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Abstract: Breathing in fine particulate matter with diameters less than 2.5 µm (PM2.5) has greatly 

increased an individual’s risk of cardiovascular and respiratory diseases. As climate change 

progresses, extreme weather events, including wildfires, are expected to rise, exacerbating air 

pollution. The 2023 Canadian wildfires highlighted the growing threat of PM2.5 as smoke spread 

across U.S. cities like New York, Philadelphia, and Washington D.C. This research investigates the 

application of data augmentation techniques to improve the accuracy of PM2.5 concentration 

forecasts in these urban environments. Models trained on imbalanced datasets often struggle to 

capture extreme pollution events, underestimating high PM2.5 levels due to the model’s focus on 

more frequent, low-value samples. To address this, we implemented cluster-based undersampling 

and trained transformer models using various cutoff thresholds (12.1 µg/m³ and 35.5 µg/m³) and 

partial sampling ratios (10/90, 20/80, 30/70, 40/60, 50/50). Our results demonstrate that the 35.5 µg/m³ 

threshold, coupled with a 20/80 partial sampling ratio, provides the best performance regarding 

RMSE and R², particularly in capturing high PM2.5 events. Overall, models trained on augmented 

data significantly outperformed those trained on original data, highlighting the importance of 

resampling techniques in improving air quality forecasting accuracy, especially for high-pollution 

scenarios. These insights significantly contribute to a better understanding of PM2.5 pollution with 

the hopes of more informed public health and environmental policies. 

Keywords: air quality; PM2.5 forecasting; data augmentation; cluster-based under sampling; 

transformer model; 2023 Canadian wildfires  

 

1. Introduction 

Air pollution remains one of the most pressing global health challenges, identified as the second 

leading risk factor for premature death worldwide. In 2021 alone, air pollution was responsible for 

approximately 8.1 million deaths globally, underscoring its profound impact on human health (State 

of Global Air Report, 2024). Fine particulate matter (PM2.5) is particularly concerning, as it refers to 

particles with an aerodynamic diameter of 2.5 micrometers or less. PM2.5 particles are small enough 

to penetrate deep into the lungs and even enter the bloodstream, posing significant risks to human 

health. The Global Burden of Disease (GBD) study estimated that ambient PM2.5 exposure was 

responsible for approximately 4.14 million deaths globally in 2019 (McDuffie et al., 2021).  These 

particles are associated with a wide range of health outcomes, including stroke, ischemic heart 

disease, chronic obstructive pulmonary disease (COPD), and lung cancer (Gao et al., 2021; Gilcrease 

et al., 2020; Hystad et al., 2020; Lao et al., 2019; L. Liu et al., 2021; Thangavel et al., 2022). The 

respiratory system, especially the lungs, is vulnerable to PM2.5-induced toxicity, leading to 

inflammation and impaired immune responses, increasing susceptibility to respiratory infections (Jia 

et al., 2021). Growing evidence suggests that PM2.5 exposure is also linked to neurodegenerative 

diseases. The small size of the particles enables them to penetrate the brain via the olfactory nerve 
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(Lee et al., 2019). Recent trends have shown an alarming increase in PM2.5 emissions due to wildfires, 

exacerbated by climate change and land management practices. Wildfire-related PM2.5 pollution has 

been observed to travel long distances, affecting regions far beyond the initial fire location (Sharma 

et al., 2022). Wildfires in the western United States have increased in frequency and intensity since 

the mid-1980s, primarily driven by rising temperatures and earlier spring snowmelt (Westerling et 

al., 2006). Climate projections suggest that the area affected by wildfires in the western U.S. could 

expand by 54% between 2046 and 2055 compared to 1996-2005 (Spracklen et al., 2009). This increase 

is compounded by a century of fire suppression practices, which have contributed to a dangerous 

buildup of flammable material in forests, as well as human activities that have escalated fire ignition 

rates (Balch et al., 2017; Boisramé et al., 2022). 

During severe wildfire events, PM2.5 levels can spike to hazardous levels, exceeding the 

Environmental Protection Agency’s (EPA) threshold of 225.5 μg/m³ for hazardous air quality (EPA 

AQI, 2024). Artificial Intelligence/Machine Learning (AI/ML) models have demonstrated strong 

performance in forecasting PM2.5 under lower concentrations, but their accuracy diminishes for high-

value PM2.5 levels (Yan et al., 2021). Studies have consistently shown that PM2.5 concentrations are 

underestimated when they exceed 60 μg/m³, particularly during severe pollution events (T. Li et al., 

2017; J. Liu et al., 2022). These extreme events lead to a data imbalance, as high PM2.5 levels are 

underrepresented during training, making it difficult for models to predict these rare but critical 

conditions accurately (Z. Ma et al., 2014; Xu et al., 2018; Zhan et al., 2017). Although this challenge is 

well-known, relatively few studies have focused on solutions for improving predictions of extreme 

PM2.5 levels (Lu et al., 2021; Xiao et al., 2021; S. Zhang et al., 2022). Data augmentation techniques 

have addressed imbalanced data problems in ML, particularly in remote sensing applications (Feng 

et al., 2019a; Stivaktakis et al., 2019; X. Yu et al., 2017). Oversampling techniques, such as the Synthetic 

Minority Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN), have 

been applied across various domains to mitigate the effects of imbalanced datasets (Khan et al., 2024). 

Conversely, under-sampling techniques like random under-sampling and more advanced methods, 

including cluster-based under-sampling using k-means, aim to reduce the dominance of majority 

classes while maintaining the dataset's representativeness (Lin et al., 2017; Yen & Lee, 2009). These 

strategies provide a foundation for enhancing model performance, particularly when dealing with 

extreme pollution values.  

In recent years, transformer models, originally developed for Natural Language Processing 

(NLP), have shown promise for long-term air quality predictions due to their ability to capture long-

range dependencies in time series data (Dong et al., 2024). Unlike recurrent models, transformers rely 

on self-attention mechanisms that allow more efficient information flow across sequences (Vaswani 

et al., 2017). These models have already demonstrated superior performance in fields such as machine 

translation (Neishi & Yoshinaga, 2019; Vaswani et al., 2017), speech recognition (X. Chen et al., 2020; 

Zeyer et al., 2019), and image segmentation (Bazi et al., 2021; Duke et al., 2021), indicating their 

potential for improving air quality forecasts, particularly in capturing complex, long-term pollutant 

behavior (Yue et al., 2020; Zhou et al., 2021). 

