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Article
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Abstract: Super-Earth b and sub-Neptunes c and d are orbiting about the M-dwarf TOI-270 in that order from

the star. Their global resonant chain (3:5, 1:1, 2:1) is extremely surprising because planet d appears to be the only

known planet occupying the 2:1 resonant orbit without participating in a Laplace resonance (LR) or another planet

intervening between the 1:1 and 2:1 orbits as in HD 110067. We do not believe that TOI-270 d is an exception to

the empirical rule calling for 2:1 vacancy except in 1:2:4 LRs and Laplace-like 2:3:4 chains. Instead, a LR might

exist in this system, and we searched (to no avail) the TESS light curves of TOI-270 for hints of an outer planet that

would complete the LR chain. Alternative explanations would be an unknown planet more massive than planet c

(Mc = 6.20 M⊕) establishing the actual 1:1 orbit, or planet b residing in the 1:2 Laplace orbit with a period shorter

by 0.53 days. But these possibilities are ruled out by current data. This leaves only one other option to explore: the

observed orbits could be in a stable 3
5 :1:2 resonant chain. Preliminary calculations do not preclude this possibility

that should be investigated further by numerical orbit integrations. To this end, we determine two potentially

resonant angles, φ and φ̂, related via the Laplace phase φL by φ̂ = φL + 2 φ. In contrast, HD 110067 is shown to

have planets d-e-f in a Laplace-like 1: 3
2 :2 resonance with phase φ = 2φL precisely.

Keywords: exoplanet dynamics; orbital resonances; tidal interaction

1. Introduction

1.1. A New Beginning: Gravitational Landau Damping

Motivated by an unprecedented set of novel assumptions, we have embarked in a post-coronavirus
study of mean-motion resonances (MMRs) occurring in (exo)planetary and satellite orbits [1]. Elements
of the theory behind the challenge were laid out long ago (“Landau damping” [2–8]), but these studies
were heretofore not applied to just a few major bodies orbiting around in the gravitational field of a
central host in seemingly relaxed stable configurations.

In our view, the three pillars of planet/moon migration and eventual relaxation, after their
rudimentary accretion disks were dispersed or accreted, are: (1) the ongoing global tidal transfer
of angular momentum between surviving fragments that drives them all toward an unattainable
intermediate orbit; (2) the dominant contributions of the most massive objects to the permeating tidal
field; and (3) the gradual weakening of the mean tidal field, as massive objects halt their migration and
no longer raise tides (“gravitational Landau damping”).

In this theory of planet and satellite evolution, when the global mean tidal field is erased due
to the disappearance of radial excursions, all surviving objects should then be found orbiting in or
near global MMRs [1,4]. Some natural predictions of such a final arrangement of orbits are (a) that the
resulting MMR chain ought to be resonating globally, i.e., it should extend throughout all the survivors;
and (b) that the survivors ought to also reside in or near local potential minima of the long-gone mean
tidal field, creating thus a ‘regular’ radial profile of the presently observed orbital semimajor axes.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2024 doi:10.20944/preprints202410.1806.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-7652-2206
https://orcid.org/0000-0002-3562-9699
https://orcid.org/0000-0001-8572-8241
https://orcid.org/0000-0002-8427-0766
https://orcid.org/0000-0002-7435-7809
https://doi.org/10.20944/preprints202410.1806.v1
http://creativecommons.org/licenses/by/4.0/


2 of 14

1.2. Global Mean-Motion Resonances

In planetary and satellite systems, the above predictions dictate a re-examination of the global
chains of the orbital periods and the radial distributions of the semimajor axes, a program not easy to
complete, but we are working on it. In this paper and in a companion Paper II [9], we study Laplace
MMR chains of 3 objects and Laplace-like chains of 3 or 4 objects with an eye on the libration properties
of these adjacent orbits and the spacings of the minima of the tidal potential, as they are revealed
by the observed orbital configurations. In all cases, the most massive orbiting object in the system is
assumed to define the location of the global 1:1 resonance.

Classical Laplace resonances (LRs) are characterized by orbital period ratios 1
4 : 1

2 :1 (the Galilean
moons [10]) or 1

2 :1:2 (GJ 876 [11]). LRs of the third type 1:2:4 have not so far been observed (see Table 2
below), and it is not known whether they can be formed at all.

