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Abstract: In this study, we introduce two dimensional Chlodovsky type Bernstein operators based on (p, 9)-
integers. We assess the approximation properties of these operators through a Korovkin-type theorem. Addition-
ally, we analyze the local approximation properties and determine the convergence rates using the modulus of
continuity and a Lipschitz-type maximal function. A Voronovskaja-type theorem is also derived for these opera-
tors. Furthermore, we investigate their weighted approximation properties and estimate the convergence rates
in the same function space. Finally, visual illustrations created using Maple demonstrate the convergence rates
of these operators for specific functions. The optimization of approximation speeds by operators during system
control provides significant improvements in stability and performance. As a result, the control and modeling of
dynamic systems become more efficient and effective through innovative methods. These advancements in the
fields of modeling fractional differential equations and control theory offer substantial benefits to both modeling

and optimization processes, expanding the range of applications in these areas.

Keywords: two dimensional (p, g)- Chlodovsky type Bernstein operators; Voronovskaja type theorem; (p, q)-
integer; control theory

1. Introduction

Approximation theory is rapidly emerging as an essential tool, extending its influence beyond
classical domains to other mathematical areas such as differential equations, orthogonal polynomials,
and geometric design. Following the introduction of Korovkin’s renowned theorem in 1950, the topic
of approximating functions using linear positive operators has become an increasingly significant
focus within approximation theory. A wealth of literature has been produced on this subject [1,2,10,12,
14,15,23,24].

In recent years, particularly over the last twenty years, the role of g-calculus in approximation
theory has been thoroughly investigated. The initial work on Bernstein polynomials derived from
g-integers was conducted by Lupas [6]. His findings indicated that g-Bernstein polynomials can
provide superior approximations compared to classical methods when an appropriate choice of q is
made. This discovery has encouraged numerous researchers to develop g-generalizations of various
operators and to explore their approximation properties further. Numerous studies have contributed
to this field [3,7,8,13].

In recent years, Mursaleen et al. have concentrated on utilizing (p, g)-calculus for approximations
through linear positive operators, introducing the (p, 9)-analogues of Bernstein operators [20,21]. They
analyzed the uniform convergence of these operators and determined their rates of convergence. For
additional recent studies related to (p, g)-operators, readers can refer to [17-19,26,27].

The main motivation behind this study is that, to the authors” knowledge, there have been no
investigations into approximating two-variable operators using (p, q)- calculus thus far. In this context,
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we introduce two dimensional Chlodovsky type Bernstein operators based on (p, g)-integers. We
investigate the approximation properties of our newly defined operators with the aid of the Korovkin-
type theorem. Furthermore, we delve into the local approximation characteristics and determine the
rates of convergence through the modulus of continuity and a Lipschitz type maximal function. A
Voronovskaja type theorem relevant to these operators is also presented. Another significant aim of
this research is to examine the weighted approximation properties of our operators in the first quadrant
of RZ, specifically within the range of [0, c0) x [0, %). To achieve these results, we intend to apply a
weighted Korovkin-type theorem. We will begin by revisiting some definitions and notations pertinent
to the concept of (p, q)-calculus. The (p, q)-integer associated with a given number n is defined as

—1q

n = ,n=123..., 0<g<p<l
(1], P q<p

The (p, q)-factorial [n], ! and the (p, 7)-binomial coefficients are defined as :

p

1], = { lpqln = pq [y, neN

1, 1—0
and .
n n p,q!
=0 g 0<k<n
[ p Lq K, — K, !
Further, the (p, g)-binomial expansions are given as
1 n—k k
(llx + by)g,q = Z p( 2 )q(z)a”_kbkxﬂ—kyk.
k=0
and

n—1 n—1

(x=y)pq = (x=y)(px—qy)(P>x —¢%y) - (p" 'x —q" " 'y).

Further information related to (p, g)-calculus can be found in [25,28].