Despite the advancements in data augmentation techniques and the adoption of transformer 

models, accurately forecasting extreme PM2.5 levels remains challenging. Current approaches often 

struggle with imbalanced datasets, where high PM2.5 concentrations are underrepresented, 

particularly during extreme pollution events like wildfire. This imbalance leads to poor model 

performance in forecasting. While some work has explored augmentation techniques like SMOTE 

and ADASYN (Flores et al., 2021; Yin et al., 2022), the specific application of these methods and 

advanced under-sampling techniques to PM2.5 forecasting during extreme events has been limited. 

Furthermore, the potential of transformer models to effectively forecast these events in urban 

environments remains underexplored, particularly in the context of data imbalance. To address these 

gaps, this research explores data augmentation techniques, specifically cluster-based undersampling 

with varying majority-to-minority class ratios and assesses its impact on high-value PM2.5 model 

performance. This study leverages a transformer model, which employs multi-head attention, to 

forecast PM2.5 concentrations in cases of extreme pollution events in urban areas such as New York 
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City, Philadelphia, and Washington D.C. Additionally, the research investigates the impact of two 

EPA-defined minority-majority cutoff thresholds on model outcomes, highlighting the importance 

of robust models capable of accurately forecasting elevated PM2.5 levels in real-world scenarios. The 

specific research objectives are listed below: 

1. Augment imbalanced PM2.5 dataset with cluster-based undersampling with different 

combinations of majority-to-minority class ratios 

2. Investigate the impact of two minority-majority cutoff thresholds based on limits set by the EPA 

on model performance 

3. Build and train a transformer model to leverage the capabilities of multi-head attention in the 

context of PM2.5 forecasting 

4. Develop a robust forecasting model that accurately predicts PM2.5 concentrations, particularly 

during extreme pollution spikes caused by events like wildfires in New York City, Philadelphia, 

and Washington, D.C. 

2. Literature Review 

2.1. Data Augmentation Techniques for PM2.5  

Data augmentation is a crucial tool in ML, particularly in situations where the dataset is 

imbalanced. By artificially increasing the diversity of the training set, data augmentation helps 

improve model robustness and generalization of modeling results (Feng et al., 2019; Z. Yang et al., 

2023; Yin et al., 2022). Data augmentation techniques have already shown promise in many other 

fields, including air quality (Mi et al., 2024; Yin et al., 2022). Random oversampling (Moreo et al., 

2016) and random undersampling (Mohammed et al., 2020) are simple methods to combat 

imbalanced datasets. Random oversampling randomly duplicates minority class samples. However, 

it often runs into problems of overfitting when used with conventional ML models (Mohammed et 

al., 2020). On the other hand, random undersampling randomly deletes the majority of observations, 

due to which it is prone to loss of information. Undersampling methods are often combined with 

clustering approaches. This involves initially clustering the data into several clusters using methods 

such as k-means clustering (Lin et al., 2017). The cluster-based undersampling method selects 

representative samples from each cluster to create a more balanced training dataset, ensuring a 

balanced representation of both classes (Yen & Lee, 2009). Other data augmentation techniques 

include SMOTE with k-means, the most prominent approach (Chawla et al., 2002). Although SMOTE 

was developed for classification problems, it can also be extended to regression problems (Torgo et 

al., 2013). 

In the context of PM2.5 prediction, Yin et al. (2022) aimed to improve the estimation accuracy of 

high PM2.5 concentrations by using an AugResNet model with random oversampling and SMOTE. 

While their approach improved performance on high-value PM2.5 datasets, a limitation of the study 

was its focus on a single cutoff threshold and PM2.5 retrieval rather than forecasting, which limits its 

broader applicability. Flores et al. (2021) employed LSTM, GRU, and hybrid GRU+LSTM models with 

linear interpolation for data augmentation, expanding the dataset without addressing the imbalance 

between high and low PM2.5 concentrations. Their approach did not specifically target data 

imbalance, focusing instead on general dataset expansion, which can lead to overfitting, as 

synthetically increasing the dataset size does not introduce new variability. Mi et al. (2024) tackled 

the dataset shift problem between urban and rural PM2.5 data, addressing differences in predictor 

variable density using multiple imputations by chained equations; however, this study focused on 

correcting biases caused by variable density disparities rather than general PM2.5 forecasting, which 

limits its relevance to broader PM2.5 prediction challenges. 
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2.2. Transformer-Based PM2.5 Prediction Models 

Statistical methods have traditionally been employed to estimate observed data directly, with 

linear approaches such as AutoRegressive Moving Average (ARMA), AutoRegressive Integrated 

Moving Average (ARIMA), and AutoRegressive Distributed Lag (ARDL) models being commonly 

used (Abedi et al., 2020; Cekim, 2020; Graupe et al., 1975; Jian et al., 2012). These models rely on the 

assumption of linearity, which limits their ability to capture the more complex, nonlinear 

relationships often present in environmental data like air quality. Nonlinear ML methods have 

gained significant traction for air quality forecasting because they can capture complex relationships 

and interactions between variables. Methods such as Support Vector Regression (SVR), Artificial 

Neural Networks (ANN), Random Forest (RF), and XGBoost offer more robust alternatives to linear 

models (Agarwal et al., 2020; Arhami et al., 2013; Chu et al., 2021; Gariazzo et al., 2020; W. Yang et 

al., 2018). ANNs have been widely used for air quality forecasting (Ding et al., 2016; H. Liu & Zhang, 

2021; Zhao et al., 2020). ANNs can capture intricate patterns in time series data, making them suitable 

for forecasting tasks that require understanding temporal dynamics and spatial dependencies. 

However, while ANNs have been extensively used, traditional shallow neural networks are often 

limited in their feature learning capability. These models struggle to extract deep, abstract features 

from large datasets, which can hinder their performance, especially when faced with complex and 

highly nonlinear data. 

More recent advancements, particularly in deep learning models, have addressed the limitations 

of traditional approaches by enhancing the depth of networks and improving feature extraction 

(Hinton & Salakhutdinov, 2006; Lecun et al., 2015). Several applications of these deep learning models 

have emerged in air quality forecasting. For instance, Autoencoder (AE) models have been used for 

air quality prediction (X. Li et al., 2016), while Convolutional Neural Networks (CNN)-based image 

recognition techniques have been applied to estimate PM2.5 concentrations from images (Chakma et 

al., 2017). Graph-based Long Short-Term Memory (LSTM) models have been employed to predict 

PM2.5 levels because of their ability to model spatial dependencies in air quality data (Gao & Li, 2021). 