Laplace-like resonances are generally similar; they show rational orbital-period ratios of 1: 3
2 :2 (HD

110067 [12]; Table 3 below), or 1
2 : 3

4 :1 (e.g., Kepler-90, TOI-1136, TRAPPIST-1), or 2
3 :1: 4

3 (e.g., Kepler-223,
TOI-178). In these systems, the librating angle is precisely 2φL (Paper II), where φL is the classical
Laplace angle of LRs.

Other higher-order Laplace-like resonances show higher multiples of φL and its few combinations
with some typical basis angles. Such unusual resonances have been found in extensively modeled
systems such as Kepler-60, K2-138, and TRAPPIST-1 [13–21]. The common factors in the librating
angles were neglected during modeling, resulting in distorted values of the libration centers and
amplitudes. These MMRs have thus provided the impetus for the work presented in Paper II.

It should be discernible from the preceding exposition that global MMRs do not rely or depend
on local MMR pairs, the kinds that have been meticulously studied over many years in the past (e.g.,
Refs. [18,22–25], and references therein). Indeed, a number of previous N-body investigations [13,26,27]
discovered that phase φ may be librating in the so-called type-II systems (‘pure’ three-body MMRs),
although one or both of the two-body MMRs do not librate. This surprising outcome is not as easily
obtained from N-body models targeting local MMRs (e.g., Refs. [24,28,29]) in which each pair of
adjacent planets is expected to lock into librations (the so-called type-I or ‘double’ MMRs [13,27]). On
the other hand, Celletti et al. [26] classify three-body MMRs based on the orders of local pairs: if the
local orders are same, so is the global order; otherwise, the MMR is of mixed order.

Furthermore, well-separated or distant bodies taking part in global MMR chains are not required
or expected to show librations because of their large distances from the rest of the resonating bodies
that may be closely-packed. Thus, the presence of librating phases is an independent property of
global MMRs and not part of their definition. This point was also made by Lari and Saillenfest [30]
who argued that, unlike triple 1

4 : 1
2 :1 LRs, individual 2:1 commensurabilities are not genuine resonances

because the trajectory of the system in phase space is not bounded by a separatrix (see also Refs. [31–33]
for the first-order two-body Hamiltonian formalism).

1.3. Outline

In what follows, we concentrate on global Laplace-like MMRs between three adjacent planets,
one of which resides in the 2:1 orbit. In the course of our investigation focusing on TOI-270 [34] and, in
part, on HD 110067 [12], we also record the local MMR pairs needed in calculations. However, our
conclusions are based on all three planetary orbits (their orbital periods and semimajor axes) that are
relaxed, thus globally resonant in both space and time [1], yet they may or may not show librations.

In Section 2, we introduce physical and orbital characteristics of the TOI-270 system. In Section 3,
we investigate several possible explanations for the 2:1 orbit of TOI-270 d, and we compare the 3

5 :1:2
MMR to classical LRs and the Laplace-like MMR of HD 110067. In Section 4, we summarize the few
possibilities for the 2:1 orbit of TOI-270 d that we could not rule out with a high degree of confidence.
In an Appendix, we discuss two potentially librating phase angles for the global MMR of TOI-270 that
should be investigated further by N-body simulations.
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2. The TOI-270 Exoplanetary System

Three planets were discovered in quiet M-dwarf TOI-270 by Günther et al. [35], and follow-up
studies refined their orbits and masses [34,36]. Many researchers are presently turning their attention
to the surface and atmospheric conditions of sub-Neptune TOI-270 d, using our best space telescopes
to conduct transmission spectroscopic observations [37–39]; but the planetary system of TOI-270 also
poses another problem of dynamical nature, and it is this problem that concerns us in the present
investigation.

The best-fit solutions for the planetary orbits, masses, and radii have invariably converged to the
values listed in Table 1 taken from Kaye et al. [34]. The last column shows the global MMRs calculated
from the ratios Pn/P2 (n = 1, 2, 3) relative to the orbital period of the most massive planet c. The
planetary configuration is also depicted in Figure 1. The dynamical problem is visible in Table 1 and in
Figure 1: the 2:1 MMR is not vacant, although the planets are not trapped in a LR, nor is there a planet
intervening between the 1:1 and 2:1 MMRs, as in the case of HD 110067 [12,40].

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0 0.5 1 1.5 2 2.5

Figure 1. (a) Distribution of semimajor axes of planets (filled blue circles) and nearest radial tidal
potential minima (vertical dotted lines, separated by a distance of 2λ, where λ is the wavelength of the
tidal field). Planet c (n = 2) is the most massive (Mc = 6.20M⊕). (b) Distribution of orbital period ratios
of planets (filled red circles) and nearest global MMRs (vertical dotted lines). The orbits deviate from
the nearest exact MMRs by < 1.1%; although the Laplace-like resonant systems HD 110067, Kepler-60,
and Kepler-223 fare better (deviations of < 0.093%, < 0.105%, and < 0.14%, respectively).

