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Abstract: Free vibration calculations of Sandwich plates with curvilinear fiber variable stiffness composite face 

sheets usually require a significant computing effort to obtain a high computational accuracy. In order to get 

the natural frequencies of sandwich plates with high computational accuracy and low computational cost, an 

improved approach integrating the differential quadrature method (DQM) and first-order shear deformation 

theory (FSDT) is introduced in this work. The skins of sandwich plates are composed of one or several layers 

of variable stiffness composite laminates (VSCL) with fiber paths assumed to follow a specific linear pattern. 

The FSDT and von Kármán strain–displacement relationship were used to derive the governing equations of 

the sandwich plate, and DQM was applied to discretize such governing equations and solve for the 

fundamental frequency of the sandwich plate. The computational results were verified and compared with 

other FSDT–based computational results, and there was good agreement with the suggested model. Also, the 

variation patterns of the natural frequency under different parameters such as fiber orientation angles, 

boundary conditions, number of layers, and core/skin thickness were investigated. This study entailed the 

development of an efficient solution to the problem of the fundamental frequency of VSCL sandwich plates, 

and the outcomes could provide a basis for future dynamics comparative studies. 

Keywords: free vibration; sandwich plate; variable stiffness composite laminates; curvilinear fibers; differential 

quadrature method 

 

1. Introduction 

The cost and weight of sandwich materials are lower than that of single materials, and they have 

better mechanical properties and process properties, which are gradually being widely used. 

Typically, a sandwich construction has three sections: a top, middle, and bottom segment with a core 

located in the center and skins at the top and bottom, where the skins have the same material and 

thickness while the core can be made of almost any material or architecture.[1] The face sheets require 

high strength and the core requires light weight.[2] Because of their extraordinarily high stiffness-to-

weight and strength-to-weight ratios,[3,4] sandwich plates are very often utilized in engineering 

settings like aerospace and automotive applications, naval vessels, ships, bridge construction and 

wind turbines.[5–7] Sandwich structures have many benefits, including the need for high-strength, 

lightweight materials and the ongoing discovery of new materials, which has led to their continual 

usage in structural design.[8] The conventional skins of constant stiffness composite laminates (CSCL) 

consist of straight fibers whose stiffness, such as elasticity and flexibility, remains uniform or constant 

in all directions in the plane of the material. While VSCL are typically made by carefully designing 

and arranging layers of different materials or by altering the path of reinforcing fibers (curvilinear 

fiber) in the construction.[9] It is obvious that a more flexible method of increasing a plate's rigidity 

can be achieved by using VSCL.[10] Researchers have recently used theoretical analysis, empirical 

and semi-empirical modelling, numerical simulations, and experimental testing to examine the 

mechanical properties of sandwich constructions. [11] Experimental data is typically used to verify 
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the modelling,[12] while numerical simulations are preferred for their computational efficiency and 

rapid turnaround time.[13]  

The foundation for VSCL has been laid by numerous academics using the statics analysis of 

CSCL sandwich plates. Kant et al.[14] have analyzed the fundamental frequency of CSCL laminates 

and sandwich plates and the solution method used is finite element. They used a higher–order refined 

theory as the basis for their modelling and as parametric inputs, they systematically changed the 

plate thickness, the ratio of core to skin thickness, and the boundary conditions. Furthermore, their 

investigation included a rigorous comparative analysis with established methods to demonstrate the 

precision and robustness of their chosen theory. Yuan et al.[15] looked at the vibration properties of 

conventional sandwich plates that are rectangular in shape, including the natural frequencies and 

modes, using the spline finite strip method and it was concluded that the techniques of single-plate 

analysis were not applicable to the structural analysis of most plat constructions. To lower the 

computational cost in the fundamental frequency prediction of sandwich plates and composite 

laminates, Mantari et al.[16] presented a simplified FSDT. Reducing the amount of unknowns in the 

modeling computations allows for the reduction of the number of degrees of freedom. Comparing 

the computational results with those of other computational models serves as verification of the 

method's accuracy.  

The advent of advanced technologies ushered in a new era of VSCL plates and revolutionized 

the design landscape of composite plates. By manipulating the fiber orientation, VSCL plates offer 

improved mechanical properties by altering the stiffness distribution. Gürdal et al.[17] used a 

numerical model to solve static problems such as displacement field and overall stiffness of VSCL 

symmetric laminates. They pointed out that by choosing an appropriate starting and ending angle, 

the given loading conditions can be better considered and a certain stiffness can be achieved or 

possibly the buckling behavior can be improved. Lopes et al.[18] predicted various failure modes of 

VSCL plates in compression and simulated the first layer failure in post-buckling. Finite element 

modelling was used to predict the physical failure criteria for different modes of failure of the VSCL 

plates. Khani et al.[19] applied a new solution to incorporate the failure criteria for strength into the 

parameter space of the laminates. The numerical results showed an increase in strength compared 

with the quasi–isotropic construction. Akhavan et al.[20] analyzed the law of variation of 

fundamental frequencies and mode shapes with fiber orientation angles for VSCL laminates, third-

order shear deformation theory (TSDT) was the modelling technique applied, and p-version finite 

elements were employed in the solution. Through data comparison, they explored some connections 

that exist between fiber orientation angles and fundamental frequencies.  

Existing research on VSCL plates focuses on statics and has only investigated their dynamics to 

a limited extent, which warrants further research into their dynamics in future studies. Houmat[21] 

and Hachemi[22,23] are among the few scholars who have performed free vibration analysis of VSCL 

sandwich plates. Houmat’s modelling theory is three-dimensional elasticity theory, while Hachemi’s 

analysis is grounded in both layer-wise theory and HSDT. They both chose p-version finite elements 

as the solution method. By adjusting factors including fiber orientation angles, boundary conditions, 

and skin-to-core thickness ratios, the variation patterns of fundamental frequencies as well as other 

dynamic responses were examined, highlighting the benefits of VSCL sandwich plates in structural 

investigations. 

Systems of partial differential equations that typically have difficult-to-find closed-form 

solutions characterize engineering challenges.[24] Consequently, engineers and researchers 

frequently turn to approximative numerical techniques to solve such systems. These methods include 

the finite element, the p-version finite element, the Rayleigh–Ritz methods, the finite volume method 

and so on. Bellman et al.[25] developed the differential quadrature technique (DQM) for solving 

partial differential equations. DQM has the advantage of having a smaller number of discrete points 

with higher computational accuracy. Liu[26]  utilized Mindlin plate theory as the modelling theory 

and applied DQM to the investigation of rectangular plate buckling. Liew et al.[27] used DQM to 

conduct a static study of a rectangular plate on Winkler’s basis, utilizing FSDT as the modelling 

theory. This is the first successful application of DQM to thick–plate problems. Based on previous 
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work, Liew et al. [28] applied the moving least squares differential quadrature (MLSDQ) to calculate 

and study the fundamental frequency of symmetric laminates of medium thickness and the 

modelling theory is FSDT. The free vibration problem of sandwich plates with functional grades on 

an elastic foundation was investigated by Fu et al.[29]. They employed DQM, and the modelling 

theory is NSDT. To the best of our knowledge, no studies have yet applied the DQM to the free 

vibration analysis of VSCL sandwich plates modelling by FSDT.  

This work proposes an FSDT-based DQM approach to give a reasonably accurate and 

computationally cheap computer model for the free vibration analysis of VSCL sandwich structures. 

The plate consists of two VSCL skins and an isotropic core. Based on the FSDT, the governing 

equations were derived using the von Kármán strain–displacement relationship and Hamilton's 

principle. By applying the DQM, the fundamental frequencies of the sandwich plates were 

determined numerically, and the impacts of several parameters on the plate's vibration behaviour 

were examined. 

This is how the remainder of the paper is structured. The modelling procedure and analytical 

method employed are stated in the second section. In the third section, numerical applications and 

discussion, encompassing both CSCL and VSCL sandwich plates, are presented. The last section 

summarizes the conclusions.  

2. Theoretical Formulation 

2.1. Geometric Description 

The geometrical design and parameterization of a sandwich plate with variable stiffness skins 

are displayed in Figure 1. The upper and lower composite skins, every stratum of the skin consisting 

of single or laminated composite layers with curvilinear fibers, with a soft core in the centre, make 

up the entire plate. Assume that the dimensions of the plate are a, b, and h, respectively, for length, 

breadth, and thickness. The total thickness h can be decomposed into upper and lower skins f
h

 and 

intermediate core c
h . It is considered that every interface on the board is flawlessly integrated. Given 

that the entire plate consists of N layers, the thickness of each single layer of the face sheet is 

( )2 1= −/
layer s

h h N
 . The entire plate's Cartