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Abstract: Breathing in fine particulate matter with diameters less than 2.5 um (PMzs) has greatly
increased an individual’s risk of cardiovascular and respiratory diseases. As climate change
progresses, extreme weather events, including wildfires, are expected to rise, exacerbating air
pollution. The 2023 Canadian wildfires highlighted the growing threat of PM25 as smoke spread
across U.S. cities like New York, Philadelphia, and Washington D.C. This research investigates the
application of data augmentation techniques to improve the accuracy of PM:s concentration
forecasts in these urban environments. Models trained on imbalanced datasets often struggle to
capture extreme pollution events, underestimating high PM2s levels due to the model’s focus on
more frequent, low-value samples. To address this, we implemented cluster-based undersampling
and trained transformer models using various cutoff thresholds (12.1 pug/m? and 35.5 ug/m?) and
partial sampling ratios (10/90, 20/80, 30/70, 40/60, 50/50). Our results demonstrate that the 35.5 pug/m?
threshold, coupled with a 20/80 partial sampling ratio, provides the best performance regarding
RMSE and R?, particularly in capturing high PMzs events. Overall, models trained on augmented
data significantly outperformed those trained on original data, highlighting the importance of
resampling techniques in improving air quality forecasting accuracy, especially for high-pollution
scenarios. These insights significantly contribute to a better understanding of PM:s pollution with
the hopes of more informed public health and environmental policies.

Keywords: air quality; PM2.5 forecasting; data augmentation; cluster-based under sampling;
transformer model; 2023 Canadian wildfires

1. Introduction

Air pollution remains one of the most pressing global health challenges, identified as the second
leading risk factor for premature death worldwide. In 2021 alone, air pollution was responsible for
approximately 8.1 million deaths globally, underscoring its profound impact on human health (State
of Global Air Report, 2024). Fine particulate matter (PM2s) is particularly concerning, as it refers to
particles with an aerodynamic diameter of 2.5 micrometers or less. PMzs particles are small enough
to penetrate deep into the lungs and even enter the bloodstream, posing significant risks to human
health. The Global Burden of Disease (GBD) study estimated that ambient PMa2s exposure was
responsible for approximately 4.14 million deaths globally in 2019 (McDuffie et al., 2021). These
particles are associated with a wide range of health outcomes, including stroke, ischemic heart
disease, chronic obstructive pulmonary disease (COPD), and lung cancer (Gao et al., 2021; Gilcrease
et al., 2020; Hystad et al., 2020; Lao et al., 2019; L. Liu et al,, 2021; Thangavel et al., 2022). The
respiratory system, especially the lungs, is vulnerable to PM:s-induced toxicity, leading to
inflammation and impaired immune responses, increasing susceptibility to respiratory infections (Jia
et al., 2021). Growing evidence suggests that PM2s exposure is also linked to neurodegenerative
diseases. The small size of the particles enables them to penetrate the brain via the olfactory nerve
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(Lee et al., 2019). Recent trends have shown an alarming increase in PM2s emissions due to wildfires,
exacerbated by climate change and land management practices. Wildfire-related PMs pollution has
been observed to travel long distances, affecting regions far beyond the initial fire location (Sharma
et al., 2022). Wildfires in the western United States have increased in frequency and intensity since
the mid-1980s, primarily driven by rising temperatures and earlier spring snowmelt (Westerling et
al., 2006). Climate projections suggest that the area affected by wildfires in the western U.S. could
expand by 54% between 2046 and 2055 compared to 1996-2005 (Spracklen et al., 2009). This increase
is compounded by a century of fire suppression practices, which have contributed to a dangerous
buildup of flammable material in forests, as well as human activities that have escalated fire ignition
rates (Balch et al., 2017; Boisramé et al., 2022).

During severe wildfire events, PM2s levels can spike to hazardous levels, exceeding the
Environmental Protection Agency’s (EPA) threshold of 225.5 pg/m? for hazardous air quality (EPA
AQI, 2024). Artificial Intelligence/Machine Learning (AI/ML) models have demonstrated strong
performance in forecasting PM2s under lower concentrations, but their accuracy diminishes for high-
value PMzs levels (Yan et al., 2021). Studies have consistently shown that PM2s concentrations are
underestimated when they exceed 60 pg/m3, particularly during severe pollution events (T. Li et al.,
2017; J. Liu et al., 2022). These extreme events lead to a data imbalance, as high PM:s levels are
underrepresented during training, making it difficult for models to predict these rare but critical
conditions accurately (Z. Ma et al., 2014; Xu et al., 2018; Zhan et al., 2017). Although this challenge is
well-known, relatively few studies have focused on solutions for improving predictions of extreme
PMzs levels (Lu et al., 2021; Xiao et al., 2021; S. Zhang et al., 2022). Data augmentation techniques
have addressed imbalanced data problems in ML, particularly in remote sensing applications (Feng
etal., 2019a; Stivaktakis et al., 2019; X. Yu et al., 2017). Oversampling techniques, such as the Synthetic
Minority Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN), have
been applied across various domains to mitigate the effects of imbalanced datasets (Khan et al., 2024).
Conversely, under-sampling techniques like random under-sampling and more advanced methods,
including cluster-based under-sampling using k-means, aim to reduce the dominance of majority
classes while maintaining the dataset's representativeness (Lin et al., 2017; Yen & Lee, 2009). These
strategies provide a foundation for enhancing model performance, particularly when dealing with
extreme pollution values.

In recent years, transformer models, originally developed for Natural Language Processing
(NLP), have shown promise for long-term air quality predictions due to their ability to capture long-
range dependencies in time series data (Dong et al., 2024). Unlike recurrent models, transformers rely
on self-attention mechanisms that allow more efficient information flow across sequences (Vaswani
etal., 2017). These models have already demonstrated superior performance in fields such as machine
translation (Neishi & Yoshinaga, 2019; Vaswani et al., 2017), speech recognition (X. Chen et al., 2020;
Zeyer et al,, 2019), and image segmentation (Bazi et al., 2021; Duke et al., 2021), indicating their
potential for improving air quality forecasts, particularly in capturing complex, long-term pollutant
behavior (Yue et al., 2020; Zhou et al., 2021).