A more advanced approach is the spatiotemporal Convolutional LSTM Extended (C-LSTME) model, 

which combines CNNs and LSTMs to capture high-level spatiotemporal features, improving air 

quality forecasting by modeling both spatial and temporal dependencies in the data (Wen et al., 2019). 

Hybrid models, which combine techniques such as CNNs, Gradient Boosting Machines (GBM), Bi-

directional LSTMs (BiLSTM), and transfer learning, have been increasingly explored to improve air 

quality prediction performance (Luo et al., 2020; J. Ma et al., 2019; Z. Zhang et al., 2021). 

Despite the success of deep learning (DL) models, they face significant challenges. Recurrent 

Neural Networks (RNNs) and LSTM networks suffer from gradient vanishing and exploding 

problems, limiting their ability to capture long-term dependencies. While useful for spatial learning, 

CNNs struggle to model complex, long-term relationships in time series datalike PM2.5. Transformer 

models, originally designed for NLP (Vaswani et al., 2017), have emerged as promising alternatives 

for addressing these limitations in air quality forecasting (Z. Zhang et al., 2021). For example, Zhou 

et al. (2021) introduced the Informer model, which improves temporal embeddings to learn non-

stationary and long-range temporal dependencies. However, it focuses solely on "temporal attention" 

and overlooks spatial relationships between variables. Y. Li & Moura (2020) tackled this by 

developing a graph transformer that captures dynamic spatial dependencies, using sparse attention 

to trim less relevant nodes. Grigsby et al. (2021) further advanced this with the Spacetimeformer, 

which flattens multivariate time series to handle spatial and temporal influences. Recent models like 

the Sparse Attention-based Transformer (STN) by Z. Zhang & Zhang (2023) effectively reduce time 

complexity while capturing long-term dependencies in PM2.5 data. Similarly, M. Yu et al. (2023) 

proposed the SpatioTemporal (ST)-Transformer, designed to improve spatiotemporal predictions of 

PM2.5 concentrations in wildfire-prone areas. 

The current research on PM2.5 forecasting reveals significant gaps, particularly in handling 

imbalanced datasets and modeling long-term dependencies. One of the main challenges is the 

underrepresentation of high PM2.5 concentration events, which are far less common than low 

concentrations. Traditional data augmentation techniques like random oversampling and 
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undersampling have limitations such as overfitting and information loss, as highlighted by 

Mohammed et al. (2020). Although SMOTE provides an alternative by generating synthetic samples, 

its effectiveness in PM2.5 forecasting has been inconsistent, with studies like Yin et al. (2022) reporting 

higher RMSE compared to random oversampling. Additionally, models like RNNs and LSTMs, 

which are commonly used for PM2.5 forecasting, struggle with vanishing gradient problems and 

difficulties in capturing long-term dependencies, as noted by Wen et al. (2019). Recent advancements 

in Transformer models (Vaswani et al., 2017) offer a potential solution, as these models can capture 

long-range temporal dependencies through attention mechanisms. However, the application of 

Transformer models to wildfire-related PM2.5 forecasting remains underexplored, particularly in 

urban environments where pollution has severe health implications. The 2023 Canadian wildfires, 

which led to unprecedented PM2.5 levels in northeastern U.S. cities, provide an ideal dataset for 

addressing this gap. This study addresses the above-mentioned gaps by combining optimized 

resampling ratios and cluster-based undersampling to achieve a balanced representation of both high 

and low-concentration events (Lin et al., 2017). Furthermore, leveraging recent advancements like 

Informer and Spacetimeformer, the study introduces a Transformer-based architecture incorporating 

multi-head sparse attention to reduce time complexity while effectively learning complex temporal 

and spatial patterns. This research not only aims to address the issue of imbalanced datasets but also 

contributes to understanding wildfire-related PM2.5 spikes in urban centers such as New York City, 

Philadelphia, and Washington D.C., providing insights into the effectiveness of these models for real-

time air quality predictions during extreme events. 

3. Data 

3.1. Study Area 

The study focuses on major urban areas in the northeastern United States, specifically New York 

City, Philadelphia, and Washington, D.C. Figure 1 depicts the locations of AirNow sensors in three 

areas: New York City (11 stations), Philadelphia (5 stations), and Washington, D.C. (4 stations). The 

area, population, and geographical locations of these three cities are listed in Table 1. These cities are 

characterized by high population densities, significant traffic volumes, and industrial activities, all of 

which contribute to elevated levels of air pollution. Urban areas are often hotspots for PM2.5 due to 

vehicle emissions, industrial processes, and residential heating, making them critical regions for air 

quality monitoring and forecasting (Kloog et al., 2014; Qin et al., 2006). These urban environments 

also present challenges for air quality forecasting due to the complex interplay between local 

emissions and regional atmospheric transport processes. 

A significant event that affected air quality in 2023 was the Canadian wildfires, which 

profoundly impacted pollution levels across North America, particularly in urban areas of the 

northeastern United States (Wang et al., 2024; M. Yu et al., 2024). The wildfires, which burned large 

swathes of forested areas in Canada, generated vast amounts of smoke and particulate matter that 

were transported southward by atmospheric winds, leading to unprecedented spikes in PM2.5 

concentrations in cities like New York, Philadelphia, and Washington, D.C. (Bella, 2023). During this 

event, air quality in these cities reached hazardous levels, reducing visibility severely and prompting 

public health warnings (Deegan, 2023). PM2.5 forecasting is critical in these urban areas because it 

helps predict and mitigate the health risks associated with high pollution levels, especially during 

extreme events like the 2023 Canadian wildfires. Accurate forecasting allows for timely public health 

warnings (Xu et al., 2017). Additionally, it enables air quality agencies, such as the EPA, to take 

appropriate actions to reduce exposure to harmful particulate matter and manage air quality 

effectively, particularly during significant pollution episodes like wildfires. 
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(a)                                                                       (b) 

 

(c) 

Figure 1. Study area with AirNow sensor locations. (a) New York City, (b) Philadelphia, and (c) 

Washington D.C. 

Table 1. This study includes the area, population, and geographical location of the three cities. 

