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Abstract: The integration of responsible artificial intelligence (RAI) principles with emerging neurosymbolic AI

(NSAI) systems is crucial for the development of fair, explainable, and trustworthy AI technologies. This paper

presents a systematic review exploring the convergence of RAI and NSAI, analyzing current research to assess

how RAI principles such as explainability, bias, robustness, transparency, and privacy have been applied to NSAI.

This work employed a systematic literature review to synthesize findings from a sample of papers demonstrating

RAI principle implementations. Our analysis reveals two main trends: significant research demonstrates the

application of NSAI to enhance RAI principles in other AI systems, while limited work directly applies RAI

principles to NSAI architectures. Key challenges include the lack of established frameworks for implementing

RAI within NSAI systems and the complexities inherent in merging neural and symbolic reasoning methods. This

review highlights open research gaps and suggests pathways for future work, emphasizing the need for robust

RAI frameworks tailored to NSAI systems.
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I. Introduction

Rapid advancements in artificial intelligence (AI) have been driven by the successes of deep
learning techniques Garcez et al. (2019). Deep learning has demonstrated improved accuracy and
performance compared to pre-existing types of AI systems LeCun et al. (2015); Wan et al. (2024).
Other benefits of deep learning include learning from unstructured data Krizhevsky et al. (2012) and
independence from intermediate feature engineering Hinton et al. (2006). However, deep learning has
two serious limitations. The first is opacity of decision-making. Meaning, deep learning systems have
difficulty in evidencing how and why a given decision was made. Further, a second limitation is an
inability to incorporate structured knowledge into a decision while facing high levels of uncertainty.

Neurosymbolic AI seeks to bridge the gap between the data-driven capabilities of (deep) neural
networks and the reasoning power of symbolic systems. By integrating these two paradigms, neu-
rosymbolic AI aims to create more robust, explainable, and efficient AI systems. More specifically,
NSAI systems, according to Hitzler et al. Hitzler and Sarker (2022), combine neural networks with
predicate logic. Such systems are capable of reasoning about complex problems in environments with
high levels of uncertainty Wan et al. (2024). NSAI is expected to have a broad yet significant impact on
the future of AI systems because of the ability to handle such circumstances.

Fields such as healthcare, education, and robotics are experiencing benefits from NSAI-based
innovations Campagner and Cabitza (2020); Inala (2022); Wagner and d’Avlia Garcez (2024). Yet,
any field relying on reasoning over large datasets within a set of rules or facts will see benefits from
NSAI over traditional AI systems such as deep learning. Furthermore, NSAI has potential to establish
generalized explainability and trustworthiness in other AI systems Wan et al. (2024).

This last notion integrates NSAI with another burgeoning field- Responsible AI (RAI). RAI
emphasizes the need for AI systems of any type to be fair, trustworthy, and aligned with societal
values Mitchell et al. (2019). The field has established a consistent set of principles. Responsible AI
controls, such as explainability, fairness, and robustness, are crucial to addressing these challenges and
ensuring the development of trustworthy AI systems. Further, there has been demonstrable success
Speith (2022); Hort et al. (2024); Upreti et al. (2024) related to applying RAI principles to traditional
AI systems such as neural networks, classifiers, and so forth. Additionally, foundational work is
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underway exploring how RAI principles may be applied to generative AI Kim et al. (2024). However,
challenges related to explainability, trustworthiness, fairness, robustness and safety, as well as privacy,
applied to NSAI remain unresolved Wan et al. (2024); Hitzler and Sarker (2022); Hamilton et al. (2022);
Delong et al. (2023).

Generally speaking, ensuring AI systems operate ethically and responsibly is a critical initiative
for researchers and practitioners Cheng et al. (2021). AI systems of any type can develop divergent
qualities or behaviors when responsible AI principles are absent. For this reason, the purpose of
this work was to assess the state of knowledge in regard to the convergence of RAI principles and
NSAI. More specifically, this study sought to uncover which, if any, research demonstrated technical
implementations of RAI principles in NSAI systems.

The rest of this paper is organized as follows. The next section presents a conceptual framework
through related work. The framework consists of definitions for RAI and NSAI, significance of each
field, as well as open challenges in each. Then, the method employed to fulfill the purpose of this
study is discussed.

II. Related Work

The related work supporting this systematic review consists of two converging literatures: NSAI
and RAI. The aim of this section is to impart a sufficient understanding of definitions, significance of
NSAI and RAI, as well as highlighting key open challenges in each field.

