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Abstract: Pursuing sustainable energy solutions has prompted researchers to focus on optimizing energy

extraction from renewable sources. Control laws that optimize energy extraction require accurate modeling, often

resulting in time-varying, nonlinear differential equations. An energy-maximizing optimal control law is derived

for time-varying, nonlinear, second-order, energy harvesting systems. We demonstrate that sustaining periodic

motion under this control law when subjected to periodic disturbances necessitates identifying appropriate initial

conditions, inducing the system to follow a limit cycle. The general optimal solution is applied to two point

absorber wave energy converter models: a linear model where the analytical derivation of initial conditions

suffices and a nonlinear model demanding a numerical approach. A stable limit cycle is obtained for the latter

when the initial conditions lie within an ellipse centered at the origin of the phase plane. This work advances

energy-maximizing optimal control solutions for nonautonomous nonlinear systems with application to point

absorbers. The results also shed light on the significance of initial conditions in achieving physically realizable

periodic motion for periodic energy harvesting systems.

Keywords: optimization; singular; energy maximization; limit cycles; time-varying; nonautonomous; nonlinear;

optimal control; energy harvesting systems; wave energy converter

1. Introduction

Optimal control theory provides a powerful framework for determining a dynamic system’s
control law that extremizes an objective function [1]. It has been applied in many fields, including
engineering, economics, and biology, to name a few. This study focuses on its application to energy
maximization for a general class of second-order, nonlinear, time-varying dynamic systems.

A common yet challenging class of optimal control problems are the Linear Optimal Problems
(LOPs), also known as singular problems. They occur when the inputs appear linearly in the system’s
state equation and cost function, even though the state equations may be nonlinear in the states.
This means that the control law cannot be formed directly by applying the stationary condition of
optimality [2]. Several researchers have investigated the existence and solution of singular problems in
optimal control [3–7]. Scardina [8] investigated the necessary conditions for optimality for singular
problems using Pontryagin’s Minimum Principle (PMP). He exploited the fact that the value of the
Hamiltonian, the central quantity in PMP that combines the system’s state, control inputs, and co-state
variables, should be constant and reach the absolute minimum for an optimal control function while
satisfying the system’s dynamics, co-state equations and any induced boundary conditions [6,7] to
develop general solutions to singular optimal control problems.

Kelly et al. and Robbins [9–11] further explored the optimality conditions and introduced the
generalized Legendre-Clebsch condition. It provides additional requirements for optimality, such as
when the Hamiltonian is linear in the control input which often leads to a singularity. The generalized
Legendre-Clebsch condition has been extensively studied in the context of optimal control, and
its application has provided valuable insights into the existence and properties of optimal control
solutions [11,12].
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Creating an optimal solution for a nonlinear, nonautonomous system often requires finding both
the control law and initial conditions such that the system states stay on the optimal path [13,14].
This is the approach taken in this paper. Limit cycles represent bounded periodic motion in a system,
and their establishment is crucial for achieving sustained and efficient energy absorption for a point
absorber wave energy converter subjected to periodic waves [15]. Due to the complexity of finding an
energy-maximizing path of a nonlinear, nonautonomous system, sometimes it is acceptable to linearize
the system first [16]. In contrast, the approach below exploits the model’s nonlinear, time-varying
nature and applies to a wide range of dynamic systems.

In recent years, optimal control has gained significant attention in energy extraction applications,
including designing and controlling wave energy converters (WECs). Wave energy converters are
devices that transform water wave energy into valuable forms of energy, such as electricity, through a
Power Take-Off system (PTO). The authors in [17] present a review and classification of wave energy
converter technologies. This paper focuses on point absorber WECs, which are most commonly
modeled using a linear approach based on Cummins equation [18] and are accurate for small motion
about an equilibrium. However, energy capture can be increased for large motions where the model
contains nonnegligible, nonlinear terms [19]. For heaving point absorbers, an important nonlinearity
is the Froude-Krylov (FK) force [20] found by integrating the incident wave pressure over the buoy’s
wetted surface area generating both buoyancy and hydrodynamic expressions.