Table 1. The planetary system of TOI-270 a [34].

n Planet P a e M R Global
Name (d) (au) (M⊕) (R⊕) MMR

1 b 3.3599 0.0303 0.0167 1.48 1.28 3:5
2 c 5.6605 0.0452 0.0044 6.20 2.33 1:1
3 d 11.382 0.0738 0.0066 4.20 2.00 2:1

aStellar mass M⋆ = 0.386 M⊙, stellar radius R⋆ = 0.380 R⊙. Orbit — P: period, a: semimajor axis, e: eccentricity.
Planet — M: mass, R: radius.

3. The Global 2:1 MMR Occupied by TOI-270 d

Except for the planetary system of HD 110067 and a few (6) known systems exhibiting LRs
discussed below, no other extrasolar system had been discovered with its global 2:1 MMR being
occupied by a planet—until the pair of planets TOI-270 c and d were detected [35]. The orbital period
of planet d (Pd = 273.2 hr [34]) deviates from the exact 2:1 MMR by only +1.464 hr or 0.54% (Figure 1).

3.1. Possible Explanations

In general, any one of the following ideas could explain the surprising global 2:1 orbit of planet
TOI-270 d:

(1) A Laplace resonant chain ( 1
2 :1:2) between planets b, c, and d, as in GJ 876 [11,41]. But then, planet

b would have to occupy instead the 1:2 MMR with an orbital period of about 2.83 d, i.e., shorter
by 0.53 d than the current best-fit value. We explore this possibility in detail in Section 3.2 below.
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(2) On the other hand, a yet undetected outer planet could complete a 1:2:4 Laplace chain in con-
junction with planets c and d (although no LR is presently known with the most massive body
in radial position n = 1; see Table 2 below). We searched for a planetary signal at a period of
22.6-22.8 d with no success, although we found two distinct peaks in the periodogram within
the targeted range (Figure 2). Past searches traversing this range have also produced negative
results [34,35].

(3) Another planet orbiting between the 1:1 and 2:1 orbits, as in the (1:1, 3:2, 2:1) chain of HD
110067 [12]. But no hint of such a planet has been found in any intervening orbit (Refs. [34–36],
and this work).

(4) Another planet more massive than any of the three known planets (i.e., with mass M > Mc =

6.20 M⊕) would reset the location of the 1:1 MMR, resolving thus the issue. But no other planet
has been detected out to an orbital period of at least ∼ 30 days (Ref. [35], and this work). At such
large distances, more doubts are raised by the expanded projected aperture of a large planet on to
the star that would be expected to produce very deep eclipses during transits—on the contrary,
no eclipses of any depth are seen in the TESS data out to P = 35 d.

(5) Against the odds, the empirical rule calling for vacant non-LR 2:1 orbits adjacent to the principal
1:1 orbit could be invalid. We do not think this is a satisfactory resolution of the problem because
this rule appears to be justified in 75 exosystems and solar-system satellite systems that we have
analyzed so far (see also the results from a sample of 34 systems of Steffen [42]). In many of these
systems, a body near the vacant 2:1 MMR has been clearly displaced out to a nearby higher-order
MMR; in particular, 9:4 (e.g., Kepler-20 d, HD 108236 d), or 7:3 (e.g., Callisto, Kepler-80 b), or 5:2
(e.g., Saturn, HIP 9618 c). On the other hand, the most well-known system with an obviously
vacant 2:1 MMR is the Plutonian satellites displaying a global MMR sequence of the form (1:1, 3:1,
4:1, 5:1, 6:1) [43,44].

(6) A simple, yet surprising explanation would be that in TOI-270 we have encountered yet another
stable triple chain of the type (3:5, 1:1, 2:1) in which the dominant planet c can stabilize the
3:5 MMR just as easily as the well-known Laplace 1:2 MMR. This novel hypothesis is also of
theoretical interest (see Section 3.3 below), and it should be tested by numerical simulations.

Based on previous works and our analysis of the available TESS light curves, we believe that we
can rule out cases 2-5 to some extent, but not cases 1 or 6 without further effort. We investigate these
two cases in the following subsections.

