 0.2 0.5 0.8 

pm 0.2 0.3 0.4 

By referring to the standard array tables in the Taguchi method and using Minitab software, 

L9(34) orthogonal arrays are selected as the most suitable design for models with three to six factors. 

The orthogonal arrays for this design are shown in Table 2. 

Table 2. Orthogonal Arrays L9(33) for NSGA-II Algorithm. 

Experiment number nPop Pc Pm 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 

Since the value of �� varies in each problem and is not directly usable, the Relative Percent 

Deviation (RPD) is used for each problem. 

RPD =
Alg

sol
− Minsol

Minsol
× 100 (30) 

In the above equation, Algsol and Minsol represent the values of �� for each iteration of the 

experiment and the best solution obtained, respectively. After converting the value of R_i to RPD, 

according to the Taguchi parameter design structure, the S/N ratio is calculated based on RPD. Then, 
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the average S/N ratio of the experiments is calculated for each parameter level. The best value for 

each parameter is the one with the lowest average among these averages; in other words, the optimal 

levels of factors are those that yield the minimum average ratio. After conducting the Taguchi 

experiment, the results, the average of averages, and the average S/N ratio for each level of factors in 

the NSGA-II algorithm for the model presented in Figures 1 and 2 are shown . 

 

Figure 1. Average of Averages Plot for NSGA II Algorithm. 

. 

Figure 2. Average S/N Ratio Plot for NSGA II Algorithm. 

Based on the obtained plots, the optimal levels of the NSGA-II algorithm factors are : 

3.2. Factors and Levels for the MOPSO Algorithm 

are defined as presented in Table 2. Moreover, the orthogonal arrays corresponding to Table 3 

are defined as Table 4: 

Table 3. Optimal Levels of Factors Used for the NSGA-II Algorithm. 

Levels of Factors 
Optimal Level 

of Factors Parameters 1 2 3 

nPop 50 70 100 70 

pc 0.2 0.5 0.8 0.2 
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pm 0.2 0.3 0.4 0.2 

Table 3. Levels of factors used for the MOPSO algorithm. 

Levels of factors 

Parameters 1 2 3 

nPop 50 75 100 

nRep 70 100 150 

W 0.5 0.6 0.7 

C1 1 1.25 1.5 

C2 1 1.25 1.5 

Table 4. Orthogonal Arrays L9(35) for MOPSO Algorithm. 

C2 C1 W nRep nPop 
Experiment 

Number 

1 1 1 1 1 1 

2 1 1 1 1 2 

3 1 1 1 1 3 

1 2 2 2 1 4 

2 2 2 2 1 5 

3 2 2 2 1 6 

1 3 3 3 1 7 

2 3 3 3 1 8 

3 3 3 3 1 9 

1 1 1 1 2 10 

2 1 1 1 2 11 

3 1 1 1 2 12 

1 2 2 2 2 13 

2 2 2 2 2 14 

3 2 2 2 2 15 

1 3 3 3 2 16 

2 3 3 3 2 17 

3 3 3 3 2 18 

1 1 1 1 3 19 

2 1 1 1 3 20 

3 1 1 1 3 21 

1 2 2 2 3 22 

2 2 2 2 3 23 

3 2 2 2 3 24 

1 3 3 3 3 25 

2 3 3 3 3 26 

3 3 3 3 3 27 
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After conducting the Taguchi experiment, the results of the average means and the average S/N 

ratio for each level of the factors in the MOPSO algorithm for the presented model are shown in 

Figures 3 and 4. 

 

Figure 3. Average Means Plot for the MOPSO Algorithm. 

 

Figure 4. Average S/N Ratio Plot for the MOPSO Algorithm. 

Based on the above plots, the optimal levels of factors are obtained as described in Table 5. 

Table 5. Levels of Factors Used for MOPSO Algorithm. 

Optimal 

Level of 

Factors 

Levels of Factors 

3 2 1 Parameters 

100 100 75 50 nPop 

70 150 100 70 nRep 

0.7 0.7 0.6 0.5 W 

1 1.5 1.25 1 C1 

1 1.5 1.25 1 C2 
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3.3. Evaluation of NSGA II and MOPSO Algorithms 

To assess and validate the implemented code in MATLAB, a sample problem has been designed 

on a smaller scale for the proposed algorithms. Output variables obtained from the first successful 

run of each algorithm are shown; therefore, the size of the problem set for initial validation is 

determined based on randomly generated parameters following a uniform distribution. After 

designing the problem and generating random data, the designed problem is solved using 

metaheuristic algorithms in 100 iterations, and performance metrics for comparing multi-objective 

metaheuristic algorithms are determined for each algorithm. Table 6 shows the average and 

performance metrics obtained from the execution of NSGA II and MOPSO algorithms . 