In the pursuit of maximizing the energy output of Wave Energy Converters (WECs), diverse
methodologies have been explored. It is widely acknowledged that the shape of a WEC plays a
pivotal role in its dynamic response and, consequently, its energy harvesting potential. Therefore,
various approaches have incorporated strategies for shape optimization, to increase energy extraction
from ocean waves [21–23]. In parallel, strategies have focused on optimizing the geometry of WEC
arrays [24]. Moreover, a WEC’s performance is highly dependent on the control law used. Thus,
significant attention has been directed toward control system development. This domain has witnessed
the proposal of diverse control strategies, including sliding mode control [25], numerical model
predictive controls [26,27], and latching control techniques [28,29], each offering unique avenues for
improving energy conversion efficiency.

Optimal strategies are often proposed with a comprehensive review by Ringwood et al. [30,31]. A
well-studied energy-optimal strategy for point absorbers, whose dynamic response can be accurately
modeled by a linear differential equation, is called complex conjugate control (CCC) [32]. Its origins
date to the 1840s with Moritz von Jacobi’s maximum power transfer law for resistive circuits where the
load and source resistance should be equal. This was later expanded to impedance matching, where
the load should be equal to the circuit’s Thevinen equivalent source impedance for maximum power
transfer [33]. Impedance matching is also used in many engineering fields, including the vibration
community, to remove energy from vibrating structures [34,35]. This control strategy results in optimal
energy extraction; however, it exaggerates the motion of the device, and it is restricted to linear WEC
models. It should be noted that the resulting large motions are inconsistent with the model’s small
motion assumption [20]. Therefore, this study develops an energy-maximizing control strategy for
nonlinear, nonautonomous second-order periodic systems that applies to nonlinear WEC models as
derived in [36].

Establishing limit cycles in WECs ensures the motion remains periodic and bounded, facilitating
efficient energy conversion. The derivation of optimal control laws that lead to limit cycles has been
investigated in different contexts. Wilson et al. [37] derived feedback linearizing optimal control
law for nonlinear WECs, resulting in closed-loop limit cycles. In [38], an optimal control law was
obtained by assuming a linear model for WECs exposed to regular waves, where they obtained an
explicit expression for the optimal control force maximizing the absorbed energy. The control law
was shown to be equivalent to the CCC in this specific linear case. However, they didn’t explore limit
cycles to determine the optimal initial condition but instead relied on a switching function to keep the
motion bounded.
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This article builds upon the existing literature by presenting a general optimal control law for
energy maximization in second-order, time-varying, nonlinear periodic dynamic systems. It extends
the analysis of singular control problems and explores the existence of limit cycles to find the optimal
initial conditions. The approach is applied using linear and nonlinear models motivated by recent
WEC applications.

The remainder of the paper is organized as follows. Section 2 shows the derivation of the general
optimal control law, while Section 3 applies the control law to both a linear and nonlinear WEC point
absorber model. Section 4 provides some conclusions and ideas for further study.

2. General Optimal Control Law

After introducing the form of the second-order dynamic system, the optimal control law is derived,
including examining the second-order optimality conditions.

2.1. Control Law Derivation

We consider the general, second-order, time-varying differential equation

Mζ̈ = Fe(ζ, ζ̇, t)− Fc (1)

where (1) is often used to model energy harvesting systems. M is the system’s total mass, ζ is position,
and Fe is the net external force acting on the system which could be either linear or nonlinear depending
on the system explored. Fe is exclusive of the externally applied control force, u = Fc.

In the remainder, we will develop a control law for u that maximizes energy extraction. For the
WEC examples considered later, Fe contains time-varying, measurable disturbances due to the waves
exploited to extract energy.

A state variable form of (1), ˙⃗x = f⃗ (x⃗, Fe(x⃗), u), is shown below

ẋ1 = x2

ẋ2 =
Fe(x⃗)− u

M
ẋ3 = 1

(2)

where the states are defined as x1 = ζ, x2 = ζ̇ and x3 = t. Time is introduced as a state to manage the
nonautonomous nature of (1). It is a classical technique used in control theory to use the mathematical
tools developed for autonomous systems to analyze and solve nonautonomous systems [13].

Our optimal problem will be framed in the context of a free end-time problem. For a free end-time
problem, the initial state x(to) is given, but the final time t f is not fixed.