City Area Population Coordinates 

New York City 790 square km (302.6 

square miles) 

8.336 million 40.4774° N, -74.2591° 

W (southwest) to 

40.9176° N, -73.7004° 

W (northeast) 

Philadelphia 347.52 square km 

(134.18 square miles) 

1.567 million 39.8670° N, -75.2803° 

W (southwest) to 

40.1379° N, -74.9558° 

W (northeast) 

Washington D.C. 76 square km (68 

square miles) 

671,803 38.7916° N, -77.1198° 

W (southwest) to 

38.9955° N, -76.9094° 

W (northeast) 

3.2. Data Description 

Table 2 outlines the variables used for forecasting PM2.5 concentrations, with PM2.5 from AirNow 

serving as the target variable. The covariates include aerosol optical depth (AOD) from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric 

Correction (MAIAC) algorithm and various meteorological variables such as boundary layer height, 

relative humidity, temperature at 2 meters, surface pressure, and speed, all sourced from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset. Additionally, 
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elevation data is sourced from the United States Geological Survey (USGS) was used as a 

geographical covariate. 

Table 2. Sources and units of variables used to forecast PM2.5. 

Variable Type Source Unit 

PM2.5 Target AirNow μg/m³  

AOD Covariate MODIS MAIAC (Terra and Aqua)  Unitless 

Boundary Layer Height  Covariate ECMWF ERA5-hourly meter 

Relative Humidity Covariate ECMWF ERA5-hourly % 

Temperature (at 2m) Covariate ECMWF ERA5-hourly K 

Surface Pressure Covariate ECMWF ERA5-hourly Pa 

Wind Speed Covariate ECMWF ERA5-hourly m/s 

Elevation Covariate USGS Meter 

3.2.1. Ground-Level PM2.5 Measurements 

Ground-level hourly PM2.5 measurements were obtained from the U.S. Environmental 

Protection Agency (EPA)'s AirNow program, which provides near-real-time air quality data, 

including PM2.5 concentrations. The AirNow data undergoes a rigorous quality control process before 

being made available to the public. We downloaded PM2.5 data from AirNow sensors located in three 

major cities: New York City, Philadelphia, and Washington, D.C. through AirNow API 

(http://airnowapi.org). Given the need for timely analysis, we prioritized using near-real-time data 

over the delayed Air Quality System (AQS) data. These measurements were used to evaluate and 

compare model predictions of PM2.5 concentrations in the selected urban areas. 

3.2.2. Satellite-Derived Aerosol Optical Depth (AOD) 

The AOD data used in this study was derived from the MODIS aboard the Terra and Aqua 

satellites, processed using the MAIAC algorithm. Terra and Aqua provide daily AOD products at a 

spatial resolution of 1 km × 1 km, captured at approximately 10:30 and 13:30 local time, respectively 

(Lyapustin et al., 2011, 2018). MAIAC is an advanced algorithm designed for aerosol retrievals over 

both dark vegetated surfaces and bright deserts, making it highly effective for air quality assessments 

due to its high spatial resolution (Liang et al., 2018; Z. Zhang et al., 2019).  The Version 6 MAIAC 

Land AOD product has been widely applied in air quality studies due to its superior spatial 

resolution and temporal coverage (Lyapustin et al., 2018). For this study, we used the MAIAC AOD 

product MCD19A2 at 550 nm and retained only high-quality AOD values, as indicated by the quality 

assessment flag marked as "best quality". The data was sourced from the Level 1 and Atmosphere 

Archive and Distribution System Distributed Active Archive Center website (LAADS DAAC, 2024). 

3.2.3. Meteorological Variables  

Several studies have demonstrated the strong relationship between meteorological factors and 

variations in PM2.5 concentrations (Z. Chen et al., 2020; Huang et al., 2015). For this study, we utilized 

meteorological data from the ERA5 dataset, developed by the ECMWF. ERA5 is a comprehensive 

reanalysis product that estimates various atmospheric, land, and oceanic climate variables hourly. 

The dataset offers global coverage at a spatial resolution of 0.25° × 0.25° on a regular latitude-

longitude grid (Dee et al., 2011; Hersbach et al., 2020). The data was sourced through the Copernicus 

Climate Data Store (C3S) in GRIB format, ensuring high detail and consistency for climate research. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2024 doi:10.20944/preprints202410.1853.v1

https://doi.org/10.20944/preprints202410.1853.v1


 8 

 

The meteorological variables selected for this study included boundary layer height (BLH), relative 

humidity, surface pressure (SP), 2-meter temperature (T2), and wind speed at 10 meters (U10/V10). 

3.2.4. Geographical Variables  

In this study, we used elevation data from the Global Multi-resolution Terrain Elevation Data 

2010 (GMTED2010), which provides a spatial resolution of 30 arc-seconds (approximately 1 km). The 

data was obtained from the USGS website (GMTED2010, 2024). 

4. Methodology 

Figure 2 illustrates the workflow for the methodology used in this study to forecast PM2.5 levels. 

Starting with data acquisition, the data undergoes processing before selecting cutoff thresholds. Two 

cutoff thresholds are employed: 12.1 µg/m³ and 35.5 µg/m³, followed by applying various partial 

sampling ratios ranging from 10/90 to 50/50. Each threshold and sampling ratio combination is fed 

into a transformer model for model training. The accuracy of each model is assessed, and the best-

performing model is selected to produce PM2.5 forecasts. This process allows for identifying the most 

effective threshold and sampling ratio, optimizing model performance for PM2.5 prediction. 

 

Figure 2. Methodology Workflow Diagram. 

4.1. Data Preprocessing and Collocation 

We used the min-max scaler method to linearly transform the raw data to a value between 0 and 

1 to balance the data dimensions and, at the same time, speed up the model to find the global optimal 

hyperparameters. The formula is as follows: 

𝑥′ =
𝑥 − 𝜇

max(𝑥) − min(𝑥)
 

where x and x’ refer to the values before and after normalization, and min(x) and max(x) refer to the 

minimum and maximum values before normalization. 

The data used in this study were aligned with the MAIAC AOD data for spatial and temporal 

matching. Meteorological variables from the ERA5 ECMWF and the AirNow PM2.5 datasets were 

matched to the Terra and Aqua MODIS satellite overpass times, which occur daily at approximately 

10:30 and 13:30 local time. Daily averages of the hourly data were calculated within the overpass 

windows to ensure consistency. All variables were subsequently reprojected to the USA Contiguous 

Lambert Conformal Conic projection and resampled to a 1 km × 1 km resolution to ensure seamless 

integration with the MAIAC AOD data. 

