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Abstract: Bone fractures are common injuries that require quick and accurate diagnosis to provide 

the right medical care. The “convolutional neural network” technique relies mostly on manual 

inspection, by radiologists and can be laborious and prone to error. The objective of this work was 

to increase the efficiency and accuracy of fracture identification by automating the examination of 

X-ray images using convolutional neural networks. A “convolutional neural network” model 

created to detect bone fractures in X-ray images was used in the present study. The model was 

trained and validated using an extensive dataset of X-ray images, which included both fractured 

and nonfractured bones. Multiple convolutional layers were used in the “convolutional neural 

network” architecture for feature extraction, and pooling and fully connected layers were added for 

classification. The main measures used to assess the model’s performance were sensitivity, 

specificity, and accuracy. In regard to identifying bone fractures, the “convolutional neural 

network”-based model outperformed the conventional technique. With significant gains in 

sensitivity and specificity, this approach achieved a high accuracy rate and decreased the frequency 

of false positives and false negatives. We used “convolutional neural network” tool in PyTorch for 

bone fracture detection and we outlined the important considerations that must be considered when 

attempting to achieve this goal Additionally, we contrasted every study with our baseline. Here our 

maximum accuracies were 99.05%, 98.60%, 99.45% and 99.74% for epochs 8, 9, 10 and 11, 

respectively. These findings highlight the model’s ability to improve the diagnostic efficiency and 

accuracy in clinical settings. Using “convolutional neural network” to identify bone fractures from 

X-ray images is a promising development in medical imaging. In the end, our method improves 

patient outcomes by ensuring faster and more reliable fracture diagnosis while also lessening the 

diagnostic burden on radiologists. Subsequent investigations will focus on incorporating this 

system into clinical procedures and investigating its utilization in real-time emergency situations. 

Since there was no medical intervention on human subjects in this investigation, trial registration 

regulations were not applied. 
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I. Introduction 

Bone fracture is a currently one of the most common injuries. It is a global public health issue. 

Every year more bone fractures occur in China, Bangladesh, India, Pakistan and other regions. 

Globally millions of people suffer from bone fracture every year. Only in the United States are 

millions of bone fractures found every year [1]. By employing CNNs for experimental bone fracture 

detection, medical imaging and machine learning research has advanced, and patient care may be 

enhanced by precise and effective fracture detection. A great responsibility for this lies with the 

doctors, who must evaluate tens of X-ray images a day. The majority of the technology used for initial 

diagnosis is X-ray technology, which has been used for more than a century and is still widely 

employed. Examining X-ray images can be difficult for physicians for three reasons: first, the images 

may obscure certain characteristics of the bone; second, the classification of fractures requires 

extensive experience; and third, physicians frequently respond to emergency cases and may be 
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fatigued. In fact, research indicates that radiologists perform worse toward the end of the workday 

than they did at the start in regard to fracture detection while interpreting musculoskeletal 

radiographs. Furthermore, radiographic interpretation frequently occurs in settings without access 

to trained peers. 

A precise classification of fractures among standard forms is critical for ensuring good prognosis 

and therapeutic efficacy. In this situation, a computer-aided diagnosis system that supports 

physicians could directly affect the way patients progress. We covered a number of topics in this 

work, ranging from fundamental strategies to the most important sophisticated fixes. Convolutional 

neural network operations, which include preprocessing, feature extraction, and classification steps, 

were the focus of early earlier efforts in the detection and classification of fractures. Bone fracture 

detection using CNN techniques has recently produced remarkable results. Through database 

searches and other sources, additional  records were found. Following a screening and exclusion 

process for all records, the eligibility of the full-text publications was evaluated. We chose records 

from these papers for analysis. Only a small number of them attempted to categorize the various 

forms of fractures, but the majority focused on distinguishing between bones that were broken and 

those that were not. We selected studies that, in our opinion, best demonstrated the advantages of a 

CNN detection technique for the development of a universal tool capable of categorizing all forms of 

fractures in the body’s bones.  