Table 6. Comparison Metrics of Metaheuristic Algorithms in Solving the Sample Problem. 

MOPSO algorithm NSGA-II algorithm Index 

6.64 18.88 Computational time 

569563.9 573954.2 Average of the first objective function

49371.86 49622.11 
Average of the second objective 

function 

9 10 NPF 

35751.92 36643.3 MSI 

0.381 0.476 SM 

According to the results in Table 6, the computational time obtained from solving the sample 

problem with the MOPSO algorithm is less than that with the NSGA II algorithm. However, the 

NSGA II algorithm has performed better in finding a greater number of viable solutions. Therefore, 

the Pareto front obtained from solving the sample problem with the NSGA II and MOPSO algorithms 

is shown in Figure 5. 

 

Figure 5. Pareto Front obtained from solving the small-sized problem using NSGA II and MOPSO 

algorithms . 
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4. Solving Sample Problems in Larger Sizes with MOPSO and NSGA II Algorithms 

In this section, to solve the sample problems in larger sizes, 15 sample problems have been 

designed based on random data generated according to a uniform distribution. Additionally, from 

each sample problem, 5 problems of the same size have been designed within the defined data range, 

and the averages of each of the indicators have been evaluated and compared as the basis for 

comparison. Then, a T-Test statistical test has been used to assess the significance of the difference 

between the means of each of the indicators. Finally, the TOPSIS method has been employed to 

determine the most efficient algorithm for solving the portfolio optimization problem. The sizes 

designed for problem solving have been created randomly using MATLAB software. 

Table 7. Size of sample problems in larger sizes . 

r � � i Sample problem 

8 6 4 4 1 

9 6 4 6 2 

10 7 4 6 3 

12 8 5 10 4 

16 9 10 12 5 

17 11 12 15 6 

18 12 14 15 7 

20 12 15 15 8 

21 13 16 16 9 

24 14 16 16 10 

25 15 16 17 11 

26 15 17 18 12 

27 16 17 19 13 

28 16 17 19 14 

30 20 20 20 15 

For solving each sample problem, in order to prevent random data generation, 5 additional 

problems have been solved using the same data and with the same problem using the NSGA-II and 

MOPSO algorithms. Tables 8 and 9 respectively show the average objective functions and comparison 

indices of the metaheuristic algorithms for each sample problem . 

Table 8. Average Objective Functions and Comparison Indices in Solving with NSGA II Algorithm. 

Sample 

problem 

First 

Objective 

Functions 

Sum of the 

Second and 

Third 

Objective 

Functions 

Number 

of 

Feasible 

Solutions 

Maximum 

Spread 

Indicator 

Diversity 

Distance 

Indicator 

Computational 

Time 

1 633806.72 62601.70 9 270273.91 0.37 36.46 

2 778692.87 78381.54 19 585593.25 0.77 108.00 

3 881581.31 85446.74 20 479316.63 0.7 170.30 

4 1033814.58 90080.84 14 850298.87 0.57 242.53 

5 1674913.50 103382.09 14 1129077.89 0.41 335.50 

6 2369557.62 114251.75 22 1508175.51 0.55 434.40 

7 2500890.63 125554.34 23 1797128.03 0.53 545.77 
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8 3416474.10 132080.49 18 2739770.14 0.57 669.07 

9 4301935.98 140272.83 21 2529228.60 0.40 819.60 

10 4860023.44 159821.22 23 3529017.44 0.75 959.67 

11 5040590.70 163061.03 23 3087180.76 0.74 1040.13 

12 8540218.42 178342.69 23 4883033.12 0.69 1326.00 

13 8887924.17 182872.57 30 3839628.23 0.66 1528.37 

14 10361985.83 193154.36 21 456422.62 0.77 1802.27 

15 12608666.41 207290.80 24 538709.71 0.87 2640.00 

Table 9. Average Objective Functions and Comparison Metrics in Solving with MOPSO Algorithm. 