A. Neurosymbolic AI

While deep learning has achieved remarkable success in various fields, it has limitations, such as
the lack of interpretability and the requirement for large amounts of labeled data. NSAI addresses
these issues by integrating symbolic reasoning, which can leverage existing knowledge and provide
explanations for the AI’s decisions. In addition, the inclusion of probabilistic approaches in NSAI
helps in dealing with uncertainty and improving the robustness of AI systems. This is particularly
valuable in real-world applications where data can be noisy or incomplete Wan et al. (2024).

Neurosymbolic AI combines machine learning methods based on artificial neural networks (such
as deep learning) with symbolic approaches to computing and AI, such as those found in knowledge
representation and reasoning Hitzler and Sarker (2022); Hamilton et al. (2022); Delong et al. (2023). Early
works like those by Besold et al. Besold et al. (2017) laid the groundwork by exploring basic integration
of neural and symbolic methods. Such early work focused on improving the interpretability and
reasoning capabilities of neural networks. From there, three areas of significance emerged for NSAI.
These areas are offsetting of inherent limitations in deep learning, improved handling of uncertainty,
and a potential step towards artificial general intelligence.

Fundamentally, NSAI differs from traditional AI systems such as neural networks, classifiers,
and regression models by because of the symbolic reasoning layer. Traditional AI models like neural
networks excel at learning from large datasets but often struggle with interpretability and reasoning.
Symbolic AI, on the other hand, excels in logical reasoning Dong et al. (2019). Hence, NSAI fills in gaps
in traditional AI systems. Doing so enables systems to perform data-driven predictions while also
applying high-level symbolic reasoning Garcez et al. (2019).

This hybrid approach allows for greater flexibility in solving complex problems, offering advan-
tages in areas where traditional models may fall short, such as generalization, intepretability, and
explainability (Sarker et al., 2021). Moreover, NSAI is designed to handle complex reasoning tasks
more efficiently, mimicking human-like cognitive processes by blending the interpretability of symbolic
AI with the adaptability of neural networks (Besold et al., 2017).

One of the long-term goals of NSAI is to contribute to the development of human-level AI, which
combines the learning capabilities of neural networks with the logical reasoning abilities of symbolic
systems. This interdisciplinary approach, according to Wan Wan et al. (2024) is essential for creating
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AI systems that can perform complex cognitive tasks and exhibit human-like understanding and
problem-solving skills.

1) Challenges and Opportunities

Merging neural networks with symbolic reasoning is inherently challenging. Neural networks
excel at pattern recognition but lack interpretability, while symbolic systems are interpretable but
struggle with ambiguity and noise d’Avila Garcez and Lamb (2020). Thus, achieving a seamless
integration without compromising the strengths of each approach remains difficult. Furthermore, NSAI
is suitably more complex than previous AI systems. Dong et al. Dong et al. (2019) found incorporating
advanced logical reasoning into neural architectures engenders significant computational overhead.
Indeed, integrating symbolic reasoning can sometimes lead to decreased performance or increased
complexity in neural models Li and Srikumar (2019).

Given time, it is reasonable to suspect NSAI researchers will overcome most or all of these
challenges. However, there are related and adjacent RAI challenges which are not so easily addressed.
For instance, the complexity and performance challenges can have negative impacts on explainability
Li and Srikumar (2019), interpretability Cunnington et al. (2022), as well as a variety of robustness and
safety parameters Besold et al. (2017). Furthermore, the literature Garcez et al. (2019); Eskov et al. (2021);
Shakarian and Simari (2022) suggests there is a lack widely accepted framework or set of best practices
for developing NSAI systems.

B. Responsible AI

AI is a mainstream technology and highly embedded in culture. Much less common is how ethical
and responsible AI can be achieved although, according to the literature Jobin et al. (2019); Arrieta
et al. (2020); Mehrabi et al. (2021), there is increasing demand for such. Definitionally, responsible AI
ensures AI systems are developed and deployed in ways that are ethical Floridi et al. (2018); Mittelstadt
et al. (2016). Ethical, in this context, implies principles such as fairness, transparency, privacy, security,
and trustworthiness. The idea is an AI system can be considered responsible when the set of relevant
principles are present. Of course, to be present implies some form of evaluation or assessment.