4.2. Cutoff Threshold 

In their study, Yin et al. (2022) defined 75 µg/m³ as the cutoff threshold to distinguish low-value 

from high-value PM2.5 samples, aligning with China’s air quality standard, which classifies 75 μg/m³ 

as the lower limit for light PM2.5 pollution. The selection of a cutoff value for distinguishing between 
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majority and minority classes plays a crucial role in determining class distribution and, consequently, 

the model’s performance in forecasting high-pollution periods. In the context of air quality in the 

United States, we used PM2.5 classifications by the EPA to determine cutoff threshold values (EPA 

AQI, 2024). To evaluate the sensitivity of model performance to different cutoff values, this study 

compares two thresholds aligned with EPA standards: 12.1 µg/m³ and 35.5 µg/m³.  

The total dataset in this study consisted of 4,026,240 valid samples. With a cutoff threshold of 

12.1 µg/m³, 3,472,689 samples were classified as “low-value,” and 553,551 samples were classified as 

“high-value.” The ratio of high-value samples to low-value ones was approximately 4:25 in the whole 

dataset. Ratios by city and the specific number of low- and high-value samples are listed in Table 3. 

With a cutoff threshold of 35.5 µg/m³, 4,004,433 samples were classified as “low-value”, and 

21,807 samples were classified as “high-value.” The ratio of high-value samples to low-value ones 

was approximately 5:1000 in the whole dataset. Ratios by city are listed in Table 4 and the specific 

number of low and high-value samples. 

Table 3. Breakdown of low and high-value samples with 12.1 µg/m³ cutoff threshold. 

City Total 

Samples 

Low-

Value 

High-

Value 

Ratio of High to 

Low-Value 

New York City 2,284,200 2,038,105 246,095 0.1207 

Washington DC 456,840 406,716 50,124 0.1232 

Philadelphia 1,285,200 1,027,868 257,332 0.2503 

Total 4,026,240 3,472,689 553,551 0.1594 

Table 4. Breakdown of low and high-value samples with 35.5 µg/m³ cutoff threshold. 

City Total 

Samples 

Low-Value High-

Value 

Ratio of High to 

Low-Value 

New York City 2,284,200 2,272,914 11,286 0.00496 

Washington DC 456,840 454,649 2,191 0.00481 

Philadelphia 1,285,200 1,276,870 8,330 0.00652 

Total 4,026,240 4,004,433 21,807 0.00544 

4.3. Cluster-Based Undersampling 

In this study, we implemented cluster-based undersampling to address class imbalance in the 

training data. The first step involved grouping data points into clusters using the k-means algorithm, 

which organized the data based on feature similarities. This clustering approach preserved the 

inherent structure of the dataset by ensuring that similar data points were grouped together, which 

is crucial for maintaining data integrity when performing undersampling. By applying the 

undersampling strategy within each cluster, we selected a subset of instances, effectively reducing 

the majority class without losing the diversity within the data. This method allowed for a more 

representative sample, ensuring that both majority and minority classes were evenly distributed. 

Before applying data augmentation, 20% of the original dataset was set aside for testing. The 

remaining 80% was used for model training, with samples drawn randomly based on the data 

augmentation technique. This approach ensured that each model was trained on datasets with unique 

sampling strategies, but all models were evaluated against a consistent testing dataset. The testing 

dataset was intentionally designed to mirror the original data distribution, ensuring fair comparisons 

across models trained on different augmented datasets. 

Many studies aim to achieve a perfect 50/50 balance between minority and majority class 

samples. However, this idealized ratio is not always the most effective for model training, especially 

when dealing with environmental data like PM2.5, where the natural distribution is often skewed. 
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Partial sampling, as discussed by Kamalov et al. (2022), involves adjusting the class ratio to values 

between the original class distribution and an equal 50/50 split. This technique provides a more 

nuanced approach, reflecting real-world distributions more accurately while improving model 

generalizability. 

Kamalov et al. (2022) found that a minority-to-majority class ratio of approximately 0.75 was 

optimal in many scenarios, based on a systematic review of datasets and resampling techniques. 

Following this insight, the present study applied various partial sampling ratios to explore whether 

these findings hold for PM2.5 forecasting models. The aim was to determine whether a similar class 

balance could yield improved prediction accuracy in this context. 

Initially, the training dataset contained around 3 million samples. However, after data 

augmentation and resampling, each training dataset was reduced to approximately 35,000 samples. 

Although all training datasets had the same number of observations, the distribution of PM2.5 values 

varied according to the selected threshold and resampling ratio, reflecting the impact of these 

parameters on the dataset’s composition. Table 5 shows the exact number of high-value and low-

value samples for each partial sampling ratio dataset. Although the two cutoff thresholds result in 

the same number of high-value and low-value samples at each partial sampling ratio, their 

classification of high and low values differ, leading to distinct distributions across the datasets. 

Table 5. Number of high and low-value samples in training dataset at each partial sampling ratio. 

Partial Sampling Ratio High-Value Samples Low-Value Samples 

10/90 3,498 31,482 

20/80 6,996 27,984 

30/70 10,494 24,486 

40/60 13,992 20,988 

50/50 17,490 17,490 

Figure 3 presents the distributions of training datasets across partial sampling ratios using a 12.1 

µg/m³ threshold, with different partial sampling ratios of 10/90, 20/80, 30/70, 40/60, and 50/50. These 

sampling ratios represent the proportion of minority (high PM2.5) to majority (low PM2.5) samples 

included in the dataset. 

 

Figure 3. Distribution of training dataset with cutoff threshold 12.1 µg/m³ and partial sampling ratio, 

from top left to bottom right, of none (original distribution), 10/90, 20/80, 30/70, 40/60, 50/50. 
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The graphs in Figure 4 present the distributions of training datasets across partial sampling 

ratios using a 35.5 µg/m³ threshold, with different partial sampling ratios of 10/90, 20/80, 30/70, 40/60, 

and 50/50. 

 

Figure 4. Distribution of training dataset with cutoff threshold 12.1 µg/m³ and partial sampling ratio, 

from top left to bottom right, of none (original distribution), 10/90, 20/80, 30/70, 40/60, 50/50. 

4.4. Transformer Model Architecture 

The Transformer model has revolutionized various domains of ML, including NLP and time 

series forecasting (Vaswani et al., 2017). In the context of PM2.5 forecasting, the Transformer model's 

ability to capture long-range dependencies and complex temporal patterns makes it a powerful tool 

for forecasting air pollution levels (Cui et al, Zhang and Zhang). Traditional methods often struggle 

with the non-linear and dynamic nature of PM2.5 data, but the Transformer's self-attention mechanism 

allows it to weigh the importance of different time steps effectively, leading to more accurate and 

robust forecasts.  