Sample 

problem 

First 

Objective 

Functions 

Sum of the 

Second and 

Third 

Objective 

Functions 

Number 

of 

Feasible 

Solutions 

Maximum 

Spread 

Indicator 

Diversity 

Distance 

Indicator 

Computational 

Time 

1 635858.69 60567.22 8 109850.13 0.46 34.40 

2 776699.89 71074.60 14 329845.53 0.62 39.07 

3 871134.25 89693.95 8 370471.43 0.23 51.66 

4 1046187.49 94437.00 16 463108.57 0.59 95.93 

5 1653146.41 107002.93 18 817523.73 0.35 131.20 

6 2353344.22 115415.91 23 15261236.70 0.49 280.50 

7 2450251.68 123910.36 16 2008648.76 0.55 349.16 

8 3434001.90 136349.08 31 2559860.14 0.75 494.70 

9 4334688.39 148225.98 28 3694417.30 0.64 723.16 

10 4817592.14 151730.43 19 2215230.18 0.59 980.40 

11 5020566.34 165792.57 12 2437807.90 0.76 1328.75 

12 8500502.39 175673.57 25 3887334.58 0.44 1834.56 

13 8759033.18 187113.32 12 3757576.19 0.72 2337.30 

14 10251098.76 192138.59 12 4593286.90 0.66 2983.04 

15 12554017.27 207281.68 17 5138916.08 0.51 3957.90 

In Tables 7 and 8, the averages of objective functions and comparison metrics for the 

metaheuristic algorithms NSGA II and MOPSO are presented for each sample problem. To compare 

the obtained results, a T-Test was conducted at a 95% confidence level to assess significant differences 

between the means of each metric. Therefore, if the P-value obtained for each metric is less than 0.05, 

the null hypothesis is rejected, indicating a significant difference between the means of that metric. 

Conversely, if the P-value is greater than 0.05, the null hypothesis is accepted, indicating no 

significant difference between the means of that metric . 

4.1. Investigation of the t-Test on the Means of the First Objective Function 

Table 9 displays the output results of the T-Test conducted on the averages of the first objective 

function. Additionally, Figures 6 and 7 show comparative plots of the averages of the first objective 

function for each sample problem, along with box plots indicating the acceptance or rejection of the 

null hypothesis in the T-Test. 

Table 9. Results of the T-Test output on the means of the first objective function . 
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Algorithm 
Sample 

size 
Mean 

Standard 

deviation 

95% confidence 

interval 

T-test 

statistic 
P-value 

NSGA II 15 5626072 3852039 
(4041*53686) 2.49 0.026 

MOPSO 15 4497208 3821250 

According to Table 10 and considering the p-value, it is observed that there is a significant 

difference between the mean values of the first objective function obtained from solving with NSGA 

II and MOPSO algorithms. With these interpretations, based on the minimization of the first objective 

function, it can be concluded that in this criterion, the MOPSO algorithm has achieved better results 

compared to the NSGA II algorithm. 

 

Figure 6. Comparison of Mean Values of the First Objective Function in Sample Problems with 

Metaheuristic Algorithms. 

 

Figure 7. Boxplot for confirming or rejecting the null hypothesis for the means of the first objective 

function . 
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According to the observations in Figure 6, it can be inferred that the MOPSO algorithm has 

achieved better results compared to the NSGA II algorithm in sample problems (12) to (15). This 

indicates that the performance of the MOPSO algorithm in obtaining results for the first objective 

function will be even better in much larger dimensions. 

According to the boxplot in Figure 7, since the null hypothesis is not within the obtained interval, 

there is a significant difference between the means of the first objective function obtained from 

solving with NSGA II and MOPSO algorithms . 

4.2. Investigating the t-Test on the Means of the Sum of the Second and Third Objective Functions 

Table 11 presents the output results of the T-Test on the means of the second objective function. 

Additionally, Figures 8 and 9 depict the comparative plots of the means of the second objective 

function in each sample problem, along with boxplot diagrams for accepting or rejecting the null 

hypothesis in the T-Test. 

Table 11. Output results of the T-Test on the means of the second objective function. 

Algorithm 
Sample 

size 
Mean 

Standard 

deviation 

95% confidence 

interval 

T-test 

statistic 
P-value 

NSGA II 15 134440 45240 
(-3156*1848) 0.56 0.584 

MOPSO 15 135094 45418 

With a p-value of 0.584 obtained from Table 11, it can be concluded that there is no significant 

difference between the means of the second objective function. Therefore, to compare the most 

efficient algorithm, multi-criteria decision-making methods such as TOPSIS should be used. 

