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Abstract: In this study, we introduce two dimensional Chlodovsky type Bernstein operators based on (p, q)-
integers. We assess the approximation properties of these operators through a Korovkin-type theorem. Addition-

ally, we analyze the local approximation properties and determine the convergence rates using the modulus of

continuity and a Lipschitz-type maximal function. A Voronovskaja-type theorem is also derived for these opera-

tors. Furthermore, we investigate their weighted approximation properties and estimate the convergence rates

in the same function space. Finally, visual illustrations created using Maple demonstrate the convergence rates

of these operators for specific functions. The optimization of approximation speeds by operators during system

control provides significant improvements in stability and performance. As a result, the control and modeling of

dynamic systems become more efficient and effective through innovative methods. These advancements in the

fields of modeling fractional differential equations and control theory offer substantial benefits to both modeling

and optimization processes, expanding the range of applications in these areas.

Keywords: two dimensional (p, q)- Chlodovsky type Bernstein operators; Voronovskaja type theorem; (p, q)-
integer; control theory

1. Introduction

Approximation theory is rapidly emerging as an essential tool, extending its influence beyond
classical domains to other mathematical areas such as differential equations, orthogonal polynomials,
and geometric design. Following the introduction of Korovkin’s renowned theorem in 1950, the topic
of approximating functions using linear positive operators has become an increasingly significant
focus within approximation theory. A wealth of literature has been produced on this subject [1,2,10,12,
14,15,23,24].

In recent years, particularly over the last twenty years, the role of q-calculus in approximation
theory has been thoroughly investigated. The initial work on Bernstein polynomials derived from
q-integers was conducted by Lupaş [6]. His findings indicated that q-Bernstein polynomials can
provide superior approximations compared to classical methods when an appropriate choice of q is
made. This discovery has encouraged numerous researchers to develop q-generalizations of various
operators and to explore their approximation properties further. Numerous studies have contributed
to this field [3,7,8,13].

In recent years, Mursaleen et al. have concentrated on utilizing (p, q)-calculus for approximations
through linear positive operators, introducing the (p, q)-analogues of Bernstein operators [20,21]. They
analyzed the uniform convergence of these operators and determined their rates of convergence. For
additional recent studies related to (p, q)-operators, readers can refer to [17–19,26,27].

The main motivation behind this study is that, to the authors’ knowledge, there have been no
investigations into approximating two-variable operators using (p, q)- calculus thus far. In this context,
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we introduce two dimensional Chlodovsky type Bernstein operators based on (p, q)-integers. We
investigate the approximation properties of our newly defined operators with the aid of the Korovkin-
type theorem. Furthermore, we delve into the local approximation characteristics and determine the
rates of convergence through the modulus of continuity and a Lipschitz type maximal function. A
Voronovskaja type theorem relevant to these operators is also presented. Another significant aim of
this research is to examine the weighted approximation properties of our operators in the first quadrant
of R2

+, specifically within the range of [0, ∞)× [0, ∞). To achieve these results, we intend to apply a
weighted Korovkin-type theorem. We will begin by revisiting some definitions and notations pertinent
to the concept of (p, q)-calculus. The (p, q)-integer associated with a given number n is defined as

[n]p,q :=
pn − qn

p − q
, n = 1, 2, 3 . . . , 0 < q < p ≤ 1.

The (p, q)-factorial [n]p,q! and the (p, q)-binomial coefficients are defined as :

[n]p,q! :=
{

[n]p,q[n − 1]p,q · · · [1]p,q, n ∈ N
1, n = 0

.

and [
n
k

]
p,q

=
[n]p,q!

[k]p,q![n − k]p,q!
, 0 ≤ k ≤ n.

Further, the (p, q)-binomial expansions are given as

(ax + by)n
p,q =

n

∑
k=0

p(
n−k

2 )q(
k
2)an−kbkxn−kyk.

and
(x − y)n

p,q = (x − y)(px − qy)(p2x − q2y) · · · (pn−1x − qn−1y).

Further information related to (p, q)-calculus can be found in [25,28].

2. Construction of the Operators

Recently, Ansari and Karaisa [16] have defined and studied (p, q)-analogue of Chlodovsky opera-
tors as follows:

Cn,p,q( f ; x) =
1

pn(n−1)/2

n

∑
k=0

[
n
k

]
p,q

pk(k−1)/2
(

x
bn

)k(
1 − x

bn

)n−k−1

p,q
f

(
[k]p,q

[n]p,q pk−n bn

)
, (1)

where (
1 − x

bn

)n−k−1

p,q
=

n−k−1

∏
s=0

(
ps − qs x

bn

)
.