To that end, ethical principles have gone through rapid theoretical and practical expansion over
the past decade. In this short time, researchers have developed robust technical frameworks to measure
and evaluate these principles. Two prominent examples are the Microsoft Responsible Toolbox and the
IBM AI 360 Toolkit. AI practitioners can use these frameworks to evaluate models. Yet, researchers
Radclyffe et al. (2023); Lu et al. (2024) suggest RAI is one of the most critical challenges present in the
broader AI field of study.

Culturally, the rapid expansion has been driven by notable examples of harm resulting from a lack
of responsible AI. Such examples include discriminatory sentencing and parole decisions in the U.S.
justice system Angwin et al. (2022) and Amazon’s recruitment tool becoming biased against women
Dastin (2022). Another part of the expansion is increasing legal and regulatory requirements such as
U.S. President Biden’s Executive Order and the EU’s AI Act Wörsdörfer (2023).

Meanwhile, the literature Khan et al. (2022); Alzubaidi et al. (2023) has coalesced around five
specific RAI principles: explainability, bias or fairness, robustness or safety, transparency or inter-
pretability, and privacy. Additional principles, such as explicability Prem (2023) and accountability
Liu et al. (2022), have been studied but ultimately fall within the scope of one or more of the five
specific principles. Consequently, industry (IBM, Microsoft, US Department of Defense) has settled on
explainability, bias, robustness, interpretability, and privacy for practical RAI implementation.

1) Explainability

To that end, explainability is understood to be an AI system’s ability to explain its behaviors and
outcomes Arrieta et al. (2020); Hoffman et al. (2018). The field views behavior or outcome as proxies for
decision-making. The principle seeks to clarify how AI systems reach specific conclusions, making
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them understandable to human operators. Notably, explainability is tightly coupled to the technical
interpretability or transparency of AI system inner workings.

2) Bias or Fairness

Biased AI systems exhibit skewed outputs based on prejudiced inputs Hort et al. (2024). Often,
bias is understood as affecting individuals based on demographics Mehrabi et al. (2021). This is true.
However, AI system bias also may result from preferential data ingestion from one sensor in an array
or unequal, non-demographic feature weighting Blasch et al. (2021). Fairness, then, as the companion
technical principle aims to prevent bias by ensuring equitable treatment and outcomes across different
groups (persons or systems). Such can apply to data, algorithms, or outputs.

3) Robustness or Safety

When an AI system maintains reliable performance across a wide range of conditions, including
noisy or adversarial inputs, distribution shifts, and unforeseen changes in the environment, the
literature deems such to be robust Hendrycks and Gimpel (2016); Goodfellow et al. (2014). Closely
related, safety ensures AI systems behave in a predictable, controlled, and secure manner, even in the
presence of unexpected challenges or adversarial manipulations Raji and Dobbe (2023). Together, these
concepts assure AI systems from errors, vulnerabilities, and harmful outcomes.

4) Interpretability or Transparency

Interpretability refers to the extent to which human operators can comprehend and reason about
the explanations an AI system provides Doshi-Velez and Kim (2017); Gilpin et al. (2018). The principle
renders the internal logic transparent such that operators understand how input data is transformed
into outputs. Significantly, detailed knowledge of the model’s algorithmic structure is not, and cannot,
be required. Then, in combination with explainability, operators can access the completely pipeline of
AI system decision-making.

5) Privacy

The RAI principle privacy protects sensitive information from misuse, exposure, or unauthorized
accessed Sweeney (2002). In this way, AI system privacy strategies minimize risk of data breaches,
unauthorized surveillance, and re-identification of individuals Shokri and Shmatikov (2015). Privacy is
differentiated, in simple terms, from robustness and safety because the latter works to stop something
from happening whereas privacy reveals when something has happened. The two function best when
paired similar to explainability and interpretability. Unique to the five RAI principles, AI system
privacy offers technical mechanisms to comply with international governance policies (e.g., GDPR).

6) Challenges and Opportunities

Despite the stated need for RAI and availability of broad technical frameworks, the field has a
variety of open research challenges. Such is observable given how the design and implementation
of responsible AI principles continues to appear as ideas for future work throughout the literature
Whittlestone and Clark (2021); Fjeld et al. (2020). Specific examples include, but are not limited to,
developing trustworthy models that are transparent and interpretable is problematic Lundberg and
Lee (2016). Protecting AI systems from adversarial attack Goodfellow et al. (2014); Papernot et al. (2016)
is also an open challenge. Moreover, because AI systems are dependent upon data, ensuring privacy
of personal or otherwise sensitive data is a nontrivial aspect of ongoing research Abadi et al. (2016);
Wei et al. (2021).