II. Related Work 

One of the earliest and most widely used diagnostic techniques in clinical medicine is X-ray, 

which can produce images of any bone, including the hand, wrist, hip, pelvis etc [1]. Fractures are a 

common bone disease that arise when a bone is unable to tolerate external forces such as direct blows. 

falls or twisting injuries [2]. Bone cracks known as fractures are described as medical conditions in 

which the bone's continuity of the bone is disrepute [2]. Finding fractures and treating them properly 

are seen as significant since an incorrect diagnosis frequently results in ineffective patient care, a rise 

in complaints, and costly legal action Bone fracture detection is a difficult task, particularly in the 

presence of sound. There are several differences between PECTS and conventional object detection 

including the following. 1. The scales of different bones vary greatly on X-ray images [3]. The human 

bone structure diagram shows various bone types, including the wrist, radius, skull, and so forth. 2. 

Different fracture types, such as traverse, open, simple, spiral, and comminuted fractures, have 

distinct textures and shapes. As a result, identifying bone fractures in various bone types is crucial 

[4].  

The majority of early research on bone fracture detection focused on employing computer 

graphics and machine learning to identify fractures in particular bone regions [5]. As previously 

mentioned, they extracted features from pelvic CT scans using wavelet transform, adaptive 

windowing, and boundary tracing. A registered active shape model was subsequently used to 

identify fractures. 

To identify fractures in X-ray images, Yu et al. [6] employed stacked random forests based on 

feature fusion. Multiple classifiers, including the Back Propagation Neural Network, K-Nearest 

Neighbor, Support Vector Machine, Max/Min Rule, and Product Rule, are fused to design as a 

combined classifier to detect fractures after edge and shape features are extracted from bone [7,8]. 

Among other things, bone fracture detection has made extensive use of mathematical morphology 

[9]. These techniques can identify whether an image is fractured based on the entire picture [3,5,9], 

but they are unable to identify the specific bone region that is broken. An entropy-based thresholding 

method was employed in earlier work to separate the surrounding flesh region from a bone region 

in X-ray images. Numerous individuals notice a break in a single human bone. The authors of Ref. 

[10] proposed an automated fracture detection system that relies on filtering algorithms to eliminate 

noise, edge detection techniques to identify edges, wavelet and curvelet transforms to extract 

features, and the construction of decision tree-style classification algorithms in hand bones using X-

ray images. An algorithm based on the grey level cooccurrence matrix (GLCM) was presented by 

Chai et al. [11] to identify femur fractures, if any were present. Additionally, in Reference [12], the 
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authors identified femur fractures by extracting the femur contour using a modified Canny edge 

detection algorithm, calculating the neck-shaft angle from the femur contour, and utilizing the neck-

shaft angle to construct classification algorithms. The authors of Ref. [12] preprocessed X-ray/CT 

images using techniques such as segmentation, edge detection, and feature extraction. They then 

used a variety of classifiers, including decision trees (DTs), neural networks (NNs), and meta-

classifiers, to classify fractured and nonfractured images, with an excellent accuracy of 85% on 40 

images. To facilitate easy visualization of the fracture [5] combined an entropy-based segmentation 

method with an adaptive thresholding-based contour tracing technique to localize the line-of-break, 

identify its orientation, and evaluate the degree of bone damage surrounding a long-bone digital X-

ray image. A fusion classification technique was proposed by Mahendran and Baboo [13] for the 

automatic detection of fractures in the tibia bone, one of the long bones of the leg. Deep convolutional 

networks were used in another study [1] to automatically detect posterior element fractures in the 

spine using CT scans.  

These techniques can only identify fractures in medical images of a single bone [1,5,11–13]. 

Fractures cannot be identified in images of other types of bones in the human body to aid medical 

professionals in identifying fractures, but we have used different bone X-ray images from the human 

body. They used a traditional method of using genetic algorithms [13] and Canny edge detectors [12] 

to segment pictures for medical purposes. Additionally, they employed 2D and 3D CNNs for MR 

structural image segmentation via automatic proximal femur segmentation. These techniques, 

however, were unable to distinguish between various bone types.  