2. Construction of the Operators

Recently, Ansari and Karaisa [16] have defined and studied (p, 4)-analogue of Chlodovsky opera-
tors as follows:

1 n B x k X n—k—1 [k]’
comtn = it B 1] () (- ) o). o

n—k—1 n—k—1
X 1—[ X
1_> B (ps_qs>.
( bn p.q s=0 by

For 0 < g1,92 < p1,p2 < 1, we define Chlodovsky type two dimensional Bernstein operator
based on (p, q)-integers as follows:

where

nom k] /]
C,(f,}{ql)'(pl’ql) (f/ x,y) _ Z Z ch,k(Plr q1; x)®m,j(p2’ q2; y)f pl,q;(_n Ky, er’izjim ﬁm ’ (2)
k=0j=0 (1,9, P (1], 4,72
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foralln,m € N, f € C(Iy,p,,) with I, 5, = {(x,y) : 0 < ay < x,0 < By < y}and C(ly,p,) = {f:
Iy,p,, — R is continuous }. Here (a;) and () be increasing unbounded sequences of positive real

numbers such that

. &n
Iim — = 0, 3)
n=eo [1]p, g,
lim P 0. 4)
m—re0 [m]sz
Also, the basis elements are
Kk=D)=n(n=1) | 5 x kn—k—1 x
d)n,k(m,ql;x) = pn 2 [ ' ] (a) H (pﬁ — qﬁa),
n — n
p1m s=0
fG=D=mm=1) | 4y jm—j-1
D,i(p2,q92y) = py 7 [ j ] (ﬁy) I1 <P3‘fiﬁy>‘
P22 m s=0 m
We require the following lemmas to establish our main results.
Lemma 1 ([16]).
Cupq(Lx) = 1,
Cupgler;x) = x,
n—1p n—1
Cn/PIQ(EZ; x) = p[ ] z q[ [ ] ]p,q x
"lpa "lpa
V2x 5y o Rp+9)qln —1pex®by  q  Pln—1]pgln — 2], 23
Crpalesix) = ﬁ T (]2 T (]2 '
pPAa pAa pAa
B3xX 5,5, 93P +3qp +4°)[n — 1pebax* 5,
Cupqlesx) = [111]13 PP T PATRT =4
I Iz
‘73(3772 +2pq + ‘72)[” —1pgln — z]p,qbnx3 n—3 q°[n — Up,gln —2]pqln — 3]p,qx4
" [T P [l |
I r4
From Lemma 1, we have following:
Lemma 2.
Cglf’%/ql)/(Pzﬂz)(l;x’y) — 1,
C,(qf’,i,'ql)'(pz'%)(s;x,y) = x,
C;l%’ql)’(pz’%)(t;x,y) _—
C,g%’ql)’(pz’%)(st;x,y) = xy,
n—1
-1
C,(f,}[ql Ap242) ( y) 1[71 “nx qi[n—1pq 2,
M pra (] pua
-1
C(Wh (p242) (t2 ) > Bm n qg2[m — 1] p, g, 2.
[m] P2,92 [m] pP2.492
Using Lemma 2 and by linearity of C,; p L1P21) | we have
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Remark 1.
-1.,2 n—1
(p1.41).(P242) 2, TPl X Xp1 &n

C t—x)%x, = + , 5
e (( ) y) e (1] 1,01 ©

(P (poa) > -y ypy B
Col /™ s — ;X = + . 6
, (( y) y) e o (6)

Theorem 1. Let q1 := (q1,4), p1 := (P1n) 92 = (G2,m), P2 = (pom) such that 0 < q1,,qom <
pl,nl p2,m S 1. If

limpy, =1, limgy, =1, impy =1, limgy = 1, lim pi, = a1 and lim Pl = a2, )

the sequence C,(l%’ql)’(pz’qZ)( f;x,y) convergence uniformly to f(x,y), on [0,a] x [0,b] = I, for each f €

C(Inp), where a,b be reel numbers such that a < wy, b < By, and C(I,) be the space of all real valued
continuous function on I, with the norm

I fllcy= sup [f(xy)l-

(xy) €l

Proof. Assume that the equities (7), (3) and (4) are holds. Then, we have

n—1 m—1
w q1,n[1] 2,m[m —1]
pl,n n 0[ pz,m ﬁm 0 n P1,n91,n 1and q m P2,m.492,m 1.
[”l] [”l]

7

[n]pl,nrql,n P2,m4q2,m [71] P1,n91,n P2,m4q2,m

as n,m —> oco. From Lemma 2, we obtain limy, o C,(f ,}1’[7])’(7[72'%) (eij; x,y) = e;j(x,y) uniformly on I,

where ¢;;(x,y) = x'yl,0 < i+ j < 2 are the test functions. By Korovkin’s theorem for functions of

two variables was presented by Volkov [29], it follows that lim;, ;;—se0 C,(f ) (p22) (f;x,y) = f(x,y),

uniformly on I, for each f € C(I). O

3. Rate of Convergence

;(fnl{ql)'(p 22) 46 the function

In this section, we analyze the convergence rates of the operators C
f(x,y) using the modulus of continuity. Furthermore, we will present a summary of the relevant
notations and definitions concerning the modulus of continuity and Peetre’s K-functional for bivariate
real-valued functions.

For a function f € C(I,;), the complete modulus of continuity in the bivariate context is defined

as follows:

wlf,) = sup{IF(1,5) = Flx)| s /(6= 27+ (s =2 <0},

for every (t,s), (x,y) € I,;. Additionally, the partial moduli of continuity concerning x and y are
defined as follows:

w'(f,0) = sup{|f(x1,y) — f(x2,y)| 1y € [0,b] and |x1 — xp| < 6}
wW*(f,8) = sup{|f(x,y1) — f(x,y2)| : x € [0,a] and |y; — yo| < 5},

It is evident that they fulfill the properties of the standard modulus of continuity [11].
For 6 > 0, the Peetre-K functional [22] is defined as follows:
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K(f,0) = inf {117 =8l + ol

where C2(I,;) is the space of functions of f such that f, = J f and & (j =1,2) in C(I,p). The norm ||.||

ayf
+ ) |
C(Iab)
(Pnl1/¢71 ) (P2.92) )

We now provide an estimate for the rate of convergence of the operators C;’

on the space C?(1,;) is defined by

aIf
oyl

£z, = 1 lciny +2<Hay,

Theorem 2. Let f € C(I,). Forall x € I, we have
‘C’(lllﬂr}zﬂh)/(r’zrqz) —f(x,y) < Zw(f; 5n,m),

where

2 wapi bupy!
nm .
[n]Pqul [m]r’z,liz

Proof. By definition, the complete modulus of continuity of f(x,y), along with the linearity and
positivity of our operator, allows us to express:

R PR () — floy)] < Ol P R(f(s) - Fw) i y)
< o ””2< (f\/t—x y)2>;x/y>
< lf )| G (= x4 (s ) |

5n,m

Using Cauchy-Scwartz inequality, from (5) and (6), one can write following

CPIIAPR) (£ y) — f(x, )|

1/2
< (f 5nm) m{cnl’ 1.41),(P2.92) ((t x)2+(siy)2;x,y)} :|
1/2
= w(f, 5nm) 5nm{c p1a1),(p2.92) ((t—x)z;x,y) +C§fnl{ql)'(p2'q2)<(s—y)z;X,y)} ]
1/2
1 ‘mnpl b,BmPTil
< /51’11’7[ 1 + + .
B (U(f ' ) ‘Snﬂl( [n]Pqul [m]pz,qz

n—1 m—1 1/2
Choosing 6, = (Lm::ﬁ + hm:;qz ) ,forall (x,y) € I, we get desired the result.
O

Theorem 3. Let f € C(I,;), then the following inequalities satisfy

[CHRIAPA) — £, )| < @ (£:00) + @2 (f30m),
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where
an,p" 1
2 o= ®
[”]Pl Ul
b,Bum 1
52 . ©9)
" [y,

Proof. By definition, the partial moduli of continuity of f(x,y) and the application of the Cauchy-
Schwarz inequality imply that:

IN

M) (| () = f(x,y) 3%, )
Gl IS 5) = £ (o)) + G (1 () = )i xoy)
Gt M ([ (£t = ) y) + G ([ (515 = )y

P P) (£, ) — F(x, )|

IN

IN

< W00 |1 5 O (x|
+w2(f,5m)[ C(m 1), rizqz)(‘sfy‘ x, y)}
< (f 5n)[ (C(m A1),(p2,92) ((t ))1/2}

+w2(f/§m)|:1+$< r(f,}{'h) P2.42) ((S_y)z . y))l/z].

Consider (5), (6) and choosing

o apl!
n 7
[”]Pwl
-1
2 = bBmpy
o —_—
[m]}?zﬂiz

we reach the result. O

For ay,a; € (0,1] and (s,t), (x,y) € I, we define the Lipschitz class LipM (&1, ;) for the
bivariate case as follows:

If(s,t) = f(x, )] < Mls — x|"[t — y|*™?
Theorem 4. Let f € Lipp(®1, 7). Then, for all (x,y) € I, we have

|C;(1]f]r}z'q1)'(p2'q2)(f} xy) - f(xy)] < M(531/25§n2/2,

where 6, and 6y, defined in (8) and (9), respectively.