 

Figure 8. Comparison of the mean values of the second objective function in sample problems using 

metaheuristic algorithms . 
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Figure 9. illustrates the boxplot for confirming or rejecting the null hypothesis for the means of the 

second objective function . 

Figure 8 displays the comparison of mean values of the second objective function in different 

sample problems, indicating no significant difference among the obtained results. Therefore, it is not 

straightforward to assess the performance of the algorithms in achieving the second objective 

function results. 

Figure 9 also complements the results presented in Table 11. Given that the null hypothesis falls 

within the 95% confidence interval, it can be concluded that there is no significant difference between 

the means of the second objective function obtained by the NSGA II and MOPSO algorithms. 

4.3. Investigation of t-Test on the Means of Efficient Solutions 

Statistical comparisons have been conducted on the performance metrics of the metaheuristic 

algorithms. Table 12 presents the output results of the T-Test on the means of efficient solutions at a 

95% confidence level . 

Table 12. Output Results of T-Test on the Means of Efficient Solutions. 

Algorithm 
Sample 

size 
Mean 

Standard 

deviation 

95% confidence 

interval 

T-test 

statistic 
P-value 

NSGA II 15 20.27 5.04 
(-1.48*7.48) 1.43 0.173 

MOPSO 15 17.27 6.91 

Based on the fact that the p-value is greater than the conventional threshold of 0.05, we can 

conclude that the null hypothesis (equality of the means of efficient solutions) is accepted. Therefore, 

there is no significant difference between the means of efficient solutions obtained from solving 

problems using metaheuristic algorithms. 

Figure 10 also compares the averages of efficient solutions for NSGA II and MOPSO algorithms. 

As depicted in Figure 10, the number of efficient solutions varies across different sample problems, 

and no definitive conclusion can be drawn regarding the performance of the algorithms in achieving 

better results for this metric. 
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Figure 10. Comparison of average number of efficient solutions in sample problems using 

metaheuristic algorithms. 

Figure 11 illustrates a box plot for confirming or rejecting the null hypothesis for the averages of 

the number of efficient solutions. Based on the observations, it can be concluded that the null 

hypothesis is rejected due to its placement outside the confidence interval . 

 

Figure 11. Box plot to confirm or reject the null hypothesis for the averages of the number of efficient 

solutions . 

Table 13 presents the statistical comparisons using the T-Test on the means of the maximum 

spread indicator. Additionally, Figure 12 illustrates the comparisons of the means of the maximum 

spread indicator across all sample problems, categorized by the NSGA II and MOPSO algorithms . 

Table 13. Results of T-Test on the Means of the Maximum Spread Indicator. 

Algorithm 
Sample 

size 
Mean 

Standard 

deviation 

95% confidence 

interval 

T-test 

statistic 
P-value 

NSGA II 15 2478417 1496766 
(-88459*523960) 1.53 0.149 

MOPSO 15 2260667 1661211 
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The results in Table 13 indicate no significant difference in the means of the maximum spread 

indicator obtained by the NSGA II and MOPSO algorithms. In this test, the value of the test statistic 

P is greater than the chosen level of confidence. 

 

Figure 12. Comparison of the means of the maximum spread indicator in sample problems with 

metaheuristic algorithms . 

As observed in Figure 12, the MOPSO algorithm has obtained a higher value of MSI (Maximum 

Spread Indicator) compared to the NSGA II algorithm in most sample problems. This indicates that 

the solutions obtained from the first and second objective functions using the MOPSO algorithm have 

a greater spread compared to the NSGA II algorithm. 

In Figure 13, it can also be observed that the null hypothesis value falls within the 95% 

confidence interval for the Maximum Spread Indicator. 

 

Figure 13. Box plot to confirm or reject the null hypothesis for the means of the Maximum Spread 

Indicator . 
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Table 14 presents the statistical comparisons using the T-Test on the means of the Diversity 

Distance indicator. Additionally, Figure 14 illustrates the comparisons of the mean Diversity Distance 

indicators across all sample problems, categorized by the NSGA II and MOPSO algorithms. 

Table 14. Output results of the T-Test test on average spacing index. 

Algorithm 
Sample 

size 
Mean 

Standard 

deviation 

95% confidence 

interval 

T-test 

statistic 
P-value 

NSGA II 15 0.623 0.152 
(-0.0405*0.1725) 1.33 0.205 

MOPSO 15 0.557 0.148 

 

Figure 14. Comparison of average spacing index in example problems with meta-heuristic 

algorithms. 