 

Figure 5. Transformer model architecture. 
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4.4.1. Positional Encoding  

A Transformer model differentiates itself from traditional convolutional and recurrent neural 

networks by employing a novel positional encoding mechanism to preserve temporal relationships. 

This is achieved by embedding sine and cosine functions of varying frequencies into the normalized 

input sequences as illustrated by the formulas below: 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖+1) = cos(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) 

Here, pos represents the position of a data point within the sliding window, and j indicates the j-th 

dimension in the feature space. This approach allows the Transformer to retain the order of the 

sequence data, ensuring that the temporal dynamics are preserved and effectively leveraged during 

training and inference (Vaswani et al. 2017).  

4.4.2. Multi-Head Attention  

To make the model focus on assigning different weights to the input time series information 

during the encoding phase, an attention mechanism is often used to quantify the dependencies 

between them. The attention score determines the extent to which the information corresponding to 

a time slice in the time series should be focused on in future forecasts, and it can be calculated using 

the scaled dot-product of the attention function as follows:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,  𝐾,  𝑉) = 𝑠𝑜𝑓𝑡𝑚𝛼𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)

𝑉

 

where Q, K, and V are the matrices of the queries, keys, and values, respectively, and dk is the 

dimension of the key (K). The input sequence is downsampled using the embedding layers to obtain 

(a1, a2, a3, …, at), which is multiplied by the learned matrices WQ, WK, and WV to obtain qi, ki  and vi, i 

∈ (1, 2, 3, …, t).  

The multi-head attention mechanism enhances the model's ability to capture long-range 

dependencies by allowing it to focus on both sequence positions and multiple heads simultaneously. 

Each pollution factor's position, feature, and value are treated as separate heads, with multiple 

matrices applied to repeat the self-attention process across parallel layers. This approach enables the 

model to consider various relationships between pollution factors and meteorological conditions. 

4.4.3. Encoder  

In this study, the encoder consists of a stack of N = 6 identical layers. In each layer, the input 

goes through multi-head self-attention, where the same input is used for queries, keys, and values, 

and attention weights are computed based on the provided mask. The output from self-attention is 

added to the original input, normalized using LayerNorm, and passed through a feed-forward 

network. After the feed-forward computation, the result is again added to the input, followed by 

another layer normalization and dropout.  

4.4.4. Decoder  

Each decoder also consists of a stack of N = 6 layers. In each decoder layer, the first step applies 

self-attention, where the target sequence attends to itself, with a mask to control the attention. Next, 

cross-attention is applied, where the output from the self-attention step attends to the encoder output, 

allowing the decoder to incorporate information from the encoder while applying a source mask. 
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Finally, the result passes through a feed-forward network, and after each attention and feed-forward 

step, residual connections, normalization, and dropout are applied to maintain stability.  

4.5. Model Training and Evaluation 

4.5.1. Model Training and Hyperparameter Tuning 

Before applying data augmentation, 20% of the dataset was reserved for testing. The remaining 

80% was used to create training datasets. This allowed models to be trained on varied datasets while 

being tested on a consistent, representative test set for fair comparison. More detailed dataset creation 

procedures can be found in Section 4.3. 

In our research, we opted not to perform extensive hyperparameter tuning given that the 

hyperparameters specified in our experiments, as outlined in Table 6, already yielded satisfactory 

results. The parameters used in this study were determined through trial and error, like the approach 

by Cui et al. (2023). It is also important to note that the original authors of the transformer did not 

perform extensive hyperparameter tuning, and many subsequent studies employing transformers 

have followed a similar approach due to the high computational expense of such tuning (Vaswani et 

al., 2017; Liu et al., 2019, Al-qaness et al. 2023, Yu et al. 2023, Cui et al. 2023, and Dai et al. 2024). 

To maintain the validity of comparisons across different models and experiments, we kept the 

hyperparameters constant throughout all tests. This decision ensured that performance differences 

could be attributed to model adjustments rather than variations in tuning. 

Table 6. Hyperparameters used for model training. 

Training Parameter Values 

Model training data 2021, 2022, 2023 

Data split Training (80%) and testing (20%)  

Optimizer Adam 

Learning Rate 0.001 

Epochs 20 

Number of encoder and decoder layers 6 

Model Dimension 8 

Batch Size 256 

Input length 8 

Output length 8 

Dropout Rate 0.1 

4.5.2. Accuracy Measures 

This paper employs Root Mean Square Error (RMSE), mean absolute error (MAE), and the 

coefficient of determination (R²) as metrics for assessing model accuracy. RMSE evaluates the extent 
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to which the predicted value curve aligns with the observed value curve. MAE measures the average 

absolute difference between the predicted and actual values. R² indicates the proportion of the 

variance in the dependent variable (y) that can be explained by the independent variable (x). The 

respective formulas for these calculations are as follows: 

𝑅𝑀𝑆𝐸  =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

𝑀𝐴𝐸  =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

𝑅2  =  1 −
∑ (𝑦̂𝑖 − 𝑦̄𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̄𝑖)
2𝑛

𝑖=1

 

where n refers to the number of data, yi refers to the ith observed value, 𝑦̂𝑖 refers to the ith predicted 

value, y refers to the average of all observed values. 

5. Experiments and Results  

5.1. Accuracy Assessment 

For experiments performed with a cutoff threshold of 12.1µg/m³, accuracy metrics are displayed 

in Table 7. As the resampling ratio becomes more balanced, ranging from 10/90 to 50/50, both RMSE 

and MAE metrics generally decrease, indicating improved model performance. The best overall 

performance is observed at the 50/50 ratio, where the RMSE reaches 2.757, the MAE is 1.044, and R² 

achieves a value of 0.850. This R² value suggests that the 50/50 ratio offers the strongest correlation 

between forecasted and true PM2.5 values, making it the most effective configuration for balanced 

data. 

Table 7. Accuracy measurements of models trained on data augmented with cutoff threshold 12.1 

µg/m³ and different partial sampling ratios tested on the whole and high-value testing dataset. 