The energy E is the integral of power

E =
∫ t f

to
u x2 dt (3)

In (3) we neglect any dissipating electric power terms, concentrating instead on the mechanical energy.
This approach is deliberate, as our primary focus is on the mechanical aspects of the system rather
than the power electronics. Thus our objective function is framed to maximize the mechanical energy
extraction, or conversely, minimize its negative as shown below:
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min
u∈[to ,t f ]

: − E(x2, u)

˙⃗x(t) = f⃗ (x⃗, Fe(x⃗), u)

x(to) = xo

where

−E(x2, u) = −
∫ t f

to
ux2dt =

∫ t f

to
ϕ(x2, u)dt (4)

and ϕ(x2, u) = −ux2.
The Hamiltonian is [1,13]

H(x⃗, λ⃗, Fe(x⃗), u) = ϕ(x2, u) + λ⃗T f⃗ (x⃗, Fe(x⃗), u) (5)

where λ⃗T = [λ1 λ2 λ3] is the adjoint vector also known as co-states.
Substituting (2) and our definition for ϕ(x2, u) into (5) gives the specific form of the Hamiltonian.

H(x⃗, λ⃗, Fe(x⃗), u) = −ux2 + λ1x2 +
λ2

M
(Fe(x⃗)− u) + λ3 (6)

The optimal control, u∗, and the resulting optimal trajectory in both states and co-states must
certain optimality conditions.

∂λ H(x⃗, λ⃗, Fe(x⃗), u) = ˙⃗x

∂x H(x⃗, λ⃗, Fe(x⃗), u) = − ˙⃗λ

∂u H(x⃗, λ⃗, Fe(x⃗), u) = 0

(7)

The three equations obtained from ∂λH(x⃗, λ⃗, Fe(x⃗), u) = ˙⃗x of (7) are a restatement of the system state
equations of (2) and the co-state differential equations, obtained from ∂x H(x⃗, λ⃗, Fe(x⃗), u) = − ˙⃗λ of (7)
are known as Euler-Lagrange equations. The expansion of ∂x H(x⃗, λ⃗, Fe(x⃗), u) = − ˙⃗λ yields

λ̇1 = −λ2

M
∂x1 Fe(x⃗)

λ̇2 = u − λ1 −
λ2

M
∂x2 Fe(x⃗)

λ̇3 = −λ2

M
∂x3 Fe(x⃗)

(8)

The stationary condition ∂u H(x⃗, λ⃗, Fe(x⃗), u) = 0 of (7) is given as

−x2 −
λ2

M
= 0 (9)

One more condition is necessary since a free final time problem is considered. This condition is
known as the transversality condition which provide additional boundary conditions at the terminal
time t f .

H(x⃗ f , λ⃗ f , Fe(x⃗), u∗) = 0 (10)

Since H is linear in u, (9) does not directly express an optimal u it is called a singular problem
which could be challenging to solve analytically. Fortunately, our equations could mathematically be
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manipulated to derive a closed-form solution for the control force u in terms of the states x⃗ and Fe(x⃗),
as shown in the remainder of this section.

The stationary condition of (9) relates x2 and λ2

λ2 = −Mx2 (11)

which is differentiated and combined with λ̇2 of (8) to obtain:

Mẋ2 = −u + λ1 +
λ2

M
∂x2 Fe(x⃗) (12)

Substituting ẋ2 of (2) and (11) into (12) and simplifying, we obtain the algebraic equation for λ1.

λ1 = Fe(x⃗) + x2∂x2 Fe(x⃗) (13)

After obtaining the algebraic expressions of the first two co-states, we can obtain the algebraic
expression of the third co-state λ3. Although λ3 is not used explicitly in the optimal control law,
it is important to obtain all the co-state expressions to prove optimality later by showing that they
are satisfied when applying the assumed optimal u. The value of the Hamiltonian of the optimal
control function is constant across time and has the absolute minimum [8]. This could be further
seen mathematically by taking the derivative of the Hamiltonian with respect to time. Since we have
transformed our nonautonomous system to an autonomous system, time is now treated as a state [13].

dH
dt

= ∂x H∂tx + ∂λH∂tλ + ∂u H∂tu (14)

Substituting (7) in (14) yields to dH
dt = 0. Thus, let the Hamiltonian of (6) equal an arbitrary

constant Ho as shown below

H(x⃗, λ⃗, Fe(x⃗), u∗) = Ho (15)

Substituting the algebraic equations of the two other co-states of (11) and (13) into (15), we get (16).

x2
2∂x2 Fe(x⃗) + λ3 = Ho. (16)

If u∗ is the optimal control and x⃗ is the vector of corresponding optimal states, then there exists a
co-state such that the Hamiltonian H = 0 [7]. Moreover, this satisfies our transversality condition
of (10). Thus, imposing Ho = 0 , yields the algebraic expression of λ3 as follows:

λ3 = −x2
2∂x2 Fe(x⃗) (17)

The algebraic expressions of the first two co-states can now be combined with (2) and (8) to find
an algebraic equation for u∗, which is the optimal control force. Differentiating (13) with respect to
time (x3), we obtain:

λ̇1 =ẋ1 ∂x1 Fe(x⃗) + 2ẋ2 ∂x2 Fe(x⃗)

+ ẋ3 ∂x3 Fe(x⃗) + x2(ẋ1∂x1 ∂x2 Fe(x⃗)

+ẋ2∂x2 ∂x2 Fe(x⃗) + ẋ3∂x3 ∂x2 Fe(x⃗))

(18)

Substituting λ̇1 of (8) and ⃗̇x of (2) in (18) and simplifying, the optimal control force becomes:

u∗ = Fe(x⃗) + M

(
x2

2∂x1 ∂x2 Fe(x⃗) + x2∂x3 ∂x2 Fe(x⃗) + ∂x3 Fe(x⃗)
2∂x2 Fe(x⃗) + x2∂2

x2
Fe(x⃗)

)
(19)
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which can also be written in terms of the state definitions as:

F∗
c = Fe(ζ, ζ̇, t) + M

 ζ̇2∂ζ ∂ζ̇ Fe(ζ, ζ̇, t) + ζ̇∂t∂ζ̇ Fe(ζ, ζ̇, t) + ∂tFe(ζ, ζ̇, t)

2∂ζ̇ Fe(ζ, ζ̇, t) + ζ̇∂2
ζ̇
Fe(ζ, ζ̇, t)

 (20)

Interestingly, the control law of (20) still applies for varying mass systems. Consider a system of a
varying mass M(ζ, ζ̇, t) such that its governing equation is:

Mζ̈ +
dM
dt

ζ̇ = Fe(ζ, ζ̇, t)− u (21)

Writing (21) in the form of (1), we get
ζ̈ = Fm(ζ, ζ̇, t) (22)

where

Fm =
Fe − dM

dt ζ̇

M
(23)

Applying the control law of (20) such that M = 1 and Fe = Fm, we obtain the optimal control law
of a varying mass system as follows:

F∗
c = Fm(ζ, ζ̇, t) +

ζ̇2∂ζ∂ζ̇ Fm(ζ, ζ̇, t) + ζ̇∂t∂ζ̇ Fm(ζ, ζ̇, t) + ∂tFm(ζ, ζ̇, t)

2∂ζ̇ Fm(ζ, ζ̇, t) + ζ̇∂2
ζ̇
Fm(ζ, ζ̇, t)

(24)

which has an identical form to (20).

2.2. Second Order Optimality Condition

In addition to satisfying the first-order Euler-Lagrange equations of (7), Kelly et al. and Robbins [9–
11] showed the existence of another necessary condition known as the generalized Legendre-Clebsch
condition when the optimal solution satisfies (25).

(−1)k∂u

[
d2k

dt2k ∂uH(x⃗, λ⃗, u)

]
≥ 0, k = 1, 2, 3 . . . (25)

where k denotes the number of equations used for multiple control inputs. For our single input case,
k = 1. Writing t in its state form, x3, (25) can be simplified to (26).