Despite the advancements in data augmentation techniques and the adoption of transformer
models, accurately forecasting extreme PM:s levels remains challenging. Current approaches often
struggle with imbalanced datasets, where high PMo2s concentrations are underrepresented,
particularly during extreme pollution events like wildfire. This imbalance leads to poor model
performance in forecasting. While some work has explored augmentation techniques like SMOTE
and ADASYN (Flores et al., 2021; Yin et al., 2022), the specific application of these methods and
advanced under-sampling techniques to PMas forecasting during extreme events has been limited.
Furthermore, the potential of transformer models to effectively forecast these events in urban
environments remains underexplored, particularly in the context of data imbalance. To address these
gaps, this research explores data augmentation techniques, specifically cluster-based undersampling
with varying majority-to-minority class ratios and assesses its impact on high-value PM25 model
performance. This study leverages a transformer model, which employs multi-head attention, to
forecast PM:2s concentrations in cases of extreme pollution events in urban areas such as New York
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City, Philadelphia, and Washington D.C. Additionally, the research investigates the impact of two

EPA-defined minority-majority cutoff thresholds on model outcomes, highlighting the importance

of robust models capable of accurately forecasting elevated PM2s levels in real-world scenarios. The

specific research objectives are listed below:

1. Augment imbalanced PMas dataset with cluster-based undersampling with different
combinations of majority-to-minority class ratios

2. Investigate the impact of two minority-majority cutoff thresholds based on limits set by the EPA
on model performance

3. Build and train a transformer model to leverage the capabilities of multi-head attention in the
context of PM2s forecasting

4. Develop a robust forecasting model that accurately predicts PM2s concentrations, particularly
during extreme pollution spikes caused by events like wildfires in New York City, Philadelphia,
and Washington, D.C.

2. Literature Review
2.1. Data Augmentation Techniques for PM2.5

Data augmentation is a crucial tool in ML, particularly in situations where the dataset is
imbalanced. By artificially increasing the diversity of the training set, data augmentation helps
improve model robustness and generalization of modeling results (Feng et al., 2019; Z. Yang et al,,
2023; Yin et al., 2022). Data augmentation techniques have already shown promise in many other
fields, including air quality (Mi et al., 2024; Yin et al., 2022). Random oversampling (Moreo et al.,
2016) and random undersampling (Mohammed et al.,, 2020) are simple methods to combat
imbalanced datasets. Random oversampling randomly duplicates minority class samples. However,
it often runs into problems of overfitting when used with conventional ML models (Mohammed et
al., 2020). On the other hand, random undersampling randomly deletes the majority of observations,
due to which it is prone to loss of information. Undersampling methods are often combined with
clustering approaches. This involves initially clustering the data into several clusters using methods
such as k-means clustering (Lin et al., 2017). The cluster-based undersampling method selects
representative samples from each cluster to create a more balanced training dataset, ensuring a
balanced representation of both classes (Yen & Lee, 2009). Other data augmentation techniques
include SMOTE with k-means, the most prominent approach (Chawla et al., 2002). Although SMOTE
was developed for classification problems, it can also be extended to regression problems (Torgo et
al., 2013).

In the context of PM2s prediction, Yin et al. (2022) aimed to improve the estimation accuracy of
high PM2s concentrations by using an AugResNet model with random oversampling and SMOTE.
While their approach improved performance on high-value PMas datasets, a limitation of the study
was its focus on a single cutoff threshold and PMzs retrieval rather than forecasting, which limits its
broader applicability. Flores et al. (2021) employed LSTM, GRU, and hybrid GRU+LSTM models with
linear interpolation for data augmentation, expanding the dataset without addressing the imbalance
between high and low PM:s concentrations. Their approach did not specifically target data
imbalance, focusing instead on general dataset expansion, which can lead to overfitting, as
synthetically increasing the dataset size does not introduce new variability. Mi et al. (2024) tackled
the dataset shift problem between urban and rural PM2s data, addressing differences in predictor
variable density using multiple imputations by chained equations; however, this study focused on
correcting biases caused by variable density disparities rather than general PM2s forecasting, which
limits its relevance to broader PM:s prediction challenges.
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2.2. Transformer-Based PM:.5 Prediction Models

Statistical methods have traditionally been employed to estimate observed data directly, with
linear approaches such as AutoRegressive Moving Average (ARMA), AutoRegressive Integrated
Moving Average (ARIMA), and AutoRegressive Distributed Lag (ARDL) models being commonly
used (Abedi et al., 2020; Cekim, 2020; Graupe et al., 1975; Jian et al., 2012). These models rely on the
assumption of linearity, which limits their ability to capture the more complex, nonlinear
relationships often present in environmental data like air quality. Nonlinear ML methods have
gained significant traction for air quality forecasting because they can capture complex relationships
and interactions between variables. Methods such as Support Vector Regression (SVR), Artificial
Neural Networks (ANN), Random Forest (RF), and XGBoost offer more robust alternatives to linear
models (Agarwal et al., 2020; Arhami et al., 2013; Chu et al., 2021; Gariazzo et al., 2020; W. Yang et
al., 2018). ANNSs have been widely used for air quality forecasting (Ding et al., 2016; H. Liu & Zhang,
2021; Zhao et al., 2020). ANNs can capture intricate patterns in time series data, making them suitable
for forecasting tasks that require understanding temporal dynamics and spatial dependencies.
However, while ANNs have been extensively used, traditional shallow neural networks are often
limited in their feature learning capability. These models struggle to extract deep, abstract features
from large datasets, which can hinder their performance, especially when faced with complex and
highly nonlinear data.

More recent advancements, particularly in deep learning models, have addressed the limitations
of traditional approaches by enhancing the depth of networks and improving feature extraction
(Hinton & Salakhutdinov, 2006; Lecun et al., 2015). Several applications of these deep learning models
have emerged in air quality forecasting. For instance, Autoencoder (AE) models have been used for
air quality prediction (X. Li et al., 2016), while Convolutional Neural Networks (CNN)-based image
recognition techniques have been applied to estimate PM2s concentrations from images (Chakma et
al., 2017). Graph-based Long Short-Term Memory (LSTM) models have been employed to predict
PM:s levels because of their ability to model spatial dependencies in air quality data (Gao & Li, 2021).
A more advanced approach is the spatiotemporal Convolutional LSTM Extended (C-LSTME) model,
which combines CNNs and LSTMs to capture high-level spatiotemporal features, improving air
quality forecasting by modeling both spatial and temporal dependencies in the data (Wen et al., 2019).
Hybrid models, which combine techniques such as CNNs, Gradient Boosting Machines (GBM), Bi-
directional LSTMs (BiLSTM), and transfer learning, have been increasingly explored to improve air
quality prediction performance (Luo et al., 2020; J. Ma et al., 2019; Z. Zhang et al., 2021).

Despite the success of deep learning (DL) models, they face significant challenges. Recurrent
Neural Networks (RNNs) and LSTM networks suffer from gradient vanishing and exploding
problems, limiting their ability to capture long-term dependencies. While useful for spatial learning,
CNN s struggle to model complex, long-term relationships in time series datalike PM2s. Transformer
models, originally designed for NLP (Vaswani et al., 2017), have emerged as promising alternatives
for addressing these limitations in air quality forecasting (Z. Zhang et al., 2021). For example, Zhou
et al. (2021) introduced the Informer model, which improves temporal embeddings to learn non-
stationary and long-range temporal dependencies. However, it focuses solely on "temporal attention”
and overlooks spatial relationships between variables. Y. Li & Moura (2020) tackled this by
developing a graph transformer that captures dynamic spatial dependencies, using sparse attention
to trim less relevant nodes. Grigsby et al. (2021) further advanced this with the Spacetimeformer,
which flattens multivariate time series to handle spatial and temporal influences. Recent models like
the Sparse Attention-based Transformer (STN) by Z. Zhang & Zhang (2023) effectively reduce time
complexity while capturing long-term dependencies in PM2s data. Similarly, M. Yu et al. (2023)
proposed the SpatioTemporal (ST)-Transformer, designed to improve spatiotemporal predictions of
PM2s5 concentrations in wildfire-prone areas.

The current research on PM:s forecasting reveals significant gaps, particularly in handling
imbalanced datasets and modeling long-term dependencies. One of the main challenges is the
underrepresentation of high PM2s concentration events, which are far less common than low
concentrations. Traditional data augmentation techniques like random oversampling and
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undersampling have limitations such as overfitting and information loss, as highlighted by
Mohammed et al. (2020). Although SMOTE provides an alternative by generating synthetic samples,
its effectiveness in PM2s forecasting has been inconsistent, with studies like Yin et al. (2022) reporting
higher RMSE compared to random oversampling. Additionally, models like RNNs and LSTMs,
which are commonly used for PM2s forecasting, struggle with vanishing gradient problems and
difficulties in capturing long-term dependencies, as noted by Wen et al. (2019). Recent advancements
in Transformer models (Vaswani et al., 2017) offer a potential solution, as these models can capture
long-range temporal dependencies through attention mechanisms. However, the application of
Transformer models to wildfire-related PM2s forecasting remains underexplored, particularly in
urban environments where pollution has severe health implications. The 2023 Canadian wildfires,
which led to unprecedented PM2s levels in northeastern U.S. cities, provide an ideal dataset for
addressing this gap. This study addresses the above-mentioned gaps by combining optimized
resampling ratios and cluster-based undersampling to achieve a balanced representation of both high
and low-concentration events (Lin et al., 2017). Furthermore, leveraging recent advancements like
Informer and Spacetimeformer, the study introduces a Transformer-based architecture incorporating
multi-head sparse attention to reduce time complexity while effectively learning complex temporal
and spatial patterns. This research not only aims to address the issue of imbalanced datasets but also
contributes to understanding wildfire-related PM:s spikes in urban centers such as New York City,
Philadelphia, and Washington D.C., providing insights into the effectiveness of these models for real-
time air quality predictions during extreme events.

3. Data
3.1. Study Area

The study focuses on major urban areas in the northeastern United States, specifically New York
City, Philadelphia, and Washington, D.C. Figure 1 depicts the locations of AirNow sensors in three
areas: New York City (11 stations), Philadelphia (5 stations), and Washington, D.C. (4 stations). The
area, population, and geographical locations of these three cities are listed in Table 1. These cities are
characterized by high population densities, significant traffic volumes, and industrial activities, all of
which contribute to elevated levels of air pollution. Urban areas are often hotspots for PMzs due to
vehicle emissions, industrial processes, and residential heating, making them critical regions for air
quality monitoring and forecasting (Kloog et al., 2014; Qin et al., 2006). These urban environments
also present challenges for air quality forecasting due to the complex interplay between local
emissions and regional atmospheric transport processes.

A significant event that affected air quality in 2023 was the Canadian wildfires, which
profoundly impacted pollution levels across North America, particularly in urban areas of the
northeastern United States (Wang et al., 2024; M. Yu et al., 2024). The wildfires, which burned large
swathes of forested areas in Canada, generated vast amounts of smoke and particulate matter that
were transported southward by atmospheric winds, leading to unprecedented spikes in PM:2s
concentrations in cities like New York, Philadelphia, and Washington, D.C. (Bella, 2023). During this
event, air quality in these cities reached hazardous levels, reducing visibility severely and prompting
public health warnings (Deegan, 2023). PM2s forecasting is critical in these urban areas because it
helps predict and mitigate the health risks associated with high pollution levels, especially during
extreme events like the 2023 Canadian wildfires. Accurate forecasting allows for timely public health
warnings (Xu et al.,, 2017). Additionally, it enables air quality agencies, such as the EPA, to take
appropriate actions to reduce exposure to harmful particulate matter and manage air quality
effectively, particularly during significant pollution episodes like wildfires.
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Figure 1. Study area with AirNow sensor locations. (a) New York City, (b) Philadelphia, and (c)

Washington D.C.

Table 1. This study includes the area, population, and geographical location of the three cities.

City Area Population Coordinates
New York City 790 square km (302.6 8.336 million 40.4774° N, -74.2591°
square miles) W (southwest) to
40.9176° N, -73.7004°

W (northeast)
Philadelphia 34752 square km 1.567 million 39.8670° N, -75.2803°
(134.18 square miles) W (southwest) to
40.1379° N, -74.9558°

W (northeast)
Washington D.C. 76 square km (68 671,803 38.7916° N, -77.1198°

square miles)

W (southwest) to
38.9955° N, -76.9094°
W (northeast)

3.2. Data Description

Table 2 outlines the variables used for forecasting PM2s concentrations, with PMzs from AirNow
serving as the target variable. The covariates include aerosol optical depth (AOD) from the Moderate
Resolution Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric

Correction (MAIAC) algorithm and various meteorological variables such as boundary layer height,
relative humidity, temperature at 2 meters, surface pressure, and speed, all sourced from the
European Centre for Medium-Range Weather Forecasts (ECMWEF) ERA5 dataset. Additionally,


https://doi.org/10.20944/preprints202410.1853.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 October 2024

7

elevation data is sourced from the United States Geological Survey (USGS) was used as a
geographical covariate.

Table 2. Sources and units of variables used to forecast PMzs.

Variable Type Source Unit
PM:s Target AirNow ug/ms3
AOD Covariate MODIS MAIAC (Terra and Aqua) Unitless
Boundary Layer Height =~ Covariate ECMWF ERA5-hourly meter
Relative Humidity Covariate ECMWF ERA5-hourly %
Temperature (at 2m) Covariate ECMWFEF ERA5-hourly K
Surface Pressure Covariate ECMWFEF ERA5-hourly Pa

Wind Speed Covariate ECMWEF ERA5-hourly m/s
Elevation Covariate USGS Meter

3.2.1. Ground-Level PM2s5 Measurements

Ground-level hourly PM2s measurements were obtained from the U.S. Environmental
Protection Agency (EPA)'s AirNow program, which provides near-real-time air quality data,
including PM:25 concentrations. The AirNow data undergoes a rigorous quality control process before
being made available to the public. We downloaded PM:s5 data from AirNow sensors located in three
major cities: New York City, Philadelphia, and Washington, D.C. through AirNow API
(http://airnowapi.org). Given the need for timely analysis, we prioritized using near-real-time data
over the delayed Air Quality System (AQS) data. These measurements were used to evaluate and
compare model predictions of PMzs concentrations in the selected urban areas.

3.2.2. Satellite-Derived Aerosol Optical Depth (AOD)

The AOD data used in this study was derived from the MODIS aboard the Terra and Aqua
satellites, processed using the MAIAC algorithm. Terra and Aqua provide daily AOD products at a
spatial resolution of 1 km x 1 km, captured at approximately 10:30 and 13:30 local time, respectively
(Lyapustin et al., 2011, 2018). MAIAC is an advanced algorithm designed for aerosol retrievals over
both dark vegetated surfaces and bright deserts, making it highly effective for air quality assessments
due to its high spatial resolution (Liang et al., 2018; Z. Zhang et al., 2019). The Version 6 MAIAC
Land AOD product has been widely applied in air quality studies due to its superior spatial
resolution and temporal coverage (Lyapustin et al., 2018). For this study, we used the MAIAC AOD
product MCD19A2 at 550 nm and retained only high-quality AOD values, as indicated by the quality
assessment flag marked as "best quality". The data was sourced from the Level 1 and Atmosphere
Archive and Distribution System Distributed Active Archive Center website (LAADS DAAC, 2024).

3.2.3. Meteorological Variables

Several studies have demonstrated the strong relationship between meteorological factors and
variations in PM:zs5 concentrations (Z. Chen et al., 2020; Huang et al., 2015). For this study, we utilized
meteorological data from the ERA5 dataset, developed by the ECMWEF. ERAS5 is a comprehensive
reanalysis product that estimates various atmospheric, land, and oceanic climate variables hourly.
The dataset offers global coverage at a spatial resolution of 0.25° x 0.25° on a regular latitude-
longitude grid (Dee et al., 2011; Hersbach et al., 2020). The data was sourced through the Copernicus
Climate Data Store (C35) in GRIB format, ensuring high detail and consistency for climate research.

d0i:10.20944/preprints202410.1853.v1


https://doi.org/10.20944/preprints202410.1853.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 October 2024

8

The meteorological variables selected for this study included boundary layer height (BLH), relative
humidity, surface pressure (SP), 2-meter temperature (T2), and wind speed at 10 meters (U10/V10).

3.2.4. Geographical Variables

In this study, we used elevation data from the Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010), which provides a spatial resolution of 30 arc-seconds (approximately 1 km). The
data was obtained from the USGS website (GMTED2010, 2024).

4. Methodology

Figure 2 illustrates the workflow for the methodology used in this study to forecast PMas levels.
Starting with data acquisition, the data undergoes processing before selecting cutoff thresholds. Two
cutoff thresholds are employed: 12.1 pug/m? and 35.5 ug/m?, followed by applying various partial
sampling ratios ranging from 10/90 to 50/50. Each threshold and sampling ratio combination is fed
into a transformer model for model training. The accuracy of each model is assessed, and the best-
performing model is selected to produce PMas forecasts. This process allows for identifying the most
effective threshold and sampling ratio, optimizing model performance for PM:s prediction.

P
s

»{ Best Modey

/
4

Figure 2. Methodology Workflow Diagram.

4.1. Data Preprocessing and Collocation

We used the min-max scaler method to linearly transform the raw data to a value between 0 and
1 to balance the data dimensions and, at the same time, speed up the model to find the global optimal
hyperparameters. The formula is as follows:
,_ . x—m
max(x) — min(x)

where x and X’ refer to the values before and after normalization, and min(x) and max(x) refer to the
minimum and maximum values before normalization.

The data used in this study were aligned with the MAIAC AOD data for spatial and temporal
matching. Meteorological variables from the ERA5 ECMWF and the AirNow PM2s datasets were
matched to the Terra and Aqua MODIS satellite overpass times, which occur daily at approximately
10:30 and 13:30 local time. Daily averages of the hourly data were calculated within the overpass
windows to ensure consistency. All variables were subsequently reprojected to the USA Contiguous
Lambert Conformal Conic projection and resampled to a 1 km x 1 km resolution to ensure seamless
integration with the MAIAC AOD data.

4.2. Cutoff Threshold

In their study, Yin et al. (2022) defined 75 pig/m?3 as the cutoff threshold to distinguish low-value
from high-value PM2s samples, aligning with China’s air quality standard, which classifies 75 pg/m?
as the lower limit for light PM2s pollution. The selection of a cutoff value for distinguishing between

d0i:10.20944/preprints202410.1853.v1
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majority and minority classes plays a crucial role in determining class distribution and, consequently,
the model’s performance in forecasting high-pollution periods. In the context of air quality in the
United States, we used PM:s classifications by the EPA to determine cutoff threshold values (EPA
AQ]I, 2024). To evaluate the sensitivity of model performance to different cutoff values, this study
compares two thresholds aligned with EPA standards: 12.1 pg/m?® and 35.5 pg/ms3.