Furthermore, two gaps become obvious in the literature when inferring whitespace between
frontier innovations in AI and nascent responsible AI research. Foremost, there is little or no guidance
for practitioners. While researchers have presented technical responsible AI implementations for
traditional AI systems, there is nothing to connect concept to discrete application. Moreover, the
cutting edge of AI research (i.e., NSAI) seems to have expanded rapidly beyond the RAI horizon.
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Thus, there should be little surprise that similar RAI challenges surround NSAI as is true for
traditional AI systems, at least in the neural network layer. For example, Hitzler et al. Hitzler and
Sarker (2022) suggested fairness can be assured through transparency and explainability. Yet, Wan
et al. Wan et al. (2024) articulated a need for enhanced explainability and trustworthiness in NSAI
systems. The contradiction causes confusion and leaves a significant gap in the literature. Accordingly,
it is not clear in the literature how one would go about implementing RAI principles in NSAI. This
systematic review aims to address the lack of clarity.

III. Method

This work was motivated by a single research question: what RAI principles have demonstrated
implementations for NSAI systems? Our aim with such a question was twofold. On one hand, this
question drove a synthesis of what RAI principles have demonstrated application to NSAI systems.
On the other hand, by proxy, this question would reveal gaps where RAI principles have not yet been
applied to NSAI systems.

A systematic literature review design facilitated collecting and analyzing relevant research to
answer the research question. As part of the review, multiple online public databases were queried such
as Google Scholar, arXiv, IEEEXplore, ACM Digital Library, and DBLP Computer Science Bibliography.
Date ranges during the literature searches were not restricted. Further, duplicate papers were removed
from the collection before proceeding. A manual inspection of the NSAI related papers was performed
and each paper was evaluated according to the inclusion-exclusion criteria.

A. Search Strategies

Our search strategy consisted of iterative queries using a set of RAI principles (explainability, bias
or fairness, robustness or safety, interpretability or transparency, privacy) and a set of AI types (neurosymbolic
AI or NSAI, symblolic AI, AI,and machine learning or ML). Boolean AND/OR operators were used to
combine keywords from each set into rational search strings. Two examples of rational search strings
would be "explainability AND (neurosymbolic AI OR NSAI)" and "explainability AND AI".

Broad searches were intentionally employed to begin with to minimize the chance of missing even
tangentially related papers. Further, one search strategy included general AI and machine learning as
terms. Doing so was a means to paint a contrast. Table 1 summarizes the literature discovery. The
count is the total articles returned from the search.

Table 1. Literature search strings with count of discovered papers.

Search String Count
explainability AND (neurosymbolic AI OR symbolic AI OR NSAI) 3,040
explainability AND ((machine learning OR ML) OR AI) 157,000
(bias OR fairness) AND (neurosymbolic AI OR symbolic AI OR NSAI) 3,260
(bias OR fairness) AND ((machine learning OR ML) OR AI) 3,280,000
(robustness OR safety) AND (neurosymbolic AI OR symbolic AI OR NSAI) 3,310
(robustness OR safety) AND ((machine learning OR ML) OR AI) 4,490,000
(interpretability or transparency) AND (neurosymbolic AI OR symbolic AI OR NSAI) 1,420
(interpretability or transparency) AND ((machine learning OR ML) OR AI) 72,200
privacy AND (neurosymbolic AI OR symbolic AI OR NSAI) 2,540
privacy AND ((machine learning OR ML) OR AI) 5,140,000

Note: Counts are minimum estimates based on publicly available search results. More research may be available
beyond our searches.

B. Inclusion and Exclusion Criteria

Full-text NSAI papers with a publicly accessible document were included. Whereas, discovered
papers with only a public abstract were excluded. Further, papers containing a demonstrated technical
RAI principle implementation- inclusive of journal papers, conference papers, theses, and dissertations-
were included. Demonstrated application in the context of the literature equated to either sufficient
technical details to construct an implementation or a sample implementation available in pseudocode
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or source code. Literature not containing one or the other were not included in this systematic review.
As well, papers demonstrating policy, governance, or otherwise non-technical expressions of RAI
principles were excluded.

The final literature sample after applying the inclusion-exclusion criteria consisted of 25 NSAI
related papers and and 974 general AI or ML papers in total. Down-selection outcomes were tracked
by search string category (Table 2). The count represents the resulting total after inclusion and exclusion
criteria were applied. Criteria were continually applied to the total search results until either reaching
duplicate saturation or exhausting the dataset.

Table 2. Subsets of discovered papers selected for analysis.

Search String Count
explainability AND (neurosymbolic AI OR symbolic AI OR NSAI) 11
explainability AND ((machine learning OR ML) OR AI) 2001

(bias OR fairness) AND (neurosymbolic AI OR symbolic AI OR NSAI) 3
(bias OR fairness) AND ((machine learning OR ML) OR AI) 2001

(robustness OR safety) AND (neurosymbolic AI OR symbolic AI OR NSAI) 7
(robustness OR safety) AND ((machine learning OR ML) OR AI) 192
(interpretability or transparency) AND (neurosymbolic AI OR symbolic AI OR NSAI) 2
(interpretability or transparency) AND ((machine learning OR ML) OR AI) 182
privacy AND (neurosymbolic AI OR symbolic AI OR NSAI) 1
privacy AND ((machine learning OR ML) OR AI) 2001

Note: Counts are minimum estimates based on publicly available search results. More research may be available
beyond our searches. 1 Collection of ML / AI counts stopped after 20 pages of search results (at 10 results per page).
2 Total NSAI literature count is 24 and did not include trusthworthy because the principle was emergent during
analysis. See section IV.

C. Information Extraction

Information was extracted from the collected papers by inspecting the full-text for technical
responsible AI principle implementation details. Then, papers were sorted into categories using
literature dimensions such as published date, keywords, RAI principle(s), and whether each principle
applied to NSAI or was NSAI applying the principle to another AI system. For completeness, citation
metadata was also extracted so as to map potential relationships between research meeting our
inclusion criteria.

IV. Findings

Recall this study set out to determine what RAI principles have demonstrated implementations
for NSAI systems. To accomplish this, NSAI literature spanning four years was analyzed. The oldest
study was published in 2020 while the most recent appeared in 2024 (Figure 1). There were three
papers published 2020 with a steady upwards trend reaching eight papers in 2023. The year 2024 had
six papers published with four months remaining.

Sources for the papers varied between seven entities. The most frequent source were conference
proceedings. The next highest frequency of papers came from arXiv preprints. One thesis and two
dissertations contributed to the findings. Professional society journals supplied two papers, one each
from IEEE and ACM. Finally, the remaining papers came from a diverse array of journals.

There was only one instance of repetition of primary author across the papers Wagner and d’Avlia
Garcez (2024); Wagner and d’Avila Garcez (2021). Additionally, one paper appeared in two different
groupings Amado et al. (2023). There were no citation connections between the papers analyzed.
Meaning, no given paper cited another paper in the dataset.

As an aside, one may notice the introduction of a sixth RAI principle- trustworthy or trustworthiness.
While precedent exists for encapsulating RAI principles under the label of trustworthy, this study
found NSAI research treating trustworthiness distinct from other principles (e.g., explainability and
trustworthiness. Therefore, such papers were analyzed separately.
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Figure 1. Number of analyzed papers grouped year of publication and by RAI principle.

In total, 25 papers were analyzed (Figure 2). Forty-four percent of the papers demonstrated the
RAI principle of explainability. Robustness as a principle represented the next largest cluster at 16%.
Thereafter, the collected papers demonstrated bias, interpretability, and privacy at 12%, 8%, and 4%
respectively. Trustworthiness, the emergent principle, accounted for 16% of the analyzed literature.

Figure 2. Number of analyzed papers grouped by RAI principle.

Furthermore, the literature was split between two directions. The majority- 84%- of the literature
exhibited the application of NSAI to other AI systems for the purposes of implementing a RAI principle
(Table 3. The other direction constituted a RAI principle applied to a NSAI system (Table 4. Such work
comprised 16% of the analyzed research. These percentages were inclusive of the trustworthiness
principle.
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Table 3. Literature demonstrating NSAI applying RAI principles to AI systems.

Principle Reference Year Technique

Explainability

Pisano et al. (2020) 2020 prototype integrating symbolic logic into sub-symbolic
systems

Oltramari et al. (2020) 2020 hybrid system combining data-driven perception with
logical reasoning

Campagner and Cab-
itza (2020)

2020 proof of concept using Logic Tensor Networks and rule-
based systems

Venugopal et al.
(2021)

2021 framework providing uncertainty estimates for its pre-
dictions

Himmelhuber et al.
(2021)

2021 a fidelity metric using graph neural networks and sym-
bolic logic

d’Avila Garcez and
Lamb (2020)

2023 fidelity and soundness measures based on distributed
and local symbols

Bellucci (2023) 2023 ontology-based image classifier using a structured
knowledge base

Dwivedi et al. (2023) 2023

data visualization, feature importance analysis, and par-
tial dependence plots (PDPs)
permutation feature importance and SHAP values
counterfactuals and contrastive explanations
post-hoc interpretations of model predictions with LIME
software libraries such as Skater or AIX360

Mileo 2024 framework to integrate human feedback, causal reason-
ing, and knowledge injection

Wagner and d’Avlia
Garcez (2024)

2024 framework for a logic-based querying system

Thota and Arora
(2024)

2024 human-centric interactive interface with knowledge
graph integration

Bias

Wagner and d’Avila
Garcez (2021)

2021 framework using SHAP measure with demographic par-
ity and disparate impact metrics

Xie et al. (2022) 2022 Neuro-Symbolic Assertion Language to formalize fair-
ness properties enforced with specification networks

Padalkar et al. (2024) 2024 NeSyBiCor framework using Answer Set Programming
with semantic similarity measure

Interpretability

Hooshyar and Yang
(2021)

2021 framework focused on knowledge representation, sym-
bolic constraints, and knowledge extraction

Bennetot et al. (2022) 2022 Greybox XAI framework with deep neural network
(DNN) building Explainable Latent Space

Robustness

Smirnova et al. (2022) 2022 Nessy system uses expectation regularization and data
sampling

Inala (2022) 2022 use of state machines and neurosymbolic transformers
for formal verification

Amado et al. (2023) 2023 Predictive Plan Recognition (PPR) framework removes
noise and gaps

Privacy Piplai et al. (2023) 2023 framework combining differential privacy, secure multi-
party computation, and synthetic data generation

Trustworthiness Zeng (2024) 2024 framework integrating differentiable learning with
graph neural network rewiring

On one hand, the analyzed NSAI for RAI research in Table 3 demonstrated three types of tech-
niques: prototypes, measures, and frameworks. Across the 21 papers, eight constituted some kind
of prototype (prototype, system, or proof of concept). Measures appeared four times. Frameworks
appeared most frequently with nine occurrences. On the other hand, the papers showing application
of RAI principles to NSAI systems in Table 4 revealed two of the three techniques from the previous
direction. Prototypes and frameworks were evenly distributed with two each. Measures were not
represented.
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Table 4. Literature demonstrating RAI principles applied to NSAI to AI systems.

Principle Reference Year Technique

Trustworthiness

Agiollo and Omicini
(2023)

2023 NeSy system combining various RAI principles

Kosasih et al. (2023) 2023 hybrid architecture using neural network data-driven
learning and the symbolic rules

Gaur and Sheth
(2024)

2024 CREST framework combining procedural and graph-
based knowledge with neural network capabilities

Robustness Amado et al. (2023) 2023 Predictive Plan Recognition (PPR) framework removes
noise and gaps

V. Conclusion

Deep learning is at the core of modern AI mainstream popularity Garcez et al. (2019). AI systems
such as ChatGPT are possible because of the enhanced capabilities of deep learning architecture. Yet,
deep learning decisions are opaque and the systems falter when facing high uncertainty. NSAI aims
to address these gaps by integrating neural networks with symbolic computing Hitzler and Sarker
(2022). In short, NSAI adds a reasoning capability which is transparent and can handle high degrees of
uncertainty during decision making.

While the capabilities of NSAI address the gaps in deep learning, all AI systems are subject to
ethical and responsible controls. Once implemented RAI principles render AI systems of any type
explainable, unbiased, interpretable, robust, and trustworthy. Traditional AI systems such as classifiers,
regression models, and clustering systems have a rich literature available in this area. In fact, the
research demonstrates a plethora of RAI techniques across all RAI principles (Table 2). Until this work,
the depth and breadth of RAI for NSAI was unknown. Thus, the purpose of this work was to assess
the state of knowledge in regard to the convergence of RAI principles and NSAI.