3.2. Case-1: Potential Laplace Resonance Scrutinized

The case for Pb = 3.36 d in TOI-270 b appears to be weak for the following reasons:

(a) The latest best-fit models [34,36] used narrow priors of width Pb ∈ [3.35, 3.37] d, so they could have
missed a best-fit value smaller by only 0.53 d falling within the error bars (case 1 in Section 3.1).

(b) Both groups reported a shallow dip in relative flux for planet b of order 10−3, not discernible by
eye in the data (see, e.g., section 5.2 in Ref. [34]); so, the latest models lean heavily on the initial
determination of Günther et al. [35].

(c) The periodogram combining all 5 sectors of TESS observations shows several distinct peaks in the
interval of interest P ∈ [2.5, 3.5] d and a prominent peak at P = 2.830 d (Figure 2).

The P = 2.830-d signal is a harmonic of the fundamental period Pc = 5.6605 d corresponding
to planet c (Table 1), and it turns out that it is not caused by a transiting planet: We folded the TESS
light curves at P = 2.830 d, and the resulting light curve is shown in Figure 3. About one-half of the
points are out of phase and do not highlight the observed dip; and the dip itself has the same depth
and duration as the actual eclipse produced by transiting planet c at period Pc. Thus, we can be fairly
confident that the much weaker signal produced at the 3:5 MMR (Figure 2), in which virtually all
points are in phase, corresponds to the actual orbit of planet b.

So, the results make a strong case against the presence of classical LRs in TOI-270 and point
toward an investigation of the observed stable chain ( 3

5 :1:2) itself, which however lies quite close to the
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classical LR ( 1
2 :1:2). We explore the MMR chain of TOI-270 below in conjunction with the few known

classical LRs and another unusual stable resonance (1: 3
2 :2) recently discovered in HD 110067 [12].

Figure 2. Periodogram of the TESS data for TOI-270. A prominent signal appears also at P = 2.830 d
(the 1:2 MMR with planet c). No planet is found in this orbit (see Figure 3 below) or at the 4:1 harmonic,
so there is no classical LR in the system. But the 2:1 harmonic is occupied by planet d, raising the
possibility of a new stable resonant chain of the form (3:5, 1:1, 2:1).
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Figure 3. The TESS light curves of TOI-270 combined and folded over the Laplace period of P = 2.830
d. The observed dip is not coherent; about one-half of the points are out of phase indicating that there
is no planet at the 1:2 global MMR of the planetary system.

3.3. Case-6: Laplace-like MMR Chains Explored in Conjunction with Classical LRs

We consider next the global MMR sequence of planetary orbits (3:5, 1:1, 2:1) observed in TOI-270.
Kaye et al. [34] investigated the 2:1 MMR between planets c and d using N-body simulations designed
to study primarily the long-term stability of the system. They found that the mean longitudes λc and
λd circulate in the first 100 yr of evolution, so the two planets may not be locked together at present
either. This outcome does not however preclude the existence of a new triple chain in TOI-270 in which
the resonant phase angle (Paper II)

φ = 3λb − 7λc + 4λd (1)

could possibly librate (type-II resonance [13]) and the mean motions 3/Pb − 7/Pc + 4/Pd combine to
zero. For that reason, the planetary system of TOI-270 should be simulated again, hopefully in the
near future.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 October 2024 doi:10.20944/preprints202410.1806.v1

https://doi.org/10.20944/preprints202410.1806.v1


6 of 14

Table 2. Laplace Resonant Chains and TOI-270 MMR Chain.

Host Orbiting Configuration
Body Bodies Mass Scheme Refs.

Radial Position n: 1 2 3
Global MMRs of the form 1:4 1:2 1:1

Jupiter I, E, G oo ℓg bb (1)
HIP 41378 b, c, g oo ℓg bb (2)

Global MMRs of the form 1:2 1:1 2:1
GJ 876 c, b, e oo bb ℓg (3)
Kepler-176‡ c, d, e⋆ oo bb ℓg (4)
HR 8799 e, d, c ℓg bb oo (5)
HR 8832 f, d, g ℓg bb oo (6)

Global MMR of the form 3:5 1:1 2:1
TOI-270 b, c, d ℓg bb oo (7)

KEY:
Mass scheme of the LR chain

bb : Most massive body (‘big boy’);
ℓg : Least massive body (‘little guy’);
oo : Intermediate mass body (‘other one’).

Jupiter’s moons
I: Io; E: Europa; G: Ganymede.