Resampling 

Ratio 

Whole High-Value  

RMSE  MAE  R²  RMSE  MAE  R²  

Original 3.174  0.661  0.801  32.013 26.705 0.036 

10/90  3.217  0.726  0.796  29.366 20.284  0.188 

20/80  3.090  1.145  0.812  25.948 19.044 0.366 

30/70  2.823  1.535  0.843  25.243 18.827 0.400 

40/60  2.816  1.325 0.845  23.284 17.383 0.490  

50/50  2.757  1.044  0.850  21.287 14.114 0.574 

Accuracy metrics for experiments performed with a cutoff threshold of 35.5 µg/m³ are shown in 

Table 8. Interestingly, the 20/80 resampling ratio emerges as the optimal configuration overall, 

achieving the lowest RMSE (2.080) and MAE (1.386), alongside the highest R² value of 0.914. This 

strong performance suggests that a 20/80 ratio balances the trade-off between capturing minority and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 October 2024 doi:10.20944/preprints202410.1853.v1

https://doi.org/10.20944/preprints202410.1853.v1


 15 

 

majority samples while minimizing error. The same ratio also delivers the best results for high-value 

PM2.5 samples, with an RMSE of 15.353, MAE of 10.077, and an R² value of 0.778, demonstrating that 

it is particularly effective for extreme pollution levels. 

Table 8. Accuracy measurements of models trained on data augmented with cutoff threshold 35.5 

µg/m³ and different partial sampling ratios tested on the whole and high-value testing dataset. 

Resampling 

Ratio 

Whole High-Value  

RMSE  MAE  R²  RMSE  MAE  R²  

Original 3.174  0.661  0.801  41.34  28.269  0.607  

10/90  2.282  1.592  0.897  19.747  13.81  0.633  

20/80  2.080  1.386  0.914  15.353  10.077  0.778  

30/70  2.306  1.671  0.895  16.095  12.204  0.756  

40/60  2.423  1.726  0.884  16.556  12.917  0.741  

50/50  2.677  1.875  0.858  19.116  14.321  0.656 

When comparing the performance of models trained on the original dataset to those trained on 

resampled datasets, the original data consistently underperforms, particularly in terms of error 

metrics like RMSE and R². This pattern emphasizes the value of resampling techniques for improving 

model accuracy.  

5.2. Partial Sampling Ratio 

At a cutoff threshold of 12.1 µg/m³, in evaluating model performance across varying partial 

sampling ratios, both the full dataset and high-value sample tests demonstrate a clear trend: the 50/50 

partial sampling ratio consistently yields optimal results, as displayed in Figure 6. For the full dataset, 

RMSE and MAE both decrease as the sampling ratio becomes more balanced, reaching their lowest 

points at the 50/50 ratio. This indicates that more balanced data distribution significantly enhances 

forecast accuracy. Similarly, the R² value steadily increases, peaking at the 50/50 ratio, signaling the 

model's improved ability to capture long-range dependencies at this balanced ratio.  

 

Figure 6. RMSE (blue), MAE (green), and R² (red) performance metrics across various partial sampling ratios 

using the 12.1 µg/m³ threshold tested on whole (Left) and high-value (Right) testing datasets. 
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For high-value samples, the results further underscore the importance of balanced resampling. 

RMSE shows a marked decline, and MAE gradually reduces as the ratio approaches 50/50. The 

model's highest R² value at this point confirms its strongest performance in predicting high-value 

samples with greater accuracy. Overall, the 50/50 sampling ratio emerges as the optimal 

configuration, demonstrating that more evenly distributed data enhances the model's performance, 

particularly in forecasting high-value events. 

Patterns of model performance across varying partial sampling ratios changes for the cutoff 

threshold of 35.5 µg/m³, as presented in Figure 7. For the whole dataset, RMSE decreases as the partial 

sampling ratio becomes more balanced, reaching its minimum at 20/80. However, as the ratio 

becomes more balanced at 30/70, 40/60, and 50/50, RMSE slightly increases, indicating that the most 

balanced ratios do not necessarily provide the best performance. In contrast, the R² value peaks at 

20/80, demonstrating the model’s strongest correlation between forecasted and true values, but 

declines for more balanced ratios, suggesting that more even data distribution does not always 

improve model performance. 

 

Figure 7. RMSE (blue), MAE (green), and R² (red) performance metrics across various partial 

sampling ratios using the 35.5 µg/m³ threshold tested on whole (Left) and high-value (Right) testing 

datasets. 

For high-value samples, RMSE shows a sharp decline from the original dataset, continuing to 

decrease at the 20/80 ratio, with further stabilization beyond this point. MAE follows a similar trend, 

with a steep drop at 20/80 and stabilization thereafter. This indicates that the 20/80 partial sampling 

ratio effectively minimizes errors for high-value samples. Similarly, R² improves significantly with 

more balanced resampling, reaching its peak at 20/80, and begins to drop afterward, highlighting that 

the model’s best correlation for high-value events is achieved at this ratio. 

Overall, the 20/80 ratio provides the best performance across both the full dataset and high-value 

samples, delivering the lowest RMSE and highest R². The original dataset, without resampling, 

performs the worst in terms of RMSE, MAE, and R², underscoring the value of resampling for 

improving forecast accuracy, particularly for high-value samples. Yin et al. (2022) also observed 

increasing RMSE with more balanced partial sampling ratios, although they reported decreasing 

RMSE with more balanced ratios, while we observed stabilizing RMSE and MAE beyond 20/80. 

The discrepancy between RMSE and MAE in the original dataset arises from the nature of these 

metrics. RMSE amplifies the impact of large errors due to its squaring mechanism, making it highly 

sensitive to outliers, whereas MAE treats all errors equally, offering a more robust reflection of 

average performance. This suggests that the original dataset likely contains a few large outliers that 

inflate RMSE without significantly affecting MAE. As the partial sampling ratio becomes more 

balanced, the model improves at predicting high-value outliers (leading to lower RMSE), but loses 

some accuracy in predicting low-value events (causing a slight increase in MAE). 

5.3. Cutoff Threshold 

Models trained on the 35.5 µg/m³ threshold consistently outperformed those trained on the 12.1 

µg/m³ threshold in terms of RMSE and R², as demonstrated in Figure 8. The resampling ratio plays a 
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crucial role in model performance, with the 20/80 ratio emerging as optimal for the 35.5 µg/m³ 

threshold, while the 50/50 ratio works best for the 12.1 µg/m³ threshold. This disparity is largely 

driven by the nature of the data captured at each threshold. The higher 35.5 threshold likely includes 

a more concentrated set of high-value samples, making a less balanced ratio like 20/80 more effective 

since the distinct minority samples don’t require as much balancing. In contrast, the 12.1 threshold 

includes more low-value samples, necessitating a 50/50 ratio to adequately represent both minority 

and majority groups. 

 

Figure 8. RMSE, MAE, and R² performance metrics for the 12.1 µg/m³ (green) and 35.5 µg/m³ (blue) 

thresholds across partial sampling ratios. 