For 0 < q1, q2 < p1, p2 ≤ 1, we define Chlodovsky type two dimensional Bernstein operator
based on (p, q)-integers as follows:

C(p1,q1),(p1,q1)
n,m ( f ; x, y) =

n

∑
k=0

m

∑
j=0

Φn,k(p1, q1; x)Φm,j(p2, q2; y) f

 [k]p1,q1

[n]p1,q1
pk−n

1

αn,
[j]p2,q2

[m]p2,q2
pj−m

2

βm

, (2)
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for all n, m ∈ N, f ∈ C(Iαn βm) with Iαn βm = {(x, y) : 0 ≤ αn ≤ x , 0 ≤ βm ≤ y} and C(Iαn βm) = { f :
Iαn βm −→ R is continuous }. Here (αn) and (βm) be increasing unbounded sequences of positive real
numbers such that

lim
n→∞

αn

[n]p1,q1

= 0, (3)

lim
m→∞

βm

[m]p2,q2

= 0. (4)

Also, the basis elements are

Φn,k(p1, q1; x) = p
k(k−1)−n(n−1)

2
1

[
n
k

]
p1,q1

(
x

αn

)k n−k−1

∏
s=0

(
ps

1 − qs
1

x
αn

)
,

Φm,j(p2, q2; y) = p
j(j−1)−m(m−1)

2
2

[
m
j

]
p2,q2

(
y

βm

)j m−j−1

∏
s=0

(
ps

2 − qs
2

y
βm

)
.

We require the following lemmas to establish our main results.

Lemma 1 ([16]).

Cn,p,q(1; x) = 1,

Cn,p,q(e1; x) = x,

Cn,p,q(e2; x) =
pn−1bn

[n]p,q
x +

q[n − 1]p,q

[n]p,q
x2

Cn,p,q(e3; x) =
b2

nx
[n]2p,q

p2n−2 +
(2p + q)q[n − 1]p,qx2bn

[n]2p,q
pn−1 +

q3[n − 1]p,q[n − 2]p,qx3

[n]2p,q
,

Cn,p,q(e4; x) =
b3

nx
[n]3p,q

p3n−3 +
q(3p2 + 3qp + q3)[n − 1]p,qb2

nx2

[n]3p,q
p2n−4

+
q3(3p2 + 2pq + q2)[n − 1]p,q[n − 2]p,qbnx3

[n]3p,q
pn−3 +

q6[n − 1]p,q[n − 2]p,q[n − 3]p,qx4

[n]3p,q
.

From Lemma 1, we have following:

Lemma 2.

C(p1,q1),(p2,q2)
n,m (1; x, y) = 1,

C(p1,q1),(p2,q2)
n,m (s; x, y) = x,

C(p1,q1),(p2,q2)
n,m (t; x, y) = y,

C(p1,q1),(p2,q2)
n,m (st; x, y) = xy,

C(p1,q1),(p2,q2)
n,m

(
s2; x, y

)
=

pn−1
1 αn

[n]p1,q1

x +
q1[n − 1]p1,q1

[n]p1,q1

x2,

C(p1,q1),(p2,q2)
n,m

(
t2; x, y

)
=

pm−1
2 βm

[m]p2,q2

y +
q2[m − 1]p2,q2

[m]p2,q2

y2.

Using Lemma 2 and by linearity of C(p1,q1),(p2,q2)
n,m , we have
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Remark 1.

C(p1,q1),(p2,q2)
n,m

(
(t − x)2; x, y

)
=

−pn−1
1 x2

[n]p1,q1

+
xpn−1

1 αn

[n]p1,q1

, (5)

C(p1,q1),(p2,q2)
n,m

(
(s − y)2; x, y

)
=

−pm−1
2 y2

[m]p2,q2

+
ypm−1

2 βm

[m]p2,q2

. (6)

Theorem 1. Let q1 := (q1,n), p1 := (p1,n), q2 := (q2,m), p2 := (p2,m) such that 0 < q1,n, q2,m <

p1,n, p2,m ≤ 1. If

lim
n

p1,n = 1, lim
n

q1,n = 1, lim
m

p2,m = 1, lim
m

q2,m = 1, lim
n

pn
1,n = a1 and lim

m
pm

1,m = a2, (7)

the sequence C(p1,q1),(p2,q2)
n,m ( f ; x, y) convergence uniformly to f (x, y), on [0, a] × [0, b] = Iab for each f ∈

C(Iab), where a, b be reel numbers such that a ≤ αn, b ≤ βm and C(Iab) be the space of all real valued
continuous function on Iab with the norm

∥ f ∥C(Iab)
= sup

(x,y)∈Iab

| f (x, y)|.

Proof. Assume that the equities (7), (3) and (4) are holds. Then, we have

pn−1
1,n αn

[n]p1,n ,q1,n

→ 0,
pm−1

2,m βm

[m]p2,m ,q2,m

→ 0,
q1,n[n]p1,n ,q1,n

[n]p1,n ,q1,n

→ 1 and
q2,m[m − 1]p2,m ,q2,m

[m]p2,m ,q2,m

→ 1.

as n, m −→ ∞. From Lemma 2, we obtain limn,m→∞ C(p1,q1),(p2,q2)
n,m

(
eij; x, y

)
= eij(x, y) uniformly on Iab,

where eij(x, y) = xiyj, 0 ≤ i + j ≤ 2 are the test functions. By Korovkin’s theorem for functions of

two variables was presented by Volkov [29], it follows that limn,m→∞ C(p1,q1),(p2,q2)
n,m ( f ; x, y) = f (x, y),

uniformly on Iab, for each f ∈ C(Iab).