NOTES: ‡ The most massive planet Kepler-176 b is not part of the LR. ⋆ Least massive exoplanet ever found
(Me = 0.204 M⊕), other than the unusual ‘pulsar planet’ B1257+12 b (Mb = 0.02 M⊕) [45]. REFERENCES: (1) [10].
(2) [46,47]. (3) [11,41]. (4) [24,48]. (5) [49]. (6) [50–52]; also known as HD 219134 [52–54]. (7) [34].

3.3.1. Comparison with Known LRs and the Resonance in HD 110067

If it turns out that 3
5 :1:2 is a type-II resonance, we believe that the phase angle (1) will be found to

librate about φ = 180◦, just as the Galilean LR between Io, Europa, and Ganymede [10], and unlike
the LR of GJ 876 [11]. Our reasoning is described in detail in Paper II; our exploration started with a
comparison between this resonance and five other classical LRs which we have found in extrasolar
systems. All LRs are summarized in Table 2 that also includes the Galilean LR for completeness.

Although the list of 6 LRs in Table 2 is not long, we can infer the following trends:

(a) No system has the most massive orbiting body (bb) in radial position n = 1.
(b) There is no system with bb at n = 3 and ℓg at n = 1.1

(c) Only HIP 41378 has precisely the same arrangement of orbiting body masses as the famous
Galilean LR with bb at n = 3 and ℓg at n = 2.

(d) Except for HIP 41378, the other five exosystems have bb at n = 2 (including also TOI-270).

Because of trend (d), it would not come as a surprise if any of the three systems listed below
GJ 876 in Table 2 showed a Laplace phase also librating about φ = 0◦ (see Rivera et al. [11] for a
detailed analysis of the GJ 876 LR)—but this is not so for TOI-270 which shows only an approximate
Laplace-like resonance.

We consider next trend (a), an unusual feature concerning the location of the most massive planet
in each system. It certainly appears to be characteristic of the known LRs, and its violation by the
global MMR of HD 110067 [12] led us to discover a new type of exact Laplace-like resonance of the
form (1:1, 3:2, 2:1) with a phase of φ = 2φL precisely. The proof follows after some preliminaries.

We list in Table 3 the detailed layouts of the four confirmed LRs and the two Laplace-like resonant
chains observed in TOI-270 and HD 110067. Only HD 110067 has bb at n = 1 (planet d). The local

1 Case (b) in Section 3.3.1: The adjacency of ℓg to bb in all cases brings to mind Hyperion’s proximity to Titan (see Ref. [55]
for recent measurements). The unusual global MMR chain 2

7 :1: 4
3 of Saturn’s moons Rhea-Titan-Hyperion with a phase of

φ = 2φL + 16(λH − λT) (Paper II) has not received due attention yet.
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MMR pairs P2 :P1 & P3 :P2 are also listed in Table 3; they are used in the determinations of phase angles.
According to the classification of local MMR pairs given by Celletti et al. [26], HD 110067 shows a
Laplace-like resonance of the first order, whereas TOI-270 shows a mixed (2&1) order.

Table 3. Confirmed LRs and Laplace-like Resonant Chains.

Host Orbiting Global Local
Body Bodies Chaina MMRsb Refs.

Radial Position n: 1 2 3
Confirmed Laplace Resonances

Jupiter I, E, G 1
4 :
[

1
2

]
:1 2:1 & 2:1 (1)

GJ 876 c, b, e 1
2 :1:[2] 2:1 & 2:1 (2)

Kepler-176 c, d, e 1
2 :1:[2] 2:1 & 2:1 (3)

HR 8799 e, d, c
[

1
2

]
:1:2 2:1 & 2:1 (4)

Laplace-like Resonant Chains

HD 110067 d, e, f 1:
[

3
2

]
:2 3:2 & 4:3 (5)

TOI-270 b, c, d
[

3
5

]
:1:2 5:3 & 2:1 (6)

KEY: I: Io; E: Europa; G: Ganymede; [·] = ℓg.

NOTES: a Orbital period sequence P1:P2:P3. b Paired orbital periods P2:P1 = (r + 1):r & P3:P2 = (s + 1):s (except
P2:P1 = (r + 2):r in TOI-270). REFERENCES: (1) [10]. (2) [11,41]. (3) [24,48]. (4) [49]. (5) [34]. (6) [12].

For local resonances of the first order, Pn+1:Pn = (p + 1):p, where p = r, s and Pn+1 > Pn, two of
the commensurability relations relating mean longitudes λn [56] are

θ1 = (r + 1)λ2 − rλ1 −ϖ2

θ2 = (s + 1)λ3 − sλ2 −ϖ2
, (2)

where ϖ2 is the longitude of the pericenter of planet n = 2. Eliminating ϖ2 between these equations,
we get the resonant phase angle φ = θ2 − θ1 [13], viz.