The total dataset in this study consisted of 4,026,240 valid samples. With a cutoff threshold of
12.1 pg/m3, 3,472,689 samples were classified as “low-value,” and 553,551 samples were classified as
“high-value.” The ratio of high-value samples to low-value ones was approximately 4:25 in the whole
dataset. Ratios by city and the specific number of low- and high-value samples are listed in Table 3.

With a cutoff threshold of 35.5 ug/m?, 4,004,433 samples were classified as “low-value”, and
21,807 samples were classified as “high-value.” The ratio of high-value samples to low-value ones
was approximately 5:1000 in the whole dataset. Ratios by city are listed in Table 4 and the specific
number of low and high-value samples.

Table 3. Breakdown of low and high-value samples with 12.1 pg/m? cutoff threshold.

City Total Low- High- Ratio of High to
Samples Value Value Low-Value
New York City 2,284,200 2,038,105 246,095 0.1207
Washington DC 456,840 406,716 50,124 0.1232
Philadelphia 1,285,200 1,027,868 257,332 0.2503
Total 4,026,240 3,472,689 553,551 0.1594

Table 4. Breakdown of low and high-value samples with 35.5 pug/m? cutoff threshold.

City Total Low-Value High- Ratio of High to
Samples Value Low-Value
New York City 2,284,200 2,272,914 11,286 0.00496
Washington DC 456,840 454,649 2,191 0.00481
Philadelphia 1,285,200 1,276,870 8,330 0.00652
Total 4,026,240 4,004,433 21,807 0.00544

4.3. Cluster-Based Undersampling

In this study, we implemented cluster-based undersampling to address class imbalance in the
training data. The first step involved grouping data points into clusters using the k-means algorithm,
which organized the data based on feature similarities. This clustering approach preserved the
inherent structure of the dataset by ensuring that similar data points were grouped together, which
is crucial for maintaining data integrity when performing undersampling. By applying the
undersampling strategy within each cluster, we selected a subset of instances, effectively reducing
the majority class without losing the diversity within the data. This method allowed for a more
representative sample, ensuring that both majority and minority classes were evenly distributed.

Before applying data augmentation, 20% of the original dataset was set aside for testing. The
remaining 80% was used for model training, with samples drawn randomly based on the data
augmentation technique. This approach ensured that each model was trained on datasets with unique
sampling strategies, but all models were evaluated against a consistent testing dataset. The testing
dataset was intentionally designed to mirror the original data distribution, ensuring fair comparisons
across models trained on different augmented datasets.

Many studies aim to achieve a perfect 50/50 balance between minority and majority class
samples. However, this idealized ratio is not always the most effective for model training, especially
when dealing with environmental data like PM2s5, where the natural distribution is often skewed.

d0i:10.20944/preprints202410.1853.v1
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Partial sampling, as discussed by Kamalov et al. (2022), involves adjusting the class ratio to values
between the original class distribution and an equal 50/50 split. This technique provides a more
nuanced approach, reflecting real-world distributions more accurately while improving model
generalizability.

Kamalov et al. (2022) found that a minority-to-majority class ratio of approximately 0.75 was
optimal in many scenarios, based on a systematic review of datasets and resampling techniques.
Following this insight, the present study applied various partial sampling ratios to explore whether
these findings hold for PMzs forecasting models. The aim was to determine whether a similar class
balance could yield improved prediction accuracy in this context.

Initially, the training dataset contained around 3 million samples. However, after data
augmentation and resampling, each training dataset was reduced to approximately 35,000 samples.
Although all training datasets had the same number of observations, the distribution of PM2s values
varied according to the selected threshold and resampling ratio, reflecting the impact of these
parameters on the dataset’s composition. Table 5 shows the exact number of high-value and low-
value samples for each partial sampling ratio dataset. Although the two cutoff thresholds result in
the same number of high-value and low-value samples at each partial sampling ratio, their
classification of high and low values differ, leading to distinct distributions across the datasets.

Table 5. Number of high and low-value samples in training dataset at each partial sampling ratio.

Partial Sampling Ratio High-Value Samples Low-Value Samples
10/90 3,498 31,482
20/80 6,996 27,984
30/70 10,494 24,486
40/60 13,992 20,988
50/50 17,490 17,490

Figure 3 presents the distributions of training datasets across partial sampling ratios using a 12.1
pg/m? threshold, with different partial sampling ratios of 10/90, 20/80, 30/70, 40/60, and 50/50. These
sampling ratios represent the proportion of minority (high PM:s) to majority (low PM:s) samples
included in the dataset.

Original 12.1 pg/m? - 10/90
g B
EA 2.
. g
E - ‘
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12.1 pg/m? - 20/80 12.1 pg/m?® - 30/70
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=l [
|
" PM,, Concentration (ugfm’) ‘ PM, , Concentration (ugfm’)
12.1 pg/m? - 40/60 12.1 pg/m? - 50/50
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Figure 3. Distribution of training dataset with cutoff threshold 12.1 ug/m? and partial sampling ratio,
from top left to bottom right, of none (original distribution), 10/90, 20/80, 30/70, 40/60, 50/50.
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The graphs in Figure 4 present the distributions of training datasets across partial sampling
ratios using a 35.5 pug/m? threshold, with different partial sampling ratios of 10/90, 20/80, 30/70, 40/60,

and 50/50.
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Figure 4. Distribution of training dataset with cutoff threshold 12.1 pg/m? and partial sampling ratio,
from top left to bottom right, of none (original distribution), 10/90, 20/80, 30/70, 40/60, 50/50.

4.4. Transformer Model Architecture

The Transformer model has revolutionized various domains of ML, including NLP and time
series forecasting (Vaswani et al., 2017). In the context of PM:s forecasting, the Transformer model's
ability to capture long-range dependencies and complex temporal patterns makes it a powerful tool
for forecasting air pollution levels (Cui et al, Zhang and Zhang). Traditional methods often struggle
with the non-linear and dynamic nature of PM2s data, but the Transformer's self-attention mechanism
allows it to weigh the importance of different time steps effectively, leading to more accurate and
robust forecasts.