3. Rate of Convergence

In this section, we analyze the convergence rates of the operators C(p1,q1),(p2,q2)
n,m to the function

f (x, y) using the modulus of continuity. Furthermore, we will present a summary of the relevant
notations and definitions concerning the modulus of continuity and Peetre’s K-functional for bivariate
real-valued functions.

For a function f ∈ C(Iab), the complete modulus of continuity in the bivariate context is defined
as follows:

ω( f , δ) = sup
{
| f (t, s)− f (x, y)| :

√
(t − x)2 + (s − y)2 ≤ δ

}
.

for every (t, s), (x, y) ∈ Iab. Additionally, the partial moduli of continuity concerning x and y are
defined as follows:

ω1( f , δ) = sup{| f (x1, y)− f (x2, y)| : y ∈ [0, b] and |x1 − x2| ≤ δ}
ω2( f , δ) = sup{| f (x, y1)− f (x, y2)| : x ∈ [0, a] and |y1 − y2| ≤ δ},

It is evident that they fulfill the properties of the standard modulus of continuity [11].
For δ > 0, the Peetre-K functional [22] is defined as follows:
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K( f , δ) = inf
g∈C2(Iab)

{
∥ f − g∥C(Iab)

+ δ∥g∥C2(Iab)

}
,

where C2(Iab) is the space of functions of f such that f , ∂j f
∂xj and ∂j f

∂yj (j = 1, 2) in C(Iab). The norm ∥.∥
on the space C2(Iab) is defined by

∥ f ∥C2 Iab
= ∥ f ∥C(Iab)

+
2

∑
j=1

(∥∥∥∥∂j f
∂yj

∥∥∥∥
C(Iab)

+

∥∥∥∥∂j f
∂yj

∥∥∥∥
C(Iab)

)
.

We now provide an estimate for the rate of convergence of the operators C(p1,q1),(p2,q2)
n,m .

Theorem 2. Let f ∈ C(Iab). For all x ∈ Iab, we have∣∣∣C(p1,q1),(p2,q2)
n,m − f (x, y)

∣∣∣ ≤ 2ω( f ; δn,m),

where

δ2
n,m =

aαn pn−1
1

[n]p1,q1

+
bβm pm−1

2
[m]p2,q2

.

Proof. By definition, the complete modulus of continuity of f (x, y), along with the linearity and
positivity of our operator, allows us to express:

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ C(p1,q1),(p2,q2)

n,m (| f (t, s)− f (x, y)|; x, y)

≤ C(p1,q1),(p2,q2)
n,m

(
ω

(
f ;
√
(t − x)2 + (s − y)2

)
; x, y

)
≤ ω( f , δn,m)

[
1

δn,m
C(p1,q1),(p2,q2)

n,m

(√
(t − x)2 + (s − y)2; x, y

)]
.

Using Cauchy-Scwartz inequality, from (5) and (6), one can write following

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)|

≤ ω( f , δn,m)

[
1 +

1
δn,m

{
C(p1,q1),(p2,q2)

n,m

(
(t − x)2 + (s − y)2; x, y

)}1/2
]

= ω( f , δn,m)

[
1 +

1
δn,m

{
C(p1,q1),(p2,q2)

n,m

(
(t − x)2; x, y

)
+ C(p1,q1),(p2,q2)

n,m

(
(s − y)2; x, y

)}1/2
]

≤ ω( f , δn,m)

1 +
1

δn,m

(
aαn pn−1

1
[n]p1,q1

+
bβm pm−1

2
[m]p2,q2

)1/2
.

Choosing δn,m =

(
aαn pn−1

1
[n]p1,q1

+
bβm pm−1

2
[m]p2,q2

)1/2
, for all (x, y) ∈ Iab, we get desired the result.

Theorem 3. Let f ∈ C(Iab), then the following inequalities satisfy∣∣∣C(p1,q1),(p2,q2)
n,m − f (x, y)

∣∣∣ ≤ ω1( f ; δn) + ω2( f ; δm),
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where

δ2
n =

aαn pn−1
1

[n]p1,q1

, (8)

δ2
m =

bβm pm−1
2

[m]p2,q2

. (9)

Proof. By definition, the partial moduli of continuity of f (x, y) and the application of the Cauchy-
Schwarz inequality imply that:

|C(p1 ,q1),(p2 ,q2)
n,m ( f ; x, y)− f (x, y)| ≤ C(p1 ,q1),(p2 ,q2)

n,m (| f (t, s)− f (x, y)|; x, y)

≤ C(p1 ,q1),(p2 ,q2)
n,m (| f (t, s)− f (x, s)|; x, y) + C(p1 ,q1),(p2 ,q2)

n,m (| f (x, s)− f (x, y)|; x, y)

≤ C(p1 ,q1),(p2 ,q2)
n,m

(
|ω1( f ; |t − x|)|; x, y

)
+ C(p1 ,q1),(p2 ,q2)

n,m

(
|ω2( f ; |s − y|)|; x, y

)
≤ ω1( f , δn)

[
1 +

1
δn

C(p1 ,q1),(p2 ,q2)
n,m (|t − x|; x, y)

]
+ω2( f , δm)

[
1 +

1
δm

C(p1 ,q1),(p2 ,q2)
n,m (|s − y|; x, y)

]
≤ ω1( f , δn)

[
1 +

1
δn

(
C(p1 ,q1),(p2 ,q2)

n,m

(
(t − x)2; x, y

))1/2
]

+ω2( f , δm)

[
1 +

1
δm

(
C(p1 ,q1),(p2 ,q2)

n,m

(
(s − y)2; x, y

))1/2
]

.