∂u

[
d2

dx32 ∂uH(x⃗, λ⃗, u)
]
≤ 0 (26)

Applying the test of (26) to the expression of (9) and doing the necessary substitutions and
simplifications, yields:

∂u

[
d2

dt2 ∂u H
]
=

2∂ζ̇ Fe(x⃗) + ζ̇∂2
ζ̇
Fe(x⃗)

M2 (27)

According to (27), the Legendre-Clebsch condition applies when 2∂ζ̇ Fe(ζ, ζ̇, t) + ζ̇∂2
ζ̇
Fe(ζ, ζ̇, t) ≤ 0. The

sign of this term depends on the presence of ζ̇ in Fe(ζ, ζ̇, t) as well as its value and thus on the specifics
of the application. For some optimal control problems, the Legendre-Clebsch condition is not satisfied
for fixed time intervals. The control law may still be optimal over regions where it applies. Modifying
the initial conditions can induce distinct motion patterns within the system, potentially guiding it
toward a bounded optimal trajectory. This condition will be explored in detail for the control law
derived in Section 3 for point absorber wave energy converters.
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3. Application to Point Absorber Wave Energy Converters (WEC)

The control law of (24) is applied to two, time-varying, WEC model cases, one linear and the
other nonlinear. Moreover, our solution is assumed periodic since a periodic input disturbance is
considered [39], the waves, thus our boundary conditions will be written as follows:

x(to) = xo

x(t f ) = x(to + nT) (28)

where xo is to be determined and n is the number of periods.
For the linear case, (24) reduces to a well-known optimal solution along with initial condition

requirements. The nonlinear case is more interesting, resulting in a nonlinear, time-varying control law.
Initial condition regions that produce the required stable limit cycle motion are also explored. Since
the system is time-varying, Poincare maps are used to ensure the motion is quasi-periodic.

3.1. Dynamic Model

Point absorber WECs exhibiting small motions about an equilibrium are often modeled using
Cummins equation shown in (29), for the heave-only case [18]

Mζ̈ +
∫ t

−∞
hr(t − τ)ζ̇(τ)dτ + kζ = f f (29)

where ζ is the buoy displacement relative to its equilibrium, and the mass M includes physical and
added mass components, M = m + ma. The added mass, ma, is due to the water displaced by the
oscillating buoy. The convolution term is the radiation damping, where hr is the radiation impulse
response function. The linear buoyancy force coefficient is denoted as k, and f f contains all additional
external forces acting on the buoy, such as the wave excitation and PTO forces. For regular waves, the
convolution term becomes a single, constant coefficient b, and a special case of Cummin’s equation is
given in (30).

Mζ̈ + bζ̇ + kζ = f f (30)

Next, we will generalize (30) to include nonlinear hydrodynamic terms while also showing the
PTO force, u, explicitly

Mζ̈ + bζ̇ = Fh(ζ, t)− Fc (31)

where Fh(ζ, t) can be any continuous nonlinear, time-varying function, for example, due to nonlinear
Froude-Krylov force expressions for non-cylindrical buoys undergoing large motions [40]. Compar-
ing (31) to (1) we note that Fe(ζ, ζ̇, t) is

Fe(ζ, ζ̇, t) = Fh(ζ, t)− bζ̇ (32)

While we’ve kept the linear damping expression from Cummin’s Equation for regular waves, bζ̇ can
be replaced by a more general, perhaps nonlinear, damping expression.

When examining simulation results, we’ll use the physical parameters shown in Table 1 from [36]
for the linear and nonlinear examples below. Though the optimal control law of (20) applies to
any continuous, nonlinear, time-varying second-order model, however, to ease the comparison with
previous literature [37], we will restrict our attention to regular waves with elevation

η(t) = A sin(ωt) (33)

where A and ω are the wave amplitude and frequency, respectively.
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Table 1. WEC parameters.

Feature Symbol Value Units

Mass M 109, 626 kg
Radiation Damping b 20, 000 N/(m/s)
Hydrostatic Stiffness k 30, 819 N/m
Wave Amplitude A 1.3 m
Wave Frequency ω 2π rad
Wave Period T 1 s

3.2. Optimal Control Law

Applying the optimal solution of Equation (20) for the Fe(x⃗) of Equation (32) gives the optimal
control law of Equation (34).

F∗
c = Fh(ζ, t)− b ζ̇ − M

2b
∂t Fh(ζ, t) (34)

where the co-states of Equation (13), 11 and 17 become

λ1 = Fh(ζ, t)− 2bζ̇

λ2 = −Mζ̇

λ3 = bζ̇2 (35)

The second-order optimality condition, Equation (27), is shown in Equation (36).

2∂ζ̇ Fe(ζ, ζ̇, t) + ζ̇∂2
ζ̇
Fe(ζ, ζ̇, t)

M2 = − 2b
M2 ≤ 0 (36)

which is always satisfied since both b and M are positive. The optimal state trajectories can now be
derived using the control law of Equation (34). Substituting Equation (34) into Equation (31) yields the
optimal acceleration

ζ̈∗ =
∂tFh
2b

(37)

Equation (37) can be integrated in closed form, if Fh permits, or numerically to obtain the optimal
velocity, displacement, and co-state trajectories by substitution into Equation (35).

3.3. Linear Point Absorber WEC

Consider the model of a linear point absorber below that has been used previously to derive the
complex conjugate control (CCC) law [41]

Mζ̈ + bζ̇ + kζ = F(t)− Fc (38)

where F(t) is the excitation force. To apply the optimal control law of (34), we only need to identify
the correct expression for Fh, and in this case

Fh(ζ, t) = F(t)− kζ (39)

which results in
F∗

c = F(t)− bζ̇ − kζ − M
2b

∂tF(t) (40)

This result was previously obtained by Zou et al. using Euler-Lagrange equations applied directly to a
linear point absorber model. [38] which was in accordance with the results obtained using CCC [41].
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Figure 1. Point absorber WEC with a cylindrical shaped buoy.

However, one often-cited practical limitation of CCC is that the buoy motion becomes larger than
the model assumptions used in its derivation [25,31,32,42]. Thus, switching functions were used to
keep the linear system bounded. In our work, we have managed to achieve that without the need for a
switching function but by obtaining the proper initial condition of (28) to drive our system to a stable
limit cycle. To examine this, we will consider the optimality requirement that the buoy’s motion at
least resides on a stable limit cycle.

Using (37) the optimal acceleration is

ζ̈∗ =
Ḟ(t)
2b

(41)

which can be integrated twice to obtain its velocity and position

ζ̇∗ =
F(t)
2b

+ C1

ζ∗ =
∫ F(t)

2b
dt + C1t + C0

(42)

where C1 and C0 are integration factors.
To achieve a stable limit cycle, bounded motion, C1 = 0, resulting in the optimal buoy velocity

of (43), the same result obtained from CCC [19].

ζ̇∗ =
F(t)
2b

(43)

Achieving C1 = 0 depends on the excitation force expression, F(t), and the buoy initial conditions
defined when the control law is activated. To examine this, consider a particular wave excitation force
expression, F(t), used for a cylindrical point absorber buoy in [37].

F(t) = kη(t) = kA sin(ωt) (44)

and its corresponding model

Mζ̈ + bζ̇ + k[ζ − η(t)] = −Fc (45)

where η(t) is the wave elevation.
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From (43), at time to = 0,

C1 = ζ̇∗(0)− F(0)
2b

(46)

To make C1 = 0 the initial velocity is

ζ̇∗(0) =
F(0)
2b

= 0 (47)

Thus, for any initial condition of the form [ζ∗(0), 0] where ζ∗(0) is any convenient initial position, a
limit cycle is obtained having bounded periodic motion. However, it is always preferred to have the
motion symmetric about ζ = 0. This requires that C0 = 0 of (43).

From (43) with C1 = 0 at to = 0

C0 = ζ∗(0)−
∫ F(t)

2b

∣∣∣∣
t=0

(48)

Setting C0 = 0, the initial condition of the position ζ∗(0) is

ζ∗(0) =
∫ F(t)

2b

∣∣∣∣
t=0

= − kA
2bω

(49)

The optimal, centered, periodic solution of (45), with its required initial condition xo, is

ζ∗ =
∫ F(t)

2b
= − kA

2bw
cos(ωt)

ζ̇∗ =
F(t)
2b

=
kA
2b

sin(ωt)

xo = [ζ∗(0), ζ̇∗(0)] =
[
− kA

2bω
, 0
] (50)