Proof. As f € Lipyi(@1,@3), it follows

GO () — fan)l < GLP PR s) — fG )l guixy)
< Mcr(l;,jrb’ql),(pz’%)(“ . x|&1 |S . y|&2; X, ]/)

_ MC,(&{%)’(M’%)(H _ x|&1 |;x)C,(1{7,}{q1)’(p2'q2)(|s _ ]/|&2}_1/)-
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-~

Forp:%q

‘Cr(lllﬁglﬂh)/(i?zzqz)(f xy) = fry)| < M{Cy (P1a1), (szqz)(“ . x|2;x)}al/z{cy(fg{%)'(pz’%)(l,‘x)}al/z
% {Cn%fql)'(r’z'qz)(ls _ y|2;y) }Elz/Z{Cr(lPrln/ql)r(Pzzqz) (1;y) }&2/2

ny/2 Ath 2
— Mén] / ‘5171 / .

Theorem 5. Let f € C'(I,p) and 0 < g1, Gom < P, Pom < 1. Then, we have

IR (v yy — )| < Il fa lleay) Ont UL fy lleqr,) Sne

Proof. For (t,s) € I, we obtain

£ = £6) = [ futws)du+ [ filx o)

By applying our operator to both sides of the above equation, we deduce:

(CHE ) (F,y) — f(x)| - < c,S”,zq”'("Z"”)(\ [ fulw sy
7 —= , X u 4

;x,y)

+C,(1f’,i[q1)’(p2’q2)< /ys folx,0)du ;x,y).
As
[ s <1 ey el and | [* £ < 5, i 15—,
we have

PP () — Fe )| < fo Dl SR P2 (1 x);x, )
+f; HC(Iab) Cr(l’r}qul)f(l’z/%)(|s _ y|’.x,y)‘

Using the Cauchy-Schwarz inequality, we can write following

CHFA R (Fr ) = Fey)l < e llo (ORI (0= 20,y ) /A P2 (1, ) 1172

11 fy ey LCER™MPR) (s = )%,y ) YL (12, ) 1172,
Form (5) and (6), we get desired the result. O

Using Maple, illustrative graphics demonstrate the rate of convergence of the operators

C,(f ,}{ql)’(p 242) {6 certain functions:
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0
Figure 1. The  comparison convergence  of Cégggg,o,g),(o,ggg,o,g) (f;x,y)(red),
Cégzg,o.%),(0.996,0.89) (f; x,y)(yellow) with ay, = In(n), B = +/m and f(x,y) = 3xy?e ¥ (blue)
=
.
.
e
I o
Figure 2. The  comparison  convergence  of Cégggg,o_g),(o,gg,o,g) (f;x,y)(red),

(0.990,0.86),(0.996,0.89)

20,20 (f; x, y)(yellow) with a, = In(n), B = v/m and f(x,y) = sin(x — y)(blue).
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CL09909),(099096) £\ 1 o),

of 20,20

Figure 3. The  comparison convergence
C£8;33,0.9),(0.99O,0.90) (f; x,y)(yellow) with a,, = In(n), B = In(m) and f(x,y) = x°y — xy?)(blue).
Theorem 6. Let f € C(I,;), then we have
[ (e y) — Sy, < 2MEdum(ey)/2),
where
1 an,p? "t bR pt !
Onm(x,y) = = max LS 2 .
2 [n]Pqul [m]lﬂz,fh

Proof. Let g € C?(I,;). Utilizing Taylor’s formula, we derive:

= g(s1,y) —g(x,y) +g(s1,52) — g(s1,y)
_ gt )
= T(Sl — X) +/x (51 - M)Tdu
2
0 g(x,v)dv

9g(x,y) 2
+ 85 sy —y) + /y (s2-0) =55

g(s1,52) — g(x,y)

s51—x 2
= agg;’y)(sl—x)+/01 (sl—x—u)—a ga(:lz'y)du
a 7 s2—Y 82 7
g (x y)(sz—y)+/() (sz—y—v)%dv