Consider (5), (6) and choosing

δ2
n =

aαn pn−1
1

[n]p1,q1

,

δ2
m =

bβm pm−1
2

[m]p2,q2

.

we reach the result.

For α̂1, α̂2 ∈ (0, 1] and (s, t), (x, y) ∈ Iab, we define the Lipschitz class LipM(α̂1, α̂2) for the
bivariate case as follows:

| f (s, t)− f (x, y)| ≤ M|s − x|α̂1 |t − y|α̂2 .

Theorem 4. Let f ∈ LipM(α̂1, α̂2). Then, for all (x, y) ∈ Iab, we have

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ Mδα̂1/2

n δα̂2/2
m ,

where δn and δm defined in (8) and (9), respectively.

Proof. As f ∈ LipM(α̂1, α̂2), it follows

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ C(p1,q1),(p2,q2)

n,m (| f (t, s)− f (x, y)|, qn; x, y)

≤ MC(p1,q1),(p2,q2)
n,m (|t − x|α̂1 |s − y|α̂2 ; x, y)

= MC(p1,q1),(p2,q2)
n,m (|t − x|α̂1 |; x)C(p1,q1),(p2,q2)

n,m (|s − y|α̂2 ; y).
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For p̂ = 1
α̂1

, q̂ = α̂1
2−α̂1

and p̂ = 1
α̂2

, q̂ = α̂2
2−α̂2

applying the Hölder’s inequality, we get

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ M{C(p1,q1),(p2,q2)

n,m (|t − x|2; x)}α̂1/2{C(p1,q1),(p2,q2)
n,m (1; x)}α̂1/2

×{C(p1,q1),(p2,q2)
n,m (|s − y|2; y)}α̂12/2{C(p1,q1),(p2,q2)

n,m (1; y)}α̂2/2

= Mδα̂1/2
n δα̂2/2

m .

Hence, we obtain the desired result.

Theorem 5. Let f ∈ C1(Iab) and 0 < q1,n, q2,m < p1,n, p2,m ≤ 1. Then, we have

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ ∥ f

′
x ∥C(Iab)

δn+ ∥ f
′
y ∥C(Iab)

δm.

Proof. For (t, s) ∈ Iab, we obtain

f (t)− f (s) =
∫ t

x
f
′
u(u, s)du +

∫ s

y
f
′
v(x, v)du

By applying our operator to both sides of the above equation, we deduce:

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ C(p1,q1),(p2,q2)

n,m

(∣∣∣∣∫ t

x
f
′
u(u, s)du

∣∣∣∣; x, y
)

+C(p1,q1),(p2,q2)
n,m

(∣∣∣∣∫ s

y
f
′
v(x, v)du

∣∣∣∣; x, y
)

.

As ∣∣∣∣∫ t

x
f
′
u(u, s)du

∣∣∣∣ ≤∥ f
′
x ∥C(Iab)

|t − x| and
∣∣∣∣∫ s

y
f
′
v(x, v)du

∣∣∣∣ ≤ f
′
y ∥C(Iab)

|s − y|,

we have

|C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)| ≤ f

′
x ∥C(Iab)

C(p1,q1),(p2,q2)
n,m (|t − x|; x, y)

+ f
′
y ∥C(Iab)

C(p1,q1),(p2,q2)
n,m (|s − y|; x, y).

Using the Cauchy-Schwarz inequality, we can write following

|C(p1 ,q1),(p2 ,q2)
n,m ( f ; x, y)− f (x, y)| ≤ ∥ f

′
x ∥C(Iab)

{C(p1 ,q1),(p2 ,q2)
n,m

(
(t − x)2; x, y

)
}1/2{C(p1 ,q1),(p2 ,q2)

n,m (1; x, y)}1/2

+ ∥ f
′
y ∥C(Iab)

{C(p1 ,q1),(p2 ,q2)
n,m

(
(s − y)2; x, y

)
}1/2{C(p1 ,q1),(p2 ,q2)

n,m (1; x, y)}1/2.

Form (5) and (6), we get desired the result.