Figure 2 shows simulation results using the model parameters of Table 1 for four different initial
conditions indicated by black dots. When the initial condition lacks any initial velocity, [-1.75, 0],
[-0.1594, 0], and [1.25, 0], the buoy exhibits bounded, periodic motion indicated by the closed, red
contours in the phase space where [-0.1594, 0] produces the desired centered motion. The presence
of initial velocity causes a gradual displacement growth over time, as shown by the blue trajectory
of Figure 2 for initial conditions of [-1.4, 1]. It’s important to note that the buoy oscillation frequency
aligns with the input frequency for linear systems, resulting in the repetition of limit cycles every T
seconds.

Figure 3 shows the steady-state simulation results obtained after applying the optimal control law
with the centering initial conditions, [-0.1594, 0]. As expected, the periodic motion is bounded and
centered about ζ = 0. Furthermore, the energy extracted has a net positive slope.

In summary, to extract maximum energy using a linear point absorber, it is essential to apply
the optimal control law of Equation (40) while ensuring appropriate initial conditions to achieve a
bounded periodic motion. Alternatively, a reference tracking controller can be used to follow the
bounded analytical periodic optimal states. This can be easily achieved when F(t) is analytically
integrable.
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Figure 2. Linear point absorber, 50s phase space trajectories using Table 1 model parameters and four
different initial conditions, black dots. Two cases are not centered and bounded (red): [-1.75, 0] and
[1.25, 0], another is centered and bounded (red): [-0.1594, 0], and one is unbounded (blue) [-1.4, 1].

Figure 3. Simulated response of a linear cylindrical WEC with initial conditions [-0.1594, 0] for the 50s
after the initial transient has decayed.
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3.4. Nonlinear Point Absorber WEC

Nonlinear WEC models introduce challenges, such as obtaining analytical solutions to compute
initial conditions to achieve limit cycles. This arises when ∂tFh(ζ, t), used in the optimal acceleration
trajectory of (37), is not integrable.

However, not all nonlinear systems exhibit this challenge due to the form of Fh. Consider a
nonlinear system such that the Fh of (31) is

Fh(ζ, t) = g(ζ) + f (t) (51)

where g(ζ) is a nonlinear function and f (t) is any integrable function of time. For example, the Duffing
Oscillator has this form where the ai are constant coefficients.

ζ̈ + a1ζ̇ + a2ζ + a3ζ3 = a4 cos ωt − u (52)

Based on (52)

g(ζ) = −a2ζ − a3ζ3

f (t) = a4 cos ωt
(53)

the optimal control law is

u∗ = g(ζ) + f (t)− a1ζ̇ − ∂t f (t)
2a1

(54)

and the rest becomes identical to the linear system of (45).
Unfortunately, this is a special case, and most models of nonlinear WECs possess nonlinearities of

the form ∑ aij f i(t)gj(ζ) where i and j are integers.
Consider the model of a nonlinear point absorber WEC with an hourglass-shape buoy [37]

Figure 4. Point absorber WEC with an hourglass shaped buoy.

Mζ̈ + bζ̇ + k[ζ − η(t)]3 = −Fc (55)

with Fh = −k[ζ − η(t)]3 that is due solely to the buoyancy force. From (34) the optimal control law
is (55)

F∗
c = k[η − ζ]3 − bζ̇ − 3Mk

2b
η̇(ζ − η)2 (56)
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with an optimal acceleration profile, from (37), of

ζ̈∗ =
3k
2b

η̇(ζ − η)2 (57)

Since (57) can not be integrated in closed form, obtaining expressions for the initial conditions that
give limit cycle motion is impossible. Thus, we must resort to numerical techniques.

To numerically explore the initial condition space, the system of (55) and the control law of (56)
were simulated using a third-order, explicit Runge-Kutta solver with a time step of 0.01 s with the
parameters values of Table 1. The results for two different wave amplitude cases are shown in Figure 5,
where the simulation duration was 50 s. The left figure is for A = 1.3 m, and on the right, A = 0.65 m.