A systematic review design facilitated the collection and analysis of pertinent research. The initial
search uncovered 13,570 papers. After applying inclusion-exclusion criteria, the sample consisted
of 25 papers. From this collection, the systematic review revealed two overarching features of the
converged RAI and NSAI literature. First, substantial research exists demonstrating the application of
NSAI for RAI principles. Such included the discovery of an emergent principle in trustworthiness.
Second, much less research exists demonstrating application of RAI principles to a NSAI system. The
reasoning behind these features might be best understood in three parts.

A. Inferences

Recall explainability comprised a significant quantity of existing NSAI for RAI research. One
may infer the focus on explainability, at least in part, has been inherited from push for explainability
in traditional AI systems. Deep learning especially is limited because of opaqueness but so are the
various other traditional AI systems. NSAI innately addresses explainability because of its reasoning
capability. Therefore, explainability representing a significant portion of NSAI for RAI research is
unsurprising.

The same rationale hints at one of the three reasons for the discovered features of the sample.
That is, NSAI as a type of AI, is adept at applying RAI principles as a consequence of being able to
reason. Indeed, one can observe the necessity of reasoning in both the theoretical and applied RAI
literature Selbst et al. (2019); Christoph (2020); Müller (2020).

The second part of our rational has two sub-parts. On one hand, we observed an extensive
literature for RAI principle implementations in traditional AI systems. On the other hand, the use of
the term trustworthy in combination with explainability within NSAI for RAI literature was somewhat
surprising. The associated research makes clear the term trustworthy encompasses multiple RAI
principles Di Maio (2020). Yet, the treatment of explainability apart from other RAI principles is a
curious matter.
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Explainability separate from trustworthiness is a curious matter insofar as NSAI research pre-
supposes if explainability is correctly implemented, then the other RAI principles (being subordinate)
must likewise be present. Stated differently, the other RAI principles are implicitly present by virtue of
explainabilty being present. A further thought might be explainability is not implementable as a solo
principle in NSAI.

Lastly, the third part is implicit in the power of NSAI for RAI and connects back to the first part.
NSAI can apply RAI principles to itself, specifically the neural network layer. Such would also be
true for any multi-modal AI architecture embedded below the reasoning layer. Then, because NSAI
is innately explainable, either a human-in or human-on the loop can reason about the ethical and
responsible nature of a NSAI system’s outputs.

B. Limitations

The above tripartite rationale has limitations as does this study, however. It is possible the entire
presupposition is incorrect. The prevalence of NSAI for RAI research compared to RAI for NSAI could
be skewed because of flaws in our systematic review execution. Whereas, even if our systematic review
execution was sound, it is possible research exists outside of the indices searched. If true, this changes
the distribution of collected papers. Moreover, the dearth of RAI for NSAI research might reflect deep
challenges, even impossibilities, in RAI principle implementations within an NSAI system.

C. Future Work

Overall, tremendous opportunity exists at the intersection of RAI and NSAI. There exists oppor-
tunity both in applying RAI principles to NSAI as well as using NSAI to apply RAI principles. As
well, the stated limitations are addressable in future work. To that end, there are three specific areas of
potential study as follows.

A preeminent area for study is the implementation of RAI principles demonstrated in traditional
AI literature to NSAI architectures. A sequence consisting of reproduction or replication of traditional
AI research for each principle, constructive work in porting each principle to NSAI architectures may
be beneficial. Such could be followed up by work investigating the impact of all principles within a
NSAI architecture.

Based on the outcomes from any future work in the prior category, studying impact of RAI princi-
ple implementation on NSAI explainability may have significance. To the extent NSAI explainability is
propositionally related to the other RAI principles, knowing whether all, some, just one, or none of
the other principles is sufficient for explainability. Moreover, such work can investigate whether one
specific technique of an individual RAI principle from traditional AI research is more or less suited for
NSAI. Reproduction or replication study, as well as constructive work, may not be necessary for this
line of inquiry.

Finally, future work might investigate the extent to which an NSAI system may fulfill the human-
in or human-on the loop role when evaluating the ethical and responsible state of a given NSAI system.
Framed another way, there is an opportunity to explore the use of NSAI against NSAI for RAI principle
implementation. Such work may investigate explainable NSAI system A evaluating the explainability
associated with NSAI system B. Also, work could look into NSAI system A reasoning about the other
individual RAI principles in NSAI system B.
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