The results of Table 14 and the value of the obtained P test statistic (0.205 value) show that there 

is no significant difference between the average spacing index obtained by NSGA II and MOPSO 

algorithms. 

The observation of the graph in Figure 14 shows that the NSGA II algorithm has performed 

better than the MOPSO algorithm in obtaining the distance index results. These results mean that the 

dispersion of the first and second objective function results in the NSGA II algorithm is more and 

more regular than the MOPSO algorithm . 
The graph of Figure 15 also completes the results of Table 14 and shows the rejection of 

hypothesis one and the absence of significant differences in the comparison of the averages of the 

spacing index . 
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Figure 15. Box plot to confirm or reject the null hypothesis for the averages of distance index. 

Examining the T-Test on average computing time 

Table 15 shows the output results of the T-Test test on average computing time. Also, Figures 16 

and 17 show the comparative graph of average computing time in each sample problem and also the 

box graph for rejecting or accepting the null hypothesis in the T-Test. 

Table 15. Output results of the T-Test test on average computing time. 

Algorithm 
Sample 

size 
Mean 

Standard 

deviation 

95% confidence 

interval 

T-test 

statistic 
P-value 

NSGA II 15 844 730 
(-483*88) 1.48 0.160 

MOPSO 15 1041 1220 

 

Figure 16. Comparison of computing time averages in example problems with meta-heuristic 

algorithms. 
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Carefully in the diagram of Figure 16, we can see that the computational time increases 

exponentially with the increase in the size of the sample problems, which is a proof of the NP-

Hardness of the problem body. However, the MOPSO algorithm is better than the NSGA II algorithm 

in terms of computing time for medium-sized problems, but with the increase in the size of the 

problem, the computing time obtained by this algorithm has greatly increased . 
Finally, the diagram in Figure 17 shows that the null hypothesis is placed in the 95% confidence 

interval, which is a reason for the one hypothesis. Therefore, it can be concluded that there is no 

significant difference between the average computing time obtained by NSGA II and MOPSO 

algorithms. 

 

Figure 17. Box plot for confirming or rejecting the null hypothesis for computing time averages. 

Table 16 also shows an overview of the significant difference between the average comparison 
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efficient algorithm, the TOPSIS multi-criteria decision-making method is used. Therefore, Table 17 

shows the overall averages obtained from 15 sample problems . 

Table 17. Average indices obtained from meta-heuristic algorithms. 

Algorithm 

First 

Objective 

Functions 

Sum of 

the 

Second 

and Third 

Objective 

Functions 

Number 

of 

Feasible 

Solutions 

Maximum 

Spread 

Indicator 

Diversity 

Distance 

Indicator 

Computational 

Time 

NSGA II 4526072 45240 20.27 2478417 0.623 844 

MOPSO 4497208 45418 17.27 2260667 0.557 1041 

Weight 0.4 0.4 0.05 0.05 0.05 0.05 

After de-scaling the results of Table 17, the information was entered into the MCD Mengine 

software and the output result showed the efficiency of the NSGA II algorithm with a favorability 

weight of 0.6945 compared to the MOPSO algorithm with a weight of 0.3055. Therefore, considering 

all the indicators and results, it is recommended to use the NSGA II algorithm . 

5. Discussion 

The current research has been done to provide a network of facilities for locating the hub by 

considering existing facilities and new facilities under possible scenarios. Also, the appropriate and 

reasonable coverage radius and the optimal capacity level are obtained by solving the proposed 

model of this research. According to the studies, a mathematical model was presented for locating 

the hub by considering the probability of possible scenarios. More precisely, in this research, the 

proposed model provides solutions to improve demand coverage by examining the available 

facilities in the network. Improvement solutions include: establishing new facilities, removing 

existing facilities and making changes in existing facilities. In the proposed model, the probability of 

occurrence of possible scenarios for locating the hub is considered. By solving the model, the 

characteristics of each facility including: the level of the facility in the hierarchical structure, the 

coverage radius of the facility and its capacity level are determined. Finally, in order to solve the 

model in real dimensions and in an acceptable time, the exact solution algorithm and the meta-

heuristic algorithm NSGAII and MOPSO have been implemented on the model. 
According to the analysis of two meta-heuristic algorithms, NSGAII and MOPSO, to evaluate 

the mathematical model, it was shown that the NSGAII algorithm has a better performance. 
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