The blue dashed ellipses indicate the initial conditions resulting in limit cycles. The ellipse
corresponding to the higher wave amplitude case has major and minor axes of 0.3 m/s and 0.1 m,
respectively, in contrast to the smaller wave amplitude case, whose major and minor axes are 0.5 m/s
and 0.3 m. The initial condition region increases with decreasing wave amplitude in these two cases.
Other initial conditions may exist outside the ellipses that lead to a limit cycle. However, none were
found using an extensive grid search of the phase space.

The red trajectories of Figure 5 show buoy motions when the initial conditions are inside the
ellipses, indicated by black dots. While these trajectories provide anecdotal information regarding
position and velocity extremums they cannot be used to determine limit cycle existence.

Figure 5. Phase space of the nonlinear point absorber system, illustrating trajectories for two wave
amplitudes over 50 seconds. The left plot shows the trajectory with an amplitude A and initial
conditions [0.05,0.1], while the right plot shows the trajectory with an amplitude A

2 and initial conditions
[0.15,0.35]. The dashed blue ellipses illustrate the initial conditions space that drives the system to a
limit cycle.

Poincare maps were used to confirm limit cycle behavior with the simulation time increased to 500
seconds. Given an initial condition, it is instructive to view the phase planes of Figure 5 with time being
along a third orthogonal axis. The red trajectories then move around the phase plane in the direction of
increasing time. Poincare maps were made from sampling points on this three-dimensional trajectory
at the excitation period of T = 1 seconds and are shown in Figure 6 for the two initial condition cases
of Figure 5. Limit cycle motion is confirmed since the Poincare Maps are closed contours.
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Figure 6. Poincare maps for the corresponding trajectories of Figure 5 sampled at a period T of the
incoming waves for 500s.

Figure 7. The dynamics of a nonlinear hourglass-shaped WEC with initial conditions [0.05, 0.1] and
wave amplitude A for 50s.

Figure 7 shows the dynamics of the nonlinear point absorber for a wave of amplitude A upon the
implementation of the optimal control law and choosing proper initial conditions, [0.05, 0.1], within
the corresponding blue ellipse of Figure 5. As with the phase plane plots of Figure 7, periodicity is
difficult to infer from this relatively short time duration. Once again, the energy time history has a net
positive slope.
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To further validate the optimality of the control law for both the linear and nonlinear cases, the
value of the Hamiltonian is plotted in Figure 8 and is zero for all time. This is a consequence of the
PMP and ensures the simulated co-states match the solutions of the co-state differential equations of
Equation (35) arising from the Euler-Lagrange equations.

(a) Linear WEC (b) Nonlinear WEC
Figure 8. The conservation of the Hamiltonian over time using the optimal control law for the linear
and nonlinear WECs.

Overall, the presented figures and analyses demonstrate the promising performance of the optimal
control approach, providing valuable insights into the dynamic behavior and energy production
capabilities of the considered WEC systems.

4. Conclusion and Future Work

Optimal control analysis can be used to maximize the energy of a renewable source even when its
second-order model is nonlinear and nonautonomous. To achieve bounded motion the initial condition
region resulting in a stable limit cycle should be included in the optimal control analysis. The size and
location of the region will, in general, be a function of the wave amplitude and frequency.

A relatively small set of initial conditions was found for the nonlinear hourglass-shaped buoy. It
may be possible to find buoy shapes yielding larger initial condition regions extending the practical
application of the optimal control law. Consequently, using the control law during shape optimization
is one of the next steps to be exploited, finding the form of the nonlinearity that leads to a more
extensive set of initial conditions. Finding a more systematic way to obtain initial conditions to
drive the system to a limit cycle should also be explored. It should be noted that while the examples
presented here used regular waves, the optimal control law form accommodates irregular waves as
well.

Initial conditions and wave parameters can result in intriguing limit cycle behavior that could be
exploited for operational reasons. One case is illustrated in Figure 9 for A = 0.611 and optimal initial
conditions of [0.2, 0]. The buoy response progresses between the five closed contours of the Poincare
map. Shaping the location, number, and size of the contours could be used to manage PTO bounds
and motion constraints.
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Figure 9. Multiple contours on Poincare map for an initial conditions of [0.2, 0] and amplitude 0.611 m.
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