III. Methods 

Convolutional neural networks (CNNs) are built using PyTorch and require a number of steps 

to be completed, including system architecture and data preparation, model architecture definition, 

training, and evaluation. We take the following general approach. This is our basic outline, and we 

need to adapt it to our specific requirements and dataset characteristics. Experimentation and 

iteration are key to finding the best model for the task. 

A. System Architecture 

A variety of bone X-ray images were obtained, including examples of both healthy and broken 

bones. The photos were preprocessed to normalize the pixel values, adjust the contrast, and 

standardize the size. The training, validation, and test sets were constructed from the dataset. This 

guarantees that the model learns from a single set of data and makes good generalizations to new 

data. Utilizing the training dataset, the CNN model is trained. This entails feeding the network 

images, optimizing the model with an appropriate loss function, and modifying the model’s weights 

through backpropagation. 

To ensure that the trained model did not overfit the training set, we validated it using the 

validation set. As necessary, adjust the hyperparameters. The model’s generalization performance  

was analyzed  using the test set. Postprocessing techniques，such as thresholding, are used to 

enhance accuracy and refine the model’s output. This approach could be implemented as part of a 

web application, in a hospital setting, or integrated with a picture archiving and communication 

system [12,13]. 

B. Model Architecture 

The sizes of the input layer and previously processed images should match. To capture 

hierarchical features in images, multiple convolutional layers are stacked. To find distinct patterns, 

filters of different sizes were used. To enable the model to learn complex relationships, nonlinearity 

is introduced after each convolutional layer using activation functions such as rectified linear unit. 
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Figure 1. Model Architecture. 

To decrease the computational load and down sample the spatial dimensions, pooling layers 

(such as max pooling) are added. The convolutional layer output should be flattened into a vector so 

that it can be fed into the dense, fully connected layers. One or more dense layers are added to the 

model for classification. These layers process the extracted features and determine whether a fracture 

is present. The output layer should have the same number of neurons as the other classes (normal or 

fractured). For binary classification, a SoftMax activation function is used. A suitable loss function 

such as binary cross-entropy loss is selected for binary classification tasks [16,17]. The robustness and 

generalizability of a convolutional neural network (CNN) model can be evaluated by comparing it to 

a more difficult dataset when evaluating a bone fracture detection model. Suitable metrics such as 

the F1-Score, specificity, accuracy, precision, recall or sensitivity, area under the receiver operating 

characteristic curve (AUC-ROC), are chosen for assessment [18]. 

The selected performance metrics were determined,  and the trained model was assessed using 

the test set. Classification reports and confusion matrices are created to learn more about the model’s 

performance for various fracture types. Display ROC curves, precision-recall curves, and examples 

of correctly and incorrectly classified images using visualization tools.  

If the model’s performance does not reach par, implement regularization strategies such as 

dropout or L1/L2 regularization, modify hyperparameters, or fine tune the architecture [19]. Examine 

how well the model performs on the difficult dataset in comparison to a standard dataset. This 

approach enables one to determine whether the accuracy of the model decreases noticeably in more 

complicated cases [20]. 

IV. Experiment 

This experiment aimed to assess how well a convolutional neural network (CNN) performs in 

detecting bone fractures using various configurations of hyperparameters, particularly epochs and 

learning rates. We used a specific MURA dataset from different sources. We obtained 9193 images 

for training and 8907 images for testing. There are multiple phases involved in building a 

convolutional neural network (CNN) with PyTorch for bone fracture diagnosis. We have modified 

this term in accordance with the dataset and needs. Here we assume that the dataset of bone X-ray 

images is arranged into folders for each class (fracture or no fracture):  