Softmax Output

f

| Feed
Forward
Feed
Forward Decoder
Encoder
- Self
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Positional ¢ o
Encoding
Input Output
Embedding Embedding

Figure 5. Transformer model architecture.
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4.4.1. Positional Encoding

A Transformer model differentiates itself from traditional convolutional and recurrent neural
networks by employing a novel positional encoding mechanism to preserve temporal relationships.
This is achieved by embedding sine and cosine functions of varying frequencies into the normalized
input sequences as illustrated by the formulas below:

. pos
PE (05, 2i) = Sin =7
10000%modet
pos
PE(pos, 2i+1) = €OS 20
100009model

Here, pos represents the position of a data point within the sliding window, and j indicates the j-th
dimension in the feature space. This approach allows the Transformer to retain the order of the
sequence data, ensuring that the temporal dynamics are preserved and effectively leveraged during
training and inference (Vaswani et al. 2017).

4.4.2. Multi-Head Attention

To make the model focus on assigning different weights to the input time series information
during the encoding phase, an attention mechanism is often used to quantify the dependencies
between them. The attention score determines the extent to which the information corresponding to
a time slice in the time series should be focused on in future forecasts, and it can be calculated using
the scaled dot-product of the attention function as follows:

QK™\"
Attention(Q, K, V) = softmax( )
7z

where Q, K, and V are the matrices of the queries, keys, and values, respectively, and di is the
dimension of the key (K). The input sequence is downsampled using the embedding layers to obtain
(a1, a2, a3, ..., a;), which is multiplied by the learned matrices Wq, Wy, and Wyto obtain g, ki and v, i
€(1,23 ...

The multi-head attention mechanism enhances the model's ability to capture long-range
dependencies by allowing it to focus on both sequence positions and multiple heads simultaneously.
Each pollution factor's position, feature, and value are treated as separate heads, with multiple
matrices applied to repeat the self-attention process across parallel layers. This approach enables the
model to consider various relationships between pollution factors and meteorological conditions.

4.4.3. Encoder

In this study, the encoder consists of a stack of N = 6 identical layers. In each layer, the input
goes through multi-head self-attention, where the same input is used for queries, keys, and values,
and attention weights are computed based on the provided mask. The output from self-attention is
added to the original input, normalized using LayerNorm, and passed through a feed-forward
network. After the feed-forward computation, the result is again added to the input, followed by
another layer normalization and dropout.

4.4.4. Decoder

Each decoder also consists of a stack of N = 6 layers. In each decoder layer, the first step applies
self-attention, where the target sequence attends to itself, with a mask to control the attention. Next,
cross-attention is applied, where the output from the self-attention step attends to the encoder output,
allowing the decoder to incorporate information from the encoder while applying a source mask.
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Finally, the result passes through a feed-forward network, and after each attention and feed-forward
step, residual connections, normalization, and dropout are applied to maintain stability.

4.5. Model Training and Evaluation

4.5.1. Model Training and Hyperparameter Tuning

Before applying data augmentation, 20% of the dataset was reserved for testing. The remaining
80% was used to create training datasets. This allowed models to be trained on varied datasets while
being tested on a consistent, representative test set for fair comparison. More detailed dataset creation
procedures can be found in Section 4.3.

In our research, we opted not to perform extensive hyperparameter tuning given that the
hyperparameters specified in our experiments, as outlined in Table 6, already yielded satisfactory
results. The parameters used in this study were determined through trial and error, like the approach
by Cui et al. (2023). It is also important to note that the original authors of the transformer did not
perform extensive hyperparameter tuning, and many subsequent studies employing transformers
have followed a similar approach due to the high computational expense of such tuning (Vaswani et
al.,, 2017; Liu et al., 2019, Al-qaness et al. 2023, Yu et al. 2023, Cui et al. 2023, and Dai et al. 2024).

To maintain the validity of comparisons across different models and experiments, we kept the
hyperparameters constant throughout all tests. This decision ensured that performance differences
could be attributed to model adjustments rather than variations in tuning.

Table 6. Hyperparameters used for model training.

Training Parameter Values

Model training data 2021, 2022, 2023
Data split Training (80%) and testing (20%)
Optimizer Adam
Learning Rate 0.001

Epochs 20

Number of encoder and decoder layers 6

Model Dimension 8

Batch Size 256

Input length 8

Output length 8

Dropout Rate 0.1

4.5.2. Accuracy Measures

This paper employs Root Mean Square Error (RMSE), mean absolute error (MAE), and the
coefficient of determination (R2) as metrics for assessing model accuracy. RMSE evaluates the extent


https://doi.org/10.20944/preprints202410.1853.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 October 2024

14

to which the predicted value curve aligns with the observed value curve. MAE measures the average
absolute difference between the predicted and actual values. R? indicates the proportion of the
variance in the dependent variable (y) that can be explained by the independent variable (x). The
respective formulas for these calculations are as follows:

n
1
RMSE = |~ (= o)
i=1

n
1
MAE = —Z —
s 1Iyl Vil
1=

Z?=1(3”\i B };i)z

Z?:l(yl - }71)2

where n refers to the number of data, yi refers to the it observed value, y; refers to the it predicted
value, y refers to the average of all observed values.

R? = 1—

5. Experiments and Results
5.1. Accuracy Assessment

For experiments performed with a cutoff threshold of 12.1ug/m?, accuracy metrics are displayed
in Table 7. As the resampling ratio becomes more balanced, ranging from 10/90 to 50/50, both RMSE
and MAE metrics generally decrease, indicating improved model performance. The best overall
performance is observed at the 50/50 ratio, where the RMSE reaches 2.757, the MAE is 1.044, and R?
achieves a value of 0.850. This R? value suggests that the 50/50 ratio offers the strongest correlation
between forecasted and true PM2s values, making it the most effective configuration for balanced
data.

Table 7. Accuracy measurements of models trained on data augmented with cutoff threshold 12.1
pg/m? and different partial sampling ratios tested on the whole and high-value testing dataset.

Resampling Whole High-Value

Ratio RMSE MAE R? RMSE MAE R?

Original 3.174 0.661 0.801 32.013 26.705 0.036
10/90 3.217 0.726 0.796 29.366 20.284 0.188
20/80 3.090 1.145 0.812 25.948 19.044 0.366
30/70 2.823 1.535 0.843 25.243 18.827 0.400
40/60 2.816 1.325 0.845 23.284 17.383 0.490
50/50 2.757 1.044 0.850 21.287 14.114 0.574

Accuracy metrics for experiments performed with a cutoff threshold of 35.5 pg/m? are shown in
Table 8. Interestingly, the 20/80 resampling ratio emerges as the optimal configuration overall,
achieving the lowest RMSE (2.080) and MAE (1.386), alongside the highest R? value of 0.914. This
strong performance suggests that a 20/80 ratio balances the trade-off between capturing minority and

d0i:10.20944/preprints202410.1853.v1
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majority samples while minimizing error. The same ratio also delivers the best results for high-value
PM2s5 samples, with an RMSE of 15.353, MAE of 10.077, and an R? value of 0.778, demonstrating that
it is particularly effective for extreme pollution levels.