φ = rλ1 − (r + s + 1)λ2 + (s + 1)λ3 . (3)

In the HD 110067 system, r = 2 and s = 3 (Table 3), and equation (3) gives

φ = 2λ1 − 6λ2 + 4λ3

≡ 2 φL ,
(4)

where φL ≡ λ1 − 3λ2 + 2λ3 is the classical Laplace phase angle [10]. This completes the proof.
Existing N-body models constructed with the parameters of HD 110067 have not been analyzed

for librations yet, but the system is still under scrutiny (R. Luque, priv. comm.). The general-purpose
(3:2 & 4:3) N-body simulations of Siegel and Fabrycky [29] indicate that the libration center of the
Laplace-like angle (4) could be ±18◦ off of 180◦.

3.3.2. The Global Resonant Chain of TOI-270

The global MMR of TOI-270 is the only one in Table 3 that is of mixed order [26], so the equations
of Section 3.3.1 are not valid. The local resonances are 5:3 and 2:1 for which the calculation of φ

produces equation (1), where planet names b, c, d naturally correspond to 1, 2, 3 radially outward,
respectively. Thus, we rewrite equation (1) with numerical subscripts, viz.

φ = 3λ1 − 7λ2 + 4λ3 , (5)
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and we proceed to decompose this phase angle into two parts, one of which is the Laplace angle φL,
viz.

φ = φL + 2(λ1 − 2λ2 + λ3) . (6)

The same phase angle φ is also found in the pure three-body first-order 3
4 :1: 4

3 MMR chain (not yet
observed, but shown to be librating about 180◦ in the 30 detailed N-body models of Siegel and
Fabrycky [29]).

From our point of view, we can only probe analytically the second term in equation (6) as follows.
Let

φ⋆ = 2λ1 − 4λ2 + 2λ3 , (7)

so that φ = φL + φ⋆ in equation (6). Then, we find that phase φ⋆ corresponds to a first-order resonant
pair [26] composed of the 3:2 & 2:1 local MMRs (equation (3) with r = 2, s = 1). In Appendix A,
we describe this pair in conjunction with another stable first-order resonant pair (5:4 & 4:3; φ =

2φ⋆) observed in Kepler-60 [57] for which extensive N-body simulations have been published (e.g.,
Refs. [13,29]).

The global MMR chain corresponding to equation (7) is 2:3:6 (or 1: 3
2 :3, to be compared to the

Laplace-like chain 1: 3
2 :2 in HD 110067; or 2

3 :1:2, specifically for systems with bb at n = 2). Then, we
find that integer decomposition of global MMRs holds true, just as it does for the resonant phase angle
of equation (6), viz.

φL + φ⋆ = φ ⇒ [1 :2 :4] + [2 :3 :6] = [3 :5 :10] . (8)

This interesting property indicates that the Laplace-like phase angles of equations (5) and (7) are
the ones to be investigated individually for oscillatory behavior by N-body simulations. Additional
results pertaining to the arithmetic properties of the global MMR in TOI-270 are deferred to Appendix B.

3.4. The Long-Gone Tidal Field of TOI-270

Long ago, migrating planets in TOI-270 must have undergone radial oscillations about local
minima of the global tidal potential [6,58] that they encountered, for as long as the collective mean
tidal field had remained active in the system. During subsequent evolution, the tidal field was
ultimately (and irrevocably) erased, presumably by the few-body gravitational analog of Landau
damping [1–3,7,59,60], when all survivors had settled in or near their respective MMR orbits [4,40];
then, angular momentum redistribution and radial orbital evolution ceased in that eventual tidal-free
environment.

The present-day arrangement of the planets illustrated in Figure 1(a) indicates that the longest
tidal-field wavelength λ that was not Jeans unstable [5,7] must have had a value such that the minimum
separation between planet orbits in the vicinity of the most massive planet presently is

2λ ≈ 15 mau , (9)

as highlighted in Figure 1(a) by vertical dotted lines. Indeed, planets b (ℓg) and d (oo) are separated
from the most massive planet c (bb) by 2λ and 4λ, respectively.