Using Maple, illustrative graphics demonstrate the rate of convergence of the operators
C(p1,q1),(p2,q2)

n,m to certain functions:
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Figure 1. The comparison convergence of C(0.999,0.9),(0.999,0.9)
20,20 ( f ; x, y)(red),

C(0.90,0.86),(0.996,0.89)
20,20 ( f ; x, y)(yellow) with αn = ln(n), βm =

√
m and f (x, y) = 3xy2e−y(blue)

Figure 2. The comparison convergence of C(0.999,0.9),(0.99,0.9)
20,20 ( f ; x, y)(red),

C(0.990,0.86),(0.996,0.89)
20,20 ( f ; x, y)(yellow) with αn = ln(n), βm =

√
m and f (x, y) = sin(x − y)(blue).
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Figure 3. The comparison convergence of C(0.99,0.9),(0.999,0.96)
20,20 ( f ; x, y)(red),

C(0.99,0.9),(0.990,0.90)
20,20 ( f ; x, y)(yellow) with αn = ln(n), βm = ln(m) and f (x, y) = x2y − xy2)(blue).

Theorem 6. Let f ∈ C(Iab), then we have∥∥∥C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∥∥∥
C(Iab)

≤ 2M( f ; δn,m(x, y)/2),

where

δn,m(x, y) =
1
2

max

(
aαn pn−1

1
[n]p1,q1

,
bβm pm−1

2
[m]p2,q2

)
.

Proof. Let g ∈ C2(Iab). Utilizing Taylor’s formula, we derive:

g(s1, s2)− g(x, y) = g(s1, y)− g(x, y) + g(s1, s2)− g(s1, y)

=
∂g(x, y)

∂x
(s1 − x) +

∫ s1

x
(s1 − u)

∂2g(u, y)
∂u2 du

+
∂g(x, y)

∂x
(s2 − y) +

∫ s2

y
(s2 − v)

∂2g(x, v)
∂v2 dv

=
∂g(x, y)

∂x
(s1 − x) +

∫ s1−x

0
(s1 − x − u)

∂2g(u, y)
∂u2 du

+
∂g(x, y)

∂x
(s2 − y) +

∫ s2−y

0
(s2 − y − v)

∂2g(x, v)
∂v2 dv

By applying C(p1,q1),(p2,q2)
n,m to both sides of the above equation, we obtain:
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∣∣∣C(p1,q1),(p2,q2)
n,m (g; x, y)− g(x, y)

∣∣∣ ≤
∣∣∣∣∂g(x, y)

∂x

∣∣∣∣∣∣∣C(p1,q1),(p2,q2)
n,m ((s1 − x); x, y)

∣∣∣
+

∣∣∣∣C(p1,q1),(p2,q2)
n,m

(∫ s1−x

0
(s1 − x − u)

∂2g(u, y)
∂u2 du; x, y

)∣∣∣∣
+

∣∣∣∣∂g(x, y)
∂y

∣∣∣∣∣∣∣C(p1,q1),(p2,q2)
n,m ((s2 − y); x, y)

∣∣∣
+

∣∣∣∣C(p1,q1),(p2,q2)
n,m

(∫ s2−y

0
(s2 − y − v)

∂2g(v, x)
∂v2 dv; x, y

)∣∣∣∣
As C(p1,q1),(p2,q2)

n,m ((s1 − x); x, y) = 0 and C(p1,q1),(p2,q2)
n,m ((s2 − y); x, y) = 0, one can write following∥∥∥C(p1,q1),(p2,q2)

n,m ( f ; x, y)− f (x, y)
∥∥∥

C(Iab)
≤ 1

2

∥∥∥∥∂g(x, y)
∂x

∥∥∥∥
C(Iab)

∣∣∣C(p1,q1),(p2,q2)
n,m

(
(s1 − x)2; x, y

)∣∣∣
+

1
2

∥∥∥∥∂g(x, y)
∂y

∥∥∥∥
C(Iab)

∣∣∣C(p1,q1),(p2,q2)
n,m

(
(s2 − y)2; x, y

)∣∣∣.
By (5), (6), we deduce,

∥∥∥C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∥∥∥
C(Iab)

≤ 1
2

max

(
−pn−1

1 x2

[n]p1,q1

+
xpn−1

1 αn

[n]p1,q1

,
−pm−1

2 y2

[m]p2,q2

+
ypm−1

2 βm

[m]p2,q2

)

×
[∥∥∥∥∂g(x, y)

∂x

∥∥∥∥
C(Iab)

+

∥∥∥∥∂g(x, y)
∂x

∥∥∥∥
C(Iab)

]
≤ ∥ g ∥C(Iab)

δn,m. (10)

By the linearity C(p1,q1),(p2,q2)
n,m , we obtain∥∥∥C(p1,q1),(p2,q2)

n,m ( f ; x, y)− f (x, y)
∥∥∥

C(Iab)
≤

∥∥∥C(p1,q1),(p2,q2)
n,m f − C(p1,q1),(p2,q2)

n,m g
∥∥∥

C(Iab)

+
∥∥∥C(p1,q1),(p2,q2)

n,m g − g
∥∥∥

C(Iab)
+ ∥ f − g∥C(Iab)

. (11)

By (10) and (11), one can see that∥∥∥C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∥∥∥
C(Iab)

≤ 2M( f ; δn,m(x, y)/2).

This step completes the proof.

Initially, we need to establish the auxiliary result found in the subsequent lemma.

Lemma 3. Let 0 < qn < pn ≤ 1 be sequences such that pn, qn −→ 1 and pn
n −→ a1 as n −→ ∞. Then, we

have the following limits:

(i) limn→∞
[n]pn ,qn

αn
C(pn ,qn)

n,n ((t − x)2; x) = a1x

(ii) limn→∞
[n]2pn ,qn

α2
n

C(pn ,qn)
n,n ((t − x)4; x) = 3a1x2.

Proof. (i) Using Lemma 1, we have

C(pn ,qn)
n,n ((t − x)2; x) =

−pn−1
n x2

[n]pn ,qn

+
xpn−1

n αn

[n]pn ,qn

(12)
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Then, we get

[n]pn ,qn

αn
C(pn ,qn)

n,n ((t − x)2; x) =
−pn−1

n x2

αn
+ xpn−1

n .

Taking the limit of both sides of the above equality as n → ∞, we can write:

lim
n→∞

[n]pn ,qn

αn

{
C(pn ,qn)

n,n ((t − x)2, x)
}

= lim
n→∞

{
−pn−1

n x2

αn
+ xpn−1

n

}
= a1x.

(ii) Utilizing Lemma 1 along with the linearity of the operators C(pn ,qn)
n,n , we arrive at:

C(pn ,qn)
n,n ((t − x)4; x) = A1,nx4 + A2,nx3 + A3,nx2 + A4,nx (13)

where

A1,n =
pn−3

n [n]2pn ,qn (−p2
n + 2pnqn − q2

n) + pn−5
n [n]pn ,qn (−p3

n + 3pnq2
n + q3

n)− p3n−6
n (p2

n + p3
n + 2pnq2

n + q3
n)

[n]3pn ,qn

A2,n =
pn−3

n [n]2pn ,qn (p2
n − 2pnqn + q2

n)

[n]3pn ,qn

αn

+
p2n−5[n]pn ,qn (−q3

n − 4pnq2
n − 3p2

nqn + 2p3
n)− p3n−6

n (3p3
n + 3pnq2

n + 5p2
nqn + q3

n)

[n]3pn ,qn

αn

A3,n =
p2n−4

n [n]pn ,qn (−p2
n + 3pnqn + q2

n)− p3n−5
n (3p2

n + q2
n + 3pnqn)

[n]3pn ,qn

α2
n

A4,n =
p3n−3α3

n

[n]3pn ,qn

,

It is clear that

lim
n→∞

[n]2pn ,qn

α2
n

{A4,nx} = 0. (14)

Taking the limit of both sides of A1,n, we arrive at:

lim
n→∞

[n]2pn ,qn

α2
n

{A1,n} = lim
n→∞

{
−pn−3

n [n]pn ,qn (pn − qn)2

α2
n

+
pn−5

n (−p3
n + 3pnq2

n + q3
n)

α2
n

− p3n−6
n (p2

n + p3
n + 2pnq2

n + q3
n)

[n]pn ,qn α2
n

}

= lim
n→∞

{
−pn−3

n (pn
n − qn

n)(pn − qn)

α2
n

+
pn−5(−p3

n + 3pnq2
n + q3

n)

α2
n

− p3n−6
n (p2

n + p3
n + 2pnq2

n + q3
n)

[n]pn ,qn α2
n

}
= 0. (15)

Similarly, we can show that;

lim
n→∞

[n]2pn ,qn

α2
n

{A2,n} = 0 and lim
n→∞

[n]2pn ,qn

α2
n

{A3,n} = 3a1x2 (16)

By combining (14)–(16), we reach the desired the result.

Now, we ready present a Voronovskaja type theorem for C(pn ,qn)
n,n ( f ; x, y).

Theorem 7. Let f ∈ C2(Iab). Then, we have

lim
n→∞

[n]pn ,qn C(pn ,qn)
n,n ( f ; x, y)− f (x,y)) =

a1x f ′′x2(x, y)
2

+
a1y f ′′y2(x, y)

2
.
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Proof. Let (x, y) ∈ Iab. Then, write Taylor’s formula of f as follows:

f (s, t) = f (x, y) + f ′x(s − x) + f ′y(t − y)

+
1
2

{
f ′′x (t − x)2 + 2 f ′xy(s − x)(t − y) + f ′′y (t − y)2

}
+ ε(s, t)

(
(s − x)2 + (t − y)2

)
(17)

where (s, t) ∈ Iab and ε(s, t) −→ 0 as (s, t) −→ (x, y).
If we apply the operator C(pn ,qn)

n,n ( f ; .) on (17), we obtain

C(pn ,qn)
n,n ( f ; s, t)− f (x,y) = f ′x(x, y)C(pn ,qn)

n,n ((s − x); x, y) + f ′y(x, y)C(pn ,qn)
n,n ((t − y); x, y)

+
1
2

{
f ′′x2 C(pn ,qn)

n,n ((t − x0)
2; x, y) + 2 f ′xyC(pn ,qn)

n,n ((s − x)(t − y); x, y)

+ f ′′y2 C(pn ,qn)
n,n ((t − y)2; x, y)

}
+ C(pn ,qn)

n,n

(
ε(s, t)

(
(s − x)2 + (t − y)2

)
; x, y

)
.