Table 8. Accuracy measurements of models trained on data augmented with cutoff threshold 35.5
pg/m? and different partial sampling ratios tested on the whole and high-value testing dataset.

Resampling Whole High-Value

Ratio RMSE MAE R? RMSE MAE R?

Original 3.174 0.661 0.801 41.34 28.269 0.607
10/90 2.282 1.592 0.897 19.747 13.81 0.633
20/80 2.080 1.386 0.914 15.353 10.077 0.778
30/70 2.306 1.671 0.895 16.095 12.204 0.756
40/60 2.423 1.726 0.884 16.556 12.917 0.741
50/50 2.677 1.875 0.858 19.116 14.321 0.656

When comparing the performance of models trained on the original dataset to those trained on
resampled datasets, the original data consistently underperforms, particularly in terms of error
metrics like RMSE and R2. This pattern emphasizes the value of resampling techniques for improving
model accuracy.

5.2. Partial Sampling Ratio

At a cutoff threshold of 12.1 pg/m3, in evaluating model performance across varying partial
sampling ratios, both the full dataset and high-value sample tests demonstrate a clear trend: the 50/50
partial sampling ratio consistently yields optimal results, as displayed in Figure 6. For the full dataset,
RMSE and MAE both decrease as the sampling ratio becomes more balanced, reaching their lowest
points at the 50/50 ratio. This indicates that more balanced data distribution significantly enhances
forecast accuracy. Similarly, the R? value steadily increases, peaking at the 50/50 ratio, signaling the
model's improved ability to capture long-range dependencies at this balanced ratio.

12.1 pg/m* - Whole 12.1 pg/my® - High

—8— RMSE —4+ K 085 -8 RMSE -+
30 = mae - mag

pg/m?
g/
R?

original 10/90 20/80 30/70 40/60 50/50 original 10/90 20780 30/70 40/60 50/50
Partial Sampling Ratio Partial Sampling Ratio

Figure 6. RMSE (blue), MAE (green), and R (red) performance metrics across various partial sampling ratios
using the 12.1 pg/m3 threshold tested on whole (Left) and high-value (Right) testing datasets.
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For high-value samples, the results further underscore the importance of balanced resampling.
RMSE shows a marked decline, and MAE gradually reduces as the ratio approaches 50/50. The
model's highest R? value at this point confirms its strongest performance in predicting high-value
samples with greater accuracy. Overall, the 50/50 sampling ratio emerges as the optimal
configuration, demonstrating that more evenly distributed data enhances the model's performance,
particularly in forecasting high-value events.

Patterns of model performance across varying partial sampling ratios changes for the cutoff
threshold of 35.5 ug/m?, as presented in Figure 7. For the whole dataset, RMSE decreases as the partial
sampling ratio becomes more balanced, reaching its minimum at 20/80. However, as the ratio
becomes more balanced at 30/70, 40/60, and 50/50, RMSE slightly increases, indicating that the most
balanced ratios do not necessarily provide the best performance. In contrast, the R? value peaks at
20/80, demonstrating the model’s strongest correlation between forecasted and true values, but
declines for more balanced ratios, suggesting that more even data distribution does not always
improve model performance.

35.5 pg/m’ - Whole 35,5 pg/m* - High
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304 T8 MAE - MAE

original 10/90 20/80 30170 40/60 50/50 original 10/90 20/80 30/70 40/60 50/50
Partial Sampling Ratio Partial Sampling Ratio

Figure 7. RMSE (blue), MAE (green), and R? (red) performance metrics across various partial
sampling ratios using the 35.5 pg/m?3 threshold tested on whole (Left) and high-value (Right) testing
datasets.

For high-value samples, RMSE shows a sharp decline from the original dataset, continuing to
decrease at the 20/80 ratio, with further stabilization beyond this point. MAE follows a similar trend,
with a steep drop at 20/80 and stabilization thereafter. This indicates that the 20/80 partial sampling
ratio effectively minimizes errors for high-value samples. Similarly, R? improves significantly with
more balanced resampling, reaching its peak at 20/80, and begins to drop afterward, highlighting that
the model’s best correlation for high-value events is achieved at this ratio.

Overall, the 20/80 ratio provides the best performance across both the full dataset and high-value
samples, delivering the lowest RMSE and highest R2. The original dataset, without resampling,
performs the worst in terms of RMSE, MAE, and R? underscoring the value of resampling for
improving forecast accuracy, particularly for high-value samples. Yin et al. (2022) also observed
increasing RMSE with more balanced partial sampling ratios, although they reported decreasing
RMSE with more balanced ratios, while we observed stabilizing RMSE and MAE beyond 20/80.

The discrepancy between RMSE and MAE in the original dataset arises from the nature of these
metrics. RMSE amplifies the impact of large errors due to its squaring mechanism, making it highly
sensitive to outliers, whereas MAE treats all errors equally, offering a more robust reflection of
average performance. This suggests that the original dataset likely contains a few large outliers that
inflate RMSE without significantly affecting MAE. As the partial sampling ratio becomes more
balanced, the model improves at predicting high-value outliers (leading to lower RMSE), but loses
some accuracy in predicting low-value events (causing a slight increase in MAE).

5.3. Cutoff Threshold

Models trained on the 35.5 ug/m? threshold consistently outperformed those trained on the 12.1
ug/m3 threshold in terms of RMSE and R?, as demonstrated in Figure 8. The resampling ratio plays a
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crucial role in model performance, with the 20/80 ratio emerging as optimal for the 35.5 ug/m3
threshold, while the 50/50 ratio works best for the 12.1 ug/m? threshold. This disparity is largely
driven by the nature of the data captured at each threshold. The higher 35.5 threshold likely includes
a more concentrated set of high-value samples, making a less balanced ratio like 20/80 more effective
since the distinct minority samples don’t require as much balancing. In contrast, the 12.1 threshold
includes more low-value samples, necessitating a 50/50 ratio to adequately represent both minority
and majority groups.

ng/m?
ng/m’*

1o e = ) ; orgin w0 ) o
Partial Sampling Ratio Partial Sampling Ratio

Partial Sampling Ratio

Figure 8. RMSE, MAE, and R? performance metrics for the 12.1 ug/m? (green) and 35.5 pg/m? (blue)
thresholds across partial sampling ratios.