We imported our necessary libraries. The CNN model was defined as necessary. We change the 

filter sizes, fully connected layer sizes, and number of channels and input the dimensions. In addition, 

depending on the intricacy of the dataset, batch normalization or dropout layers are incorporated for 

regularization. We then organized and split the dataset into training and testing sets. We used an 

image folder for image classification tasks and put the dataset into folders with distinct „fracture” 

and „no fracture” subfolders for each class. We used transforms to apply data transformations to 

resize, normalize and enhance the images then we used compose. We ensure that, the path to the 

dataset is substituted for „/path/to/dataset”. Finally, during the training and testing stages, the CNN 

model can loop through batches of data using these data loaders. This is our fundamental training 
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cycle to include more advanced features such as learning rate scheduling, early stopping, or model 

checkpointing, depending on my particular use case. The learning rate and number of epochs are two 

examples of hyperparameters that can be adjusted based on how well the model performs and 

converges on training and test sets. 

  

Figure 2. Fracture Detection/ Fracture Image. 

  

Figure 3. No Fracture Detection/ Non-Fracture Images. 

We analyzed our model with fresh data after training, and adjusted the hyperparameters as 

necessary. This simple template needs to modified depending on the requirements, model 

architecture, and particular dataset to further enhance the performance, of the algorithm, taking into 

account learning rate scheduling, data augmentation, and other methods. The CNN architecture is 

depends on the unique requirements and characteristics of the dataset, the architecture, 

hyperparameters, and data preprocessing steps need to be modified. To monitor the model’s 

performance during training and avoid overfitting, we should also divide the data into training and 

validation sets. The CNN model’s ability to detect bone fractures can be largely impacted by the 

selection of hyperparameters, especially learning rates and epoch counts. To find the hyperparameter 

combinations that produce the best results in terms of accuracy, generalization, and convergence, 

experimentation is necessary. 
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CNN from scratch in PyTorch training. Here the CNN network uses different layers. Training 

the CNN with the dataset and saving the best model based on testing accuracy. We arranged the 

datasets, and the data sets contain 9193 training and 8907 test images of size 150*150 distributed into 

two categories: fracture images and nonfracture images. For the first step we imported the all-

necessary libraries. Then they are used to transform and process the data. First all the images were 

resized to 150 heights and 150 widths. Then I used the transform to tensor, which changed the picture 

of each color channel from 0-255 to 0-1. This process change the data type NumPy to tensors. Then 

“transform. Normalized” changes the range from 0-1 to [-1,1]. Here the data loader helps readers 

read the data and gates the model for training in batches. Additionally, the batch size should be 

adjusted according to the GPU or CPU memory. A higher batch size cannot lead to memory overload 

which can load to an error. Paths for training and testing directories both have holders for the 

categories and need to classified with images inside them. In the next steps all the classes are fetched.  

Here the CNN network class extends the “nn.Module”. The class specifies the entire layers 

network. Before the start of the network, the shape of the image batch is (256,3,150,150), the height is 

150, and the widths of the image is 150. Therefore, the formula for the height and width of the CNN 

output is ((w-f+2p)/s) +1. Here the training accuracy was 0.995, and the test Accuracy was 0.994.  

V. Results  

Table 1. various results for training AND testing statistics. 

Epoch Train Loss Train Accuracy Test Accuracy 

0 3.3721 0.62841292 0.74952284 

1 0.4713 0.81388012 0.90917256 

2 0.4813 0.830523224 0.813292915 

3 0.4554 0.849559447 0.948018412 

4 0.1532 0.94528445 0.97799483 

5 0.0916 0.973022952 0.981250701 

6 0.0580 0.984009572 0.991018300 

7 0.0573 0.98455346 0.99404962 

8 0.0409 0.990536277 0.977658021 

9 0.0484 0.98607636 0.99056921 

10 0.0263 0.99456107 0.99607050 

11 0.0188 0.99749809 0.99517233 

12 0.0176 0.99738931 0.99640732 

13 0.0155 0.99793321 0.99793321 

Various hyperparameters can influence the learning process and, ultimately, the loss versus 

epoch curve when training a convolutional neural network (CNN) from scratch. The best 

hyperparameters can vary depending on the dataset and problem at hand. Experimentation and 

hyperparameter tuning are frequently required to find the optimal set of hyperparameters for a CNN. 