RMSE, which squares the differences before averaging, amplifies larger errors, making it more 

sensitive to a few large deviations from actual values. This explains why models trained on the 12.1 

threshold performed worse in terms of RMSE, as the larger prediction errors had a greater impact. 

However, MAE, which treats all errors equally, performed better for the 12.1 threshold, indicating 

that while the errors were frequent, they were smaller in magnitude.  

For the 35.5 µg/m³ threshold, RMSE decreases as the sampling ratio becomes more balanced, 

reducing large prediction errors, but eventually, as accuracy for low-value samples declines, RMSE 

starts to increase. Similarly, R² initially improves with more balanced ratios but reaches a peak at 

higher ratios, particularly for the 12.1 µg/m³ threshold. Beyond this point, additional balancing 

dilutes the model’s ability to capture key variance for low-value samples, leading to diminishing 

returns in overall accuracy. 

5.4. Time Series Analysis  

The one-day forecasts for PM2.5 from 2021-2023 in New York City, Philadelphia, and Washington 

D.C. produced by models trained on the original dataset show strong accuracy for lower PM2.5 

concentrations, particularly for values below 30 µg/m³. This is reflected in the high similarity between 

forecasted and observed values at these low levels. However, the model struggles to predict higher 

PM2.5 concentrations, reaching a ceiling in magnitude when faced with extreme pollution events. This 

limitation arises from the imbalanced dataset, where the majority of samples consist of lower values, 

leading the model to prioritize these over the rarer high-value samples. As a result, the model is 

unable to fully capture extreme PM2.5 events, a challenge frequently highlighted in the literature, 

which shows that forecast accuracy tends to decline as PM2.5 levels increase. 
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Figure 9. Time series of observed (blue) and forecasted (orange) PM2.5 concentrations from 2021 to 

2023 in New York City (top), Philadelphia (middle), and Washington D.C. (bottom). The left column 

shows predictions from model trained on original distribution and the right column shows 

predictions from model trained on data treated with optimal data augmentation determined in 

Section 5.1. 

In contrast, models trained on the augmented dataset, using a 35.5 µg/m³ cutoff threshold and a 

40/60 partial sampling ratio, demonstrate improved performance in capturing high-value PM2.5 

events. Although there is a trade-off, where the model's accuracy for lower PM2.5 levels is slightly 

reduced, this adjustment leads to significantly better RMSE and R-squared measures. This reflects 

the model’s enhanced ability to forecast more extreme pollution scenarios, a critical aspect in 

improving overall prediction accuracy for high PM2.5 concentrations. The trade-off is seen in the 

slightly worse MAE, as the augmented dataset introduces more diversity and some smaller errors 

that MAE treats equally, while RMSE emphasizes the larger improvements in extreme cases. The 

augmented model is better suited to handle high-value samples, which is particularly beneficial in 

scenarios where predicting extreme pollution is more critical than maintaining perfect accuracy at 

lower concentrations. 

The key contrast between the two models lies in the distributional focus: the original dataset 

performs better on low-level PM2.5 concentrations but struggles with extreme values. In comparison, 

the augmented dataset sacrifices some accuracy at lower concentrations to better capture the high-

value events, which are crucial for understanding and managing pollution spikes. This trade-off is 

especially visible in the improvements in terms of RMSE, which penalizes large errors more severely. 

These results show that the model trained on augmented data is significantly better at predicting 

higher PM2.5 values. 

6. Discussion 

The underestimation of high pollutant levels has been an issue frequently discussed in many 

studies (Li et al, 2017). This research addresses the challenge by applying data augmentation 

techniques prior to training the deep learning model. One of the key contributions of this study is the 

exploration of cluster-based undersampling, implemented at different cutoff thresholds and partial 

sampling ratios, which helped mitigate class imbalance and improve model performance. Our 

findings indicate that the higher cutoff threshold of 35.5 µg/m³ resulted in superior model 

performance when compared to the lower threshold of 12.1 µg/m³, as the 35.5 µg/m³ threshold more 
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effectively differentiated between low- and high-value samples. The most optimal partial sampling 

ratio was found to be 20/80, consistent with Yin et al. (2022), which identified 30/70 as optimal in their 

study. Previous literature, including Kamalov et al. (2022), suggests that a fully balanced dataset is 

not always the best approach, and each dataset’s unique characteristics may necessitate different 

ratios. In our case, the 20/80 ratio paired with the 35.5 µg/m³ cutoff provided the best performance in 

capturing high-value samples without over-suppressing the majority class. 

Future work could enhance the model by incorporating additional data sources that influence 

PM2.5 levels. Urban traffic data, which is crucial in accounting for emissions from vehicles, and 

industrial activity data from factories and power plants would provide more detailed insights into 

spikes in pollution. Including weather data such as wind patterns and forecasts could improve the 

model’s accuracy in predicting pollutant dispersion across regions. In addition to data augmentation 

through cluster-based undersampling, more advanced techniques like Generative Adversarial 

Networks (GANs) could be explored to generate realistic synthetic data for extreme pollution events, 

which are rare but critical to forecast. Expanding the model’s geographic scope by testing it on 

various cities would further strengthen its generalizability. Another promising avenue would be to 

extend the model to perform multistep predictions, forecasting PM2.5 concentrations over multiple 

time steps rather than just the next step, which would be particularly valuable for air quality 

forecasting over longer time periods like days or weeks. Moreover, broadening the scope of the model 

to predict other key pollutants such as NO2, SO2, and O3 would provide a comprehensive air quality 

forecasting system, enabling more effective city-level interventions to manage overall air quality. 

7. Conclusion 

This study demonstrates that the 35.5 µg/m³ threshold consistently outperforms the 12.1 µg/m³ 

threshold across key metrics like RMSE and R², likely due to its better representation of higher 

pollution values. The choice of partial sampling ratio proved crucial, with 50/50 optimal for the 12.1 

threshold and 20/80 optimal for the 35.5 threshold, effectively balancing the need to capture both 

frequent and extreme pollution events. The model with the best performance (RMSE: 2.080, MAE: 

1.386, R²: 0.914) utilized the 35.5 µg/m³ threshold and a 20/80 partial sampling ratio. Overall, models 

trained on resampled data significantly outperformed those trained on the original dataset, 

demonstrating the importance of data augmentation in handling imbalanced datasets and improving 

forecast accuracy, especially for high-value pollution scenarios. These findings highlight the critical 

role of threshold selection and resampling strategies in enhancing PM2.5 forecasting models. 
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