The value in equation (9) is corroborated by the few-body model of gravitational Landau damp-
ing [1] that predicts separations of nearest neighbors from the most massive planet c (bb at n = 2) of at
least

2λc = 4π hc = 14.3 mau , (10)

where hc is the radius of the Hill sphere of planet c at the pericenter of its orbit [61], viz.

hc = ac(1 − ec)

[
Mc

3(M⋆ + Mc)

]1/3
= 1.14 mau , (11)

as determined from the values listed in Table1.
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For comparison, hc = 0.171 Gm is comparable to the Hill radius of Mercury (0.175 Gm); whereas
the separation 2λc = 2.145 Gm is comparable to the major axis of Ganymede’s orbit (2.141 Gm) (for
which its own minimum separation is 2λG = 0.4 Gm in the Galilean LR [1]).

For future reference, the same result can be obtained from the simpler equation (e.g., Ref. [62])

hc = ac

(µc

3

)1/3
, (12)

for µc ≡ Mc/M⋆ ≪ 1 and ec ≪ 1. We use this equation in Paper II to analyze the planetary orbits of
HD 110067, Kepler-176, and Kepler-223.

4. Summary and Conclusions

Of the possible explanations for the appearance of a global non-Laplace 2:1 MMR in TOI-270
described in Section 3.1, some are open-ended in certain respects and cannot be ruled out entirely
with a high degree of confidence. We summarize them below, where we retain the item numbers from
Section 3.1.

(1) One idea that we investigated in depth in this work is that planet b may be orbiting a little
closer to the star (P = 2.830 d) than currently known (Pb = 3.360 d). That would produce a LR in the
system which would resolve the issue in a familiar way. On the other hand, period P is the m = 2
harmonic of the period Pc of the most massive planet, creating uncertainty in the interpretation of
the signal seen in the periodogram of Figure 2. It turned out that we could not justify the presence
of planet b at the 1:2 MMR based on the current TESS data (Figure 3). But the system is so close to
a LR that we cannot dismiss the remote possibility of the signal generated at the 1:2 MMR and then
somehow being shifted by half a day to the observed period Pb (see, e.g., Refs. [63,64]). An unabating
observation in the periodogram (Figure 2 inset) is that the minor peak corresponding to planet b is less
significant compared to some nearby peaks seen in the interval P ∈ [3, 4] d.

(4) An unseen distant planet (e.g., with P > 30 d [35]), more massive than the three known planets,
could resolve the issue by redefining the actual location of the principal 1:1 orbit, although one would
expect such a planet to have produced deep eclipses during transits. As a case in point, a hypothetical
planet at P = 34 d occupying the 1:1 MMR would produce a typical sequence of inner resonances (1:10,
1:6, 1:3)—not too different than the inner MMRs of HD 10180 c-i-d (1:9, 1:5, 1:3 [65]), or HD 20781 b-c-d
(1:16, 1:6, 1:3 [66]), or Kepler-20 b-e-c (1:9, 1:6, 1:3 [67]). However, there is no corroborating evidence in
the TESS data for such an outer planet out to an orbital period of at least P = 35 d.

(5) We would also not dismiss entirely the possibility that a non-LR 2:1 MMR adjacent to the
principal 1:1 MMR may yet be stabilized or permitted in some special cases, providing thus a staggering
exception to our empirical rule. This rule derives from 75 systems that we have analyzed so far and a
subset of 34 systems analyzed by Steffen [42]; and 8% of them hosting classical LRs already make up
an exception (Table 2). At any rate, this possibility has been weakened to a degree by the proof that in
another system, HD 110067, the unusual occupancy of the 2:1 orbit is due to just another Laplace-like
resonance (Section 3.3.1).

(6) A promising explanation for the stable 3
5 :1:2 resonant chain of TOI-270 is that we may be

dealing with yet another type of a Laplace-like resonance. We explored this idea in Section 3.3.2
and in Appendix B. The calculations produced two relevant phase angles, φ and φ̂ (see equations (5)
and (A7)), related via the classical Laplace phase φL by the equation φ̂ = φL + 2 φ. Potential librations
of these angles should be monitored in numerical simulations of the TOI-270 system. The important
question begging for an answer is which of the angles φ or φ̂ might reveal a librating phase, so that
we may determine with precision and rigor the nearest MMR (3:5 or 7:12) to the orbit of planet b (see
Appendix B).
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Appendix A. Even Multiples of the Angle λ1 − 2λ2 + λ3

The particular linear combination of mean longitudes

α0 ≡ λ1 − 2λ2 + λ3 , (A1)

that figures prominently in equation (6) does not correspond by itself to a resonant MMR pair—
comparing equation (A1) to the general form (3), we deduce that s = 0—and this is the reason that we
worked with

φ⋆ = 2α0 , (A2)

in Section 3.3.2 of the main text. On the other hand, the phase φ⋆ (equation (7)) does describe a
first-order MMR pair (3:2 and 2:1), which was found by and large to be circulating in the extensive
N-body survey of Siegel and Fabrycky [29]. Some exceptional models in the same survey [29] with
custom-made specialized initial conditions that produced librations are not given any weight in our
classification of the observed exoplanetary global MMRs (Paper II).