It is critical to monitor the loss versus epoch curve and validation performance during this process to 

ensure that the model converges effectively and avoids overfitting. 
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Figure 4. Results for 8 Epochs. 

 
 

(a) (b) 

Figure 5. Results for 14 Epochs. 

VI. Discussion 

When the number of epochs changes from a small to a high number, the increase in accuracy 

also decreases the loss. Higher learning rates may lead to faster convergence but risk overshooting 

the optimal weights. This can result in a loss curve that exhibits oscillations or fails to converge. Lower 

learning rates are more stable but may require longer training times for convergence. The loss curve 

tends to decrease gradually. A more irregular loss curve and noisy updates can result from a smaller 

batch size. However, this approach can aid in the model’s escape from local minima. A smoother loss 

curve and more stable gradients can be obtained with a larger batch size. However, if the batch size 

is too large, more memory might be needed, possibly leading to convergence problems. Insufficient 

epochs of training could lead to an underfit model with an early plateauing loss curve. Overfitting, 

in which the loss in the validation set begins to increase while the training loss continues to decrease, 

can result from training for an excessive number of epochs. The loss curve’s shape can be affected by 

the use of learning rate schedules, such as cyclic learning rates or learning rate decay. During training, 

these schedules modify the learning rate. 

VII. Compared with the Other Results 

A comparison of ‘Table 2’ with ‘Veerabhadra Rao Marellapudi’s paper name- ‘Building and 

Training a Custom Convolutional Neural Network with PyTorch’ yielded maximum accuracies of 

61.18%, 61.88%, 62.05% and 62.75% for epochs 8, 9, 10, 11, respectively. However, in our study, the 

maximum accuracies were 99.05%, 98.60%, 99.45% and 99.74% for epochs 8, 9, 10, 11 respectively. 

Additionally, at the same epochs the training loss was 0.8948, 0.8859, 0.8875 and 0.8824 and at the 

same epochs our training loss was 0.0409, 0.0484, 0.0263 and 0.0188- [14]. 

Table 2. Various results for trainING statistics. 

Epoch Train Loss Train Accuracy 
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Rao’s result Our result Rao’s result Our result 

1 1.0686 0.4713 55.53% 81.38% 

2 1.0481 0.4813 52.83% 83.05% 

3 0.9955 0.4554 55.18% 84.95% 

4 0.9264 0.1532 59.97% 94.52% 

5 0.9029 0.0916 61.36% 97.30% 

6 0.9105 0.0580 60.84% 98.40% 

7 0.8952 0.0573 61.01% 98.45% 

8 0.8948 0.0409 61.18% 99.05% 

9 0.8859 0.0484 61.88% 98.60% 

10 0.8875 0.0263 62.05% 99.45% 

11 0.8824 0.0188 62.75% 99.74% 

A comparison of ‘Table 3’ with the paper name- Bone Fracture Detection in X-ray Images using 

a Convolutional Network yielded maximum accuracies of 87.20%, 86.82%, 88.00% and 89.90% for 

epochs 10, 20, 20, 20 respectively. However, in our study, the maximum accuracies were 99.05%, 

98.60%, 99.45%, and 99.74% for epochs 8, 9, 10, 11 respectively [15]. 

Table 3. Performance analysis of THE trained models. 

Epoch Batch size Accuracy (%) AUC Specificity 

10 

20 

20 

20 

20 

20 

10 

32 

32 

32 

32 

32 

87.20% 

76.20% 

88.00% 

89.90% 

89.00% 

86.82% 

0.8244 

0.6589 

0.8286 

0.8088 

0.8417 

0.6819 

87.20% 

76.20% 

88.00% 

89.90% 

89.00% 

86.82% 

Figures 6 and 7 show the changes in accuracy and validation accuracy while training the model. 