+—

ox

By applying C,(f 141)P242) 14 both sides of the above equation, we obtain:
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ag(x,
CmI) (g1, ) — g(x,y)| < ' 8(x,y) “C PP (o)~ 2);x,)
2
|l paa2) (/01 Y1 — - u) 28 ga( 2” du; x, y)‘
ag(x, 41),(pas
4 g(ay y) ‘Cr(fr}qu) (P2 qz)((52 _ y>;x/y)’
— 2
+ C,(f%"h),(r?z/qz) </052 y(sz —Yy- 0)78 ga( 5 )dv x, y)'

As C,(,%’ql)’(pz’@) ((s1 —x);x,y) =0and C,Sf’,}{ql)’(pz’%) ((s2 —y);x,y) = 0, one can write following

1]|l0g(x, a1),(pa,
|l £, ) - ﬂx’”Hq; < 2H ggxy) ) (s, — 2, )|
ab) C(Iab)
1]/9g(x,y) (P11, (p2.82) N2,
e N CR]
By (5), (6), we deduce,
1 7pn—1x2 xp”_lzxn _pmflyZ ]/Pmil,Bm
CPl'h A(p2.92) X, < =max 1 + A e 4+ IP2
H (frxy) = flx y)H C(Lap) 2 (] pua lpua " [M]pag (] p2.02
y Hag(x,y) Hag(w)
9 leqy,) 9 leqy,)
< g ||C(I,,b) Onm- (10)
By the linearity Cr(,f%’ql)'(p 242) we obtain
Hcglg{%)z(%ﬁz) (f/ x,y) _ f(X,]/) HC(I ; Hcy(l%/ql)f(PMz)f _ Cj(ﬂ}zxm)/(l’zﬂz)g”q[ )
(P141),(p292) , _ _
+HCn,m 8 8Hc<1a,,>+”f 8llcqy,)- A1)
By (10) and (11), one can see that
| ) (i) = fey)| < 2MiGnm(xy) /2).

C(Iub)
This step completes the proof. [

Initially, we need to establish the auxiliary result found in the subsequent lemma.

Lemma 3. Let 0 < g, < pn < 1 be sequences such that p,,q, — 1 and p}} — ay as n — oco. Then, we
have the following limits:
(i) limyy oo "2 CEAY) (1 — )% x) =

a
ST [”En,qn (Pn.qn) _\4. _ 2
(ii) limy oo =L32Coly ™ ((t — %)% x) = Bagx”.

n

1X

Proof. (i) Using Lemma 1, we have

n—1 2 x nfla
Gt (¢ = x)P) = T ¢ P (12)
Pnfn Pnfn
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Then, we get
[Tl] , _n—1 x2 B
Protin P (f — x)2%x) = — P 4 =1,
&n Kp
Taking the limit of both sides of the above equality as n — oo, we can write:
) n ) _ =1 x2
lim [l {Cﬁf,;”q”)((t - x)z,x)} = lim {p" + xpit
n—00 oo n—00 oo
= a1Xx.
(ii) Utilizing Lemma 1 along with the linearity of the operators C,(f ,;"q”), we arrive at:
C,(f,;”q") ((t— x)4; x) = Al,nx4 + Az,nx3 + A3,nx2 + Agpx (13)
where
A P (P 20— 4) + P g, (P 3pudn +43) — pa" (P + P+ 2Pud + 03)
1, -
" [”]?zn,qn
A = pa3n3, (PE — 2pugn + q3) .
[”]pu,qn
P g (< = 4Pudn = 3Padn +2p3) = pu' (B +3pud + 5Pdn +32) |
n
[”]%n,qn
A P 1)puan (=P +3pudn + 43) = P> (393 + 43 + 3pudn)
n - n
[”]g,z,qn
3n—3,3
p “}‘l
Agn = ,
" ["]3»1,%
It is clear that
. [n]%nﬂn
hm 72{A4,nx} =0. (14)
n—oo ﬂén
Taking the limit of both sides of A; ,,, we arrive at:
2 _ =3 _ 2 n—5(__ 1,3 2 3 31—6(,,2 3 2 3
r}g{}o [n]:;,'in {Al/n} — ,}g‘;{ Pn [n]PVl;Zn (p” q“) + Pu ( Pn Z;Pn% + %) _ Pu (pn J[;]Pn +if"qn + qn) }
n n n Pngn®n
- lm { =P (Pn =) (Po = an) | PP+ 3padn + ) P (P P+ 2pud £ 43) }
- 2 2 2
n—reo “n ’Xn [H]Pn,qn ‘xn
= 0. (15)
Similarly, we can show that;
2 2
[n] [n]
. Pnfn — . Pnfn _ 2
lim o {Az,} =0and Jim 2 {As,} =3mx (16)