It turns out that this type-II MMR chain is closely related to an important basic type-II three-body
MMR (4:5, 1:1, 4:3) observed in Kepler-60 and studied in depth over the years [13–15,29,68]. The local
MMR pair (5:4 and 4:3) is of the first order according to the classification scheme of Celletti et al. [26].
The corresponding phase angle φ60 is derived from equation (3) for r = 4 and s = 3, viz.

φ60 = 4λ1 − 8λ2 + 4λ3

= 4α0
, (A3)

and equation (A2) then shows that
φ60 = 2φ⋆ . (A4)

Extensive N-body simulations of the Kepler-60 planetary system [13,14] showed that angle α0

librates in most models about 45◦ with an amplitude of ∼10◦. We see then that the actual librations of
the resonant phase of Kepler-60 occur about the mean value of φ60 = 180◦ (equation (A3); see also
Paper II) with amplitude 40◦.

On the other hand, the N-body simulations of Siegel and Fabrycky [29] found four different
libration centers of the (5:4 and 4:3) MMR pair, all near 180◦ (offset by ±5◦, ±14◦). The difference lies
in the initial dynamical properties of the orbiting bodies (their masses and semimajor axes) and the
prescriptions for tidal dissipation and migration timescales.

Appendix B. Rational Arithmetic of Global Laplace-like Resonances in TOI-270

The global resonant chains listed in Table 3 use fractions in order to also account for the radial
distribution of planet masses (effectively the location of the 1:1 orbit). In contrast, the MMR decom-
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position carried out in Section 3.3.2 (equation (8)) used integer values that did not weigh the masses
of the planets. Integer arithmetic of global MMRs is in line with their customary specification that
relies exclusively on orbital period ratios; and not on masses, since tidal forces are negligible between
relaxed planets fortified in/near MMRs against secular changes in their angular momenta and their
orbital semimajor axes ([4]; Section 3.4). Here, we describe the results of applying rational arithmetic
to the global MMR layout of TOI-270 ( 3

5 :1:2), while accounting for the most massive planet (bb; bottom
row in Table 2) residing in radial position n = 2.

Accounting for bb at n = 2 in TOI-270, then equation (8) produces a slightly different resonant
angle denoted by φ̂ (rather than φ), viz. φL + φ⋆ = φ̂, and a rational arithmetic of the form[ 1

2 : 1 : 2
]
+

[ 2
3 : 1 : 2

]
= 2

[ 7
12 : 1 : 2

]
, (A5)

in which the resonant chains have their 1:1 MMRs at n = 2. The 7:12 MMR in the new resonant chain[ 7
12 : 1 : 2

]
comes as a surprise ( 7

12 = 0.583 ). It is close to the 3:5 MMR and to the actual observed period
ratio that falls right in-between these two nearby MMRs (P1/P2 = 0.59357 from the values listed in
Table 1); thus, the alternative solution 7:12 cannot be categorically rejected in favor of the empirical 3:5
MMR listed in the last column of Table 1.

We determine the new phase φ̂ corresponding to the 5&1 mixed-order MMR 7
12 :1:2 by analyzing

the resonant angles of the local MMR pair 12:7 and 2:1. The commensurability relations relating the
mean longitudes are (Paper II)

θ1 = 12λ2 − 7λ1 − 5ϖ2

θ2 = 2λ3 − λ2 −ϖ2
, (A6)

where ϖ2 is the longitude of the pericenter of bb at n = 2. Eliminating ϖ2 between these equations, we
get

φ̂ = 7λ1 − 17λ2 + 10λ3

= φL + 2 φ ,
(A7)

where φ is given by equation (5) and φL ≡ λ1 − 3λ2 + 2λ3 is the classical Laplace phase [10].
Equation (A7) is not a statement of equivalence in regard to oscillatory motions of Keplerian

elements of planet orbits in TOI-270. In the event that one of the librations does not occur (of φ

or φ̂), then the above analysis will institute a new method of resolving ambiguities between nearly
overlapping high-order MMRs, such as 3:5 versus 7:12 for the innermost planet TOI-270 b.
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