The accuracy of the training data was 95.0%, and the accuracy of the test data was 69.4%. was 96.6%, 

89.7%, and 98.2%, respectively. For the test data, the precision, recall, and specificity were 60.0%, 

60.4%, and 75.0%, respectively [16]. However, in our study, the maximum accuracy 99.05%, 98.60%, 

99.45%, and 99.74%, and the maximum accuracies was 0.996, 0.995, 0.996, and 0.997 for epochs 8, 9, 

10, and 11respectively. A comparison of the above results with those of others related studies 

revealed that, in our work, the test and training accuracies were better than the minimum loss. We 

have taken different epochs, and models and illustrated more results to increase the learning rate and 

accuracy. 

  

Figure 6. Accuracy. The accuracy of the learning data was described as ‘accuracy’ and that of the test 

data was described as ‘Val accuracy’. 
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Figure 7. A Loss. The loss in the learning data was described as ‘loss’ and, that in the test data was 

described as ‘Val loss’. 

VIII. Description of Shortcomings and Improvements 

A significant drawback of a convolutional neural network (CNN) model for bone fracture 

detection from X-ray images is its limited generalization capacity. However CNN models may find 

it difficult to reliably distinguish fractures, such as rare fracture patterns, different imaging 

characteristics, or particular patient demographics, in X-ray images from cases that have never been 

previously observed. This is because the model is not able to learn and generalize well on diverse 

and uncommon scenarios that were not comprehensively represented in the training data. A 

representative and diverse training dataset covering a broad range of fracture types, patient 

demographics, and imaging characteristics is essential for addressing the generalization problem. 

Obtaining a large number of samples from a comprehensive dataset can aid in the model’s learning 

of resilient features and patterns. [21] 

The CNN model can acquire low-level features more successfully if it is pretrained on a sizable 

dataset from a related domain, such as generic X-ray images or medical images. The particular dataset 

was used to fine-tune the pretrained model on the bone fracture detection task. Through transfer 

learning, the model’s performance can be enhanced by utilizing information from larger datasets and 

tailoring it to the particular task at hand [23]. To prevent bias toward the majority class, the dataset 

was balanced across various fracture types. Reducing class imbalance can improve the model’s ability 

to identify uncommon fracture patterns [24]. To integrate several trained CNN models, ensemble 

techniques such as model averaging or bagging are used. By utilizing the advantages of several 

individual models and mitigating the effects of their shortcomings, ensemble learning can enhance 

the performance of the model [23]. To avoid overfitting and improve the model’s capacity to 

generalize well to unknown data, regularization techniques such as weight decay or dropout are 

incorporated [25]. Medical specialist input the data, and the model’s performance on fresh data was 

continuously assessed. The required iterative improvements are achieved by utilizing this feedback 

to pinpoint and resolve model limitations [24]. 

IX. Conclusion 

Given the labelled training and validation images, the problem statement aimed to investigate 

the classification accuracy of various supervised and unsupervised models for different Heri X-ray 

images: normative vs. anomalous (anomalous being humeri that are broken, fractured, or have 

implants). To feed the normalized histograms of each image into the supervised learning algorithms, 

we preprocessed the images. In contrast to our initial expectation, “convolutional neural network” 

would perform best.  

We used a variety of datasets for fracture detection and classification in this paper. Fracture 

detection techniques can be used to automate the labor-intensive and time-consuming process of 

expert radiologists diagnosing and interpreting radiographs. Many of the researchers cited state that 

the biggest obstacle to creating a high-performance classification algorithm is the lack of labeled 

training data. Currently, no industry-standard model exists that can be applied to the available data. 
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We have made an effort to demonstrate how deep learning is used in medical imaging and how a 

radiologist can use it to accurately diagnose a patient. Fully implementing deep learning in radiology 

is still difficult since employees are afraid of losing their jobs. Rather than attempting to take the place 

of the radiologist, our goal is simply to support them in their work.  
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