By combining (14)-(16), we reach the desired the result. O

Now, we ready present a Voronovskaja type theorem for C,(J),Z”q") (f;x,y).
Theorem 7. Let f € C?(I,;). Then, we have

axfa(ey) a1y fun (%)
2 2 :

tim (1], . C2 ™ (5 %,y) — f(xy))

n—oo
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Proof. Let (x,y) € I,;. Then, write Taylor’s formula of f as follows:

fst) = flry)+fils—x)+f(t—)
A= X2 428 = 1) (- ) + £y} el ) (- 22+ (- y)?) (17)

where (s, t) € [ and e(s,t) — 0as (s, t) — (x,y).
If we apply the operator C,(Zp ) (f;.) on (17), we obtain

Cy(,?ﬁ'q”)(f;s,t) —f(x,y) _ f:,c(x y)C(V”’q")((S —x);x, ]/) +fl(x y)C(p"f%)((t — y);x,y)
{f/fc P (£ — x0)%5x,7) + 24y Cohar ) (s — 2) (£ — ) 2, y)

RO (= y) w)} +Cl™ (e(s, 1) (s =2+ (t=y)?)ix, ).

Applying the limit of both sides of the above equality, we getn — oo, [

Tim (1], ™ (Fi5,8) = fx,y) = ,}gr;o[an,,w{f”C”’"‘“ ((t—x%x,y)

27, C ) (s = x)(t = )i y) + FACH ((t—y)z;x,y)}

+ ,}E{}o[”]wn C,ﬁ’,’,’,’/"” (e(s, t) ((s —x)2 4 (t— y)z);x,y).

By Cauchy-Schwartz inequality, we can write the following

™ (els,t) (s — P2+ (t =y )ixy) < \/lggo ™ (e2(s, 1);x,y)

X\, G e (s~ 0+ (=) ).

n—

As limy 0 C(p” q”)( (s,t);x,y) = €(x,y) = 0 and from Lemma 3(ii)
limy, eo[n]3 an(p"’q”) ((s—x)*+ (t —y)*); x,y) is finite, then we have

lim [n]2,, CE2 ") (e(s,8) (s = )* + (£ = 9)*)sy) =

n—o0

Hence, we deduce

- i axfl(vy)  Oufp(Y)
lim [n]p,q, 1" (Fr0,) = flay) = " S

n—oo

This step completes the proof.

4. weighted Approximation Properties of two variable function

In this section, we investigate the convergence of the sequence of linear positive operators
C,(,p ,,11"71)’(’7 242) 4 a function of two variables defined within a weighted space. We also compute the rate
of convergence using the weighted modulus of continuity.

Let o(x,y) = x2 +y? + 1, and define B, as the space of all functions f defined on the real axis that
satisfy |f(x,y)| < Mfp(x,y), where My is a positive constant dependent solely on f. The subspace C,

of B, consists of all continuous functions and is equipped with the norm:

X
[fllo="sup o)
(xy)eRL 24
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Let Cg represent the subspace of all functions f € C, for which limy_, £ Eig; exists and is finite.

For every f € CY, the weighted modulus of continuity is defined as

T hy,y+ho) — f(x,
QOf(f;01,62) = sup sup flx (1 y ;) hf(x y)| (18)
(xy)ER2 |1|<61,Iha| <5, p(x,y) p(h1, h2)

Lemma 4. The operators C,(f 1) (p2sg2) defined (2) act from C,(R%) to B,(R2.) if and only if the inequality
| G (o) e e
holds for some positive constant c.

Theorem 8. Consider the sequence of linear positive operators C,S’f’%’ql)’(p 242) defined in (2). For any function
f € C) and for all points (x,y) € Iy,p,,, it follows that

lim [|CY P (£, ) — f(x,y)]lp = 0.

n—00

Proof. From Lemma 2, we obtain

I C}%ﬂl),(pz,qz)(l; xy)—1l, = 0,
| Gl (52, y) —xflp = 0
I C;gfrk/%),(PquZ)(t; xy) -yl = 0.