RMSE, which squares the differences before averaging, amplifies larger errors, making it more
sensitive to a few large deviations from actual values. This explains why models trained on the 12.1
threshold performed worse in terms of RMSE, as the larger prediction errors had a greater impact.
However, MAE, which treats all errors equally, performed better for the 12.1 threshold, indicating
that while the errors were frequent, they were smaller in magnitude.

For the 35.5 ug/m? threshold, RMSE decreases as the sampling ratio becomes more balanced,
reducing large prediction errors, but eventually, as accuracy for low-value samples declines, RMSE
starts to increase. Similarly, R? initially improves with more balanced ratios but reaches a peak at
higher ratios, particularly for the 12.1 pg/m3 threshold. Beyond this point, additional balancing
dilutes the model’s ability to capture key variance for low-value samples, leading to diminishing
returns in overall accuracy.

5.4. Time Series Analysis

The one-day forecasts for PM2s from 2021-2023 in New York City, Philadelphia, and Washington
D.C. produced by models trained on the original dataset show strong accuracy for lower PMoas
concentrations, particularly for values below 30 pg/m3. This is reflected in the high similarity between
forecasted and observed values at these low levels. However, the model struggles to predict higher
PM:25 concentrations, reaching a ceiling in magnitude when faced with extreme pollution events. This
limitation arises from the imbalanced dataset, where the majority of samples consist of lower values,
leading the model to prioritize these over the rarer high-value samples. As a result, the model is
unable to fully capture extreme PM:s events, a challenge frequently highlighted in the literature,
which shows that forecast accuracy tends to decline as PM:s levels increase.
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Figure 9. Time series of observed (blue) and forecasted (orange) PM2.5 concentrations from 2021 to
2023 in New York City (top), Philadelphia (middle), and Washington D.C. (bottom). The left column
shows predictions from model trained on original distribution and the right column shows
predictions from model trained on data treated with optimal data augmentation determined in
Section 5.1.

In contrast, models trained on the augmented dataset, using a 35.5 ug/m? cutoff threshold and a
40/60 partial sampling ratio, demonstrate improved performance in capturing high-value PM:s
events. Although there is a trade-off, where the model's accuracy for lower PMas levels is slightly
reduced, this adjustment leads to significantly better RMSE and R-squared measures. This reflects
the model’s enhanced ability to forecast more extreme pollution scenarios, a critical aspect in
improving overall prediction accuracy for high PM2s concentrations. The trade-off is seen in the
slightly worse MAE, as the augmented dataset introduces more diversity and some smaller errors
that MAE treats equally, while RMSE emphasizes the larger improvements in extreme cases. The
augmented model is better suited to handle high-value samples, which is particularly beneficial in
scenarios where predicting extreme pollution is more critical than maintaining perfect accuracy at
lower concentrations.

The key contrast between the two models lies in the distributional focus: the original dataset
performs better on low-level PM:2s concentrations but struggles with extreme values. In comparison,
the augmented dataset sacrifices some accuracy at lower concentrations to better capture the high-
value events, which are crucial for understanding and managing pollution spikes. This trade-off is
especially visible in the improvements in terms of RMSE, which penalizes large errors more severely.
These results show that the model trained on augmented data is significantly better at predicting
higher PM:2s values.

6. Discussion

The underestimation of high pollutant levels has been an issue frequently discussed in many
studies (Li et al, 2017). This research addresses the challenge by applying data augmentation
techniques prior to training the deep learning model. One of the key contributions of this study is the
exploration of cluster-based undersampling, implemented at different cutoff thresholds and partial
sampling ratios, which helped mitigate class imbalance and improve model performance. Our
findings indicate that the higher cutoff threshold of 35.5 ug/m?® resulted in superior model
performance when compared to the lower threshold of 12.1 ug/m?, as the 35.5 pg/m? threshold more
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effectively differentiated between low- and high-value samples. The most optimal partial sampling
ratio was found to be 20/80, consistent with Yin et al. (2022), which identified 30/70 as optimal in their
study. Previous literature, including Kamalov et al. (2022), suggests that a fully balanced dataset is
not always the best approach, and each dataset’s unique characteristics may necessitate different
ratios. In our case, the 20/80 ratio paired with the 35.5 pg/m? cutoff provided the best performance in
capturing high-value samples without over-suppressing the majority class.

Future work could enhance the model by incorporating additional data sources that influence
PMo2s levels. Urban traffic data, which is crucial in accounting for emissions from vehicles, and
industrial activity data from factories and power plants would provide more detailed insights into
spikes in pollution. Including weather data such as wind patterns and forecasts could improve the
model’s accuracy in predicting pollutant dispersion across regions. In addition to data augmentation
through cluster-based undersampling, more advanced techniques like Generative Adversarial
Networks (GANSs) could be explored to generate realistic synthetic data for extreme pollution events,
which are rare but critical to forecast. Expanding the model’s geographic scope by testing it on
various cities would further strengthen its generalizability. Another promising avenue would be to
extend the model to perform multistep predictions, forecasting PM2s concentrations over multiple
time steps rather than just the next step, which would be particularly valuable for air quality
forecasting over longer time periods like days or weeks. Moreover, broadening the scope of the model
to predict other key pollutants such as NO,, SO, and Oswould provide a comprehensive air quality
forecasting system, enabling more effective city-level interventions to manage overall air quality.

7. Conclusion

This study demonstrates that the 35.5 pug/m3 threshold consistently outperforms the 12.1 pug/m3
threshold across key metrics like RMSE and R?, likely due to its better representation of higher
pollution values. The choice of partial sampling ratio proved crucial, with 50/50 optimal for the 12.1
threshold and 20/80 optimal for the 35.5 threshold, effectively balancing the need to capture both
frequent and extreme pollution events. The model with the best performance (RMSE: 2.080, MAE:
1.386, R2: 0.914) utilized the 35.5 ug/m? threshold and a 20/80 partial sampling ratio. Overall, models
trained on resampled data significantly outperformed those trained on the original dataset,
demonstrating the importance of data augmentation in handling imbalanced datasets and improving
forecast accuracy, especially for high-value pollution scenarios. These findings highlight the critical
role of threshold selection and resampling strategies in enhancing PM:s forecasting models.
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