Applying the limit of both sides of the above equality, we get n −→ ∞,

lim
n→∞

[n]pn ,qn C(pn ,qn)
n,n ( f ; s, t)− f (x, y)) = lim

n→∞
[n]pn ,qn

1
2

{
f ′′x2 C(pn ,qn)

n,n ((t − x)2; x, y)

+2 f ′xyC(pn ,qn)
n,n ((s − x)(t − y); x, y) + f ′′y2 C(pn ,qn)

n,n ((t − y)2; x, y)
}

+ lim
n→∞

[n]pn ,qn C(pn ,qn)
n,n

(
ε(s, t)

(
(s − x)2 + (t − y)2

)
; x, y

)
.

By Cauchy-Schwartz inequality, we can write the following

C(pn ,qn)
n,n

(
ε(s, t)

(
(s − x)2 + (t − y)2

)
; x, y

)
≤

√
lim

n→∞
C(pn ,qn)

n,n (ε2(s, t); x, y)

×
√

2 lim
n→∞

[n]2pn ,qn C(pn ,qn)
n,n (ε(s, t)((s − x)4 + (t − y)4); x, y).

As limn→∞ C(pn ,qn)
n,n

(
ε2(s, t); x, y

)
= ε2(x, y) = 0 and from Lemma 3(ii)

limn→∞[n]2pn ,qn C(pn ,qn)
n,n

(
(s − x)4 + (t − y)4); x, y

)
is finite, then we have

lim
n→∞

[n]2pn ,qn C(pn ,qn)
n,n

(
ε(s, t)

(
(s − x)4 + (t − y)4

)
; x, y

)
= 0.

Hence, we deduce

lim
n→∞

[n]pn ,qn C(pn ,qn)
n,n ( f ; x, y)− f (x,y)) =

a1x f ′′x2(x, y)
2

+
a1y f ′′y2(x, y)

2
.

This step completes the proof.

4. weighted Approximation Properties of two variable function

In this section, we investigate the convergence of the sequence of linear positive operators
C(p1,q1),(p2,q2)

n,m to a function of two variables defined within a weighted space. We also compute the rate
of convergence using the weighted modulus of continuity.

Let ρ(x, y) = x2 + y2 + 1, and define Bρ as the space of all functions f defined on the real axis that
satisfy | f (x, y)| ≤ M f ρ(x, y), where M f is a positive constant dependent solely on f . The subspace Cρ

of Bρ consists of all continuous functions and is equipped with the norm:

∥ f ∥ρ = sup
(x,y)∈R2

+

| f (x, y)|
ρ(x, y)

.
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Let C0
ρ represent the subspace of all functions f ∈ Cρ for which limx→∞

f (x,y)
ρ(x,y) exists and is finite.

For every f ∈ C0
ρ , the weighted modulus of continuity is defined as

Ω f ( f ; δ1, δ2) = sup
(x,y)∈R2

+

sup
|h1|≤δ1,|h2|≤δ2

| f (x + h1, y + h2)− f (x, y)|
ρ(x, y) ρ(h1, h2)

. (18)

Lemma 4. The operators C(p1,q1),(p2,q2)
n,m defined (2) act from Cρ(R2

+) to Bρ(R2
+) if and only if the inequality

∥ C(p1,q1),(p2,q2)
n,m (ρ; x, y) ∥x2≤ c.

holds for some positive constant c.

Theorem 8. Consider the sequence of linear positive operators C(p1,q1),(p2,q2)
n,m defined in (2). For any function

f ∈ C0
ρ and for all points (x, y) ∈ Iαn βm , it follows that

lim
n→∞

∥C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)∥ρ = 0.

Proof. From Lemma 2, we obtain

∥ C(p1,q1),(p2,q2)
n,m (1; x, y)− 1 ∥ρ = 0,

∥ C(p1,q1),(p2,q2)
n,m (s; x, y)− x ∥ρ = 0

∥ C(p1,q1),(p2,q2)
n,m (t; x, y)− y ∥ρ = 0.

Again by Lemma 2, we can write following

∥ C(p1 ,q1),(p2 ,q2)
n,m (s2 + t2; x, y)− (x2 + y2) ∥ρ

= sup
(x,y)∈R2

+

{
pn−1

1 αnx
[n]p1 ,q1 (x2 + y2 + 1)

+
pn−1

1 x2

[n]p1 ,q1 (x2 + y2 + 1)
+

pm−1
2 βmy

[m]p2 ,q2 (x2 + y2 + 1)
+

pm−1
2 y2

[m]p2 ,q2 (x2 + y2 + 1)

}

≤
pn−1

1 αn

[n]p1 ,q1

+
pn−1

1
[n]p1 ,q1

+
pm−1

2 βm

[m]p2 ,q2

+
pm−1

2
[m]p2 ,q2

Considering the limit of both sides of the preceding inequality as n, m → ∞ and applying (3) and (4),
we derive

lim
m,n→∞

∥ C(p1,q1),(p2,q2)
n,m (s2 + t2; x, y)− (x2 + y2) ∥ρ= 0.