Again by Lemma 2, we can write following

| Gl PR 4 5 2,y) — (24 7) D

_ P pia Py By Py ly

m—1,2
= suy + + +
(x,y)ep]Ri{ [”}PM]] (xz + yz + 1) [n]mm (xz + yZ + 1) [m]Pz,qz (xz + .1/2 + 1) [m]Pz,qz (xz + yz + 1) }

n—1

T S S T
Mg [Mlpoy ("] p202 (M) 2.0

Considering the limit of both sides of the preceding inequality as n,m — oo and applying (3) and (4),
we derive

|| LN 4 £, y) — (2 ) [lp=0.

Applying weighted Korovkin theorem for two variable which presented by Gadzhiev [4,5], we get
desired the results. [

For estimate rate of convergence we need the following lemma.

Lemma 5. Forall (x;y) € Iy,p,,, by (5), (6) and (13), one can write the following

n—1

CIS{’%/%)/(PLQZ) ((t _ x)Z,, X, y> - 0 <T;]p1 ) (xz + x>’ (19)
P1.41
n—1

COM) (- )ty = O(t{;}ﬁ )(x4 2 4x) 20)
P1.41

and


https://doi.org/10.20944/preprints202410.1123.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 October 2024 d0i:10.20944/preprints202410.1123.v1

140f 16

Cm ) (s yxy) = O Pupy”! (P+y+1), (21)
! [m]erqZ

clprm)(p2a2) ((S )Ly, y) - 0 By (y4 Y+ +y+ 1). (22)
! [m]erqZ

(P11).(p2.92)
n,m

Now, compute rate of convergence the operator C in weighted spaces .

Theorem 9. If f € CY, then we have

Gl ) (f;3,y) — f(x,y)

sup 3 < Cowp(f;0n,6m)
(xy)ERZ p(x,y)
here C, i tant independent of n, m and & _ Pl 6 _ 2 p
, where Cy is a constan p. fn, n= e 0 = Tl

Proof. Taking into account the following inequality given in [9], we deduce

[£(t) = (x| < 8(1 452+ ) wp(f3 6, 0)

><<1+ |t5nx|)<1+ S(5my|>(1+(t—x)2) (1+ = 9)°).

) (P2,42)

Applying Ci™

write following

both side above inequality and using Cauchy-Schwarz inequality, one can

(Ca ) (£ 3,y) — £ ()| < 8(1+ 22 432 )wp(f60,6m)

« |1 +Cr(lllf’nl1r‘71)/(l72r‘72)<(t _ x)z; x,y) + ;\/Cigf’r}qul)r(m/%) ((t _ x)z; x,y)

n

;\/Cr(l%,ﬂl),(pzfqz) ((t —x)% x,y) C}gz}{ql)f(pz,qz) ((t —x04a, yﬂ

1
% |1+ Cr(f%'ql)’(pz’%) (<S _ y)z; X, y,a) + 5\/(:’(1%#1)/(172#2) <(S _ y)z; X, y)
m

« i \/Cﬁlpr}{lh)/(l’zzth) <(S . ]/)2} x, ]/) C,(qprlr[ql)'(pz’%) ((s _ y)4; %, ]/>‘| ‘
5m ’ !

By (19)-(22), we obtain

[ CHmA ) (2, y) = F(x,y)| < 8(14+ 52 497 ) @y (F 00, 0m)
1o e (x+x) Lo Him ) oy
[]p1.an on ] 1.1

n—1
+;J0<p1 “")(x2+x)(x4+x3+x2+x)]
n

[n]Plffh
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m—1 m—1 m—1
% 1+P2 B (y2+y) i Py Bm [Py PBm
[m] P22 [m] P22 [m] P22

Py B, Py B,y s,
+ Wty T WYy )

a [m] P2.92 [m] P2.92

n—1 1/2 m—1 1/2
Taking J,, = (M) ,O0m = (p Z ﬁm) , one write the following:

[m]py.4,

‘szf’rln’m’(p 212 (£, ) — f(x,y) ( <G (1 +x% 4 yz)wp (f;6n,6m)

X{l—i—é%(xzﬂ—x) + x2+x+\/(x2+x)(x4+x3+x2+x)}

x {Héi(yzﬂ/) +\/(y2+y)+\/(y2+y)(y4+y3+y2+y)],

where C; is a constant independent of 1, m. Since 62 < 1,42, < 1, for sufficiently large 1, m, we get

SR iy )| \/ P Ta, \/p;nlﬁm
su < w ; ,
(x,y)epRi (1+x2+2)° = Mlprgr "V [mpyg

This step completes the proof. [
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