Applying weighted Korovkin theorem for two variable which presented by Gadzhiev [4,5], we get
desired the results.

For estimate rate of convergence we need the following lemma.

Lemma 5. For all (x; y) ∈ Iαn βm , by (5), (6) and (13), one can write the following

C(p1,q1),(p2,q2)
n,m

(
(t − x)2; x, y

)
= O

(
αn pn−1

1
[n]p1,q1

)(
x2 + x

)
, (19)

C(p1,q1),(p2,q2)
n,m

(
(t − x)4; x, y

)
= O

(
αn pn−1

1
[n]p1,q1

)(
x4 + x3 + x2 + x

)
(20)

and
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C(p1,q1),(p2,q2)
n,m

(
(s − y)2; x, y

)
= O

(
βm pm−1

2
[m]p2,q2

)(
y2 + y + 1

)
, (21)

C(p1,q1),(p2,q2)
n,m

(
(s − y)4; x, y

)
= O

(
βm pm−1

2
[m]p2,q2

)(
y4 + y3 + y2 + y + 1

)
. (22)

Now, compute rate of convergence the operator C(p1,q1),(p2,q2)
n,m in weighted spaces .

Theorem 9. If f ∈ C0
ρ , then we have

sup
(x,y)∈R2

+

∣∣∣C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∣∣∣
ρ(x, y)3 ≤ C2ωρ( f ; δn, δm)

, where C2 is a constant independent of n, m and δn =
pn−1

1 αn
[n]p1,q1

, δn =
pm−1

2 βm
[m]p2,q2

.

Proof. Taking into account the following inequality given in [9], we deduce

| f (t, s)− f (x, y)| ≤ 8
(

1 + x2 + y2
)

ωρ( f ; δn, δm)

×
(

1 +
|t − x|

δn

)(
1 +

|s − y|
δm

)(
1 + (t − x)2

)(
1 + (s − y)2

)
.

Applying C(p1,q1),(p2,q2)
n,m both side above inequality and using Cauchy-Schwarz inequality, one can

write following ∣∣∣C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∣∣∣ ≤ 8
(

1 + x2 + y2
)

ωρ( f ; δn, δm)

×
[

1 + C(p1,q1),(p2,q2)
n,m

(
(t − x)2; x, y

)
+

1
δn

√
C(p1,q1),(p2,q2)

n,m

(
(t − x)2; x, y

)
1
δn

√
C(p1,q1),(p2,q2)

n,m

(
(t − x)2; x, y

)
C(p1,q1),(p2,q2)

n,m

(
(t − x)4; x, y

)]

×
[

1 + C(p1,q1),(p2,q2)
n,m

(
(s − y)2; x, y, a

)
+

1
δm

√
C(p1,q1),(p2,q2)

n,m

(
(s − y)2; x, y

)

× 1
δm

√
C(p1,q1),(p2,q2)

n,m

(
(s − y)2; x, y

)
C(p1,q1),(p2,q2)

n,m

(
(s − y)4; x, y

)]
.

By (19)-(22), we obtain∣∣∣C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∣∣∣ ≤ 8
(

1 + x2 + y2
)

ωρ( f ; δn, δm)

×

1 + O

(
pn−1

1 αn

[n]p1,q1

)(
x2 + x

)
+

1
δn

√√√√O

(
pn−1

1 αn

[n]p1,q1

)
(x2 + x)

+
1
δn

√√√√O

(
pn−1

1 αn

[n]p1,q1

)
(x2 + x)(x4 + x3 + x2 + x)


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×

1 +
pm−1

2 βm

[m]p2,q2

(
y2 + y

)
+

pm−1
2 βm

[m]p2,q2

√
pm−1

2 βm

[m]p2,q2

+
1

δm

√
pm−1

2 βm

[m]p2,q2

(y2 + y)
pm−1

2 βm

[m]p2,q2

(y4 + y3 + y2 + y)

.

Taking δn =

(
pn−1

1 αn
[n]p1,q1

)1/2
, δm =

(
pm−1

2 βm
[m]p2,q2

)1/2
, one write the following:

∣∣∣C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∣∣∣ ≤ C2

(
1 + x2 + y2

)
ωρ( f ; δn, δm)

×
[

1 + δ2
n

(
x2 + x

)
+
√

x2 + x +
√
(x2 + x)(x4 + x3 + x2 + x)

]
×
[

1 + δ2
m

(
y2 + y

)
+
√
(y2 + y) +

√
(y2 + y)(y4 + y3 + y2 + y)

]
,

where C2 is a constant independent of n, m. Since δ2
n < 1, δ2

m < 1, for sufficiently large n, m, we get

sup
(x,y)∈R2

+

∣∣∣C(p1,q1),(p2,q2)
n,m ( f ; x, y)− f (x, y)

∣∣∣
(1 + x2 + y2)

3 ≤ C2ωρ

 f ;

√
pn−1

1 αn

[n]p1,q1

,

√
pm−1

2 βm

[m]p2,q2

.

This step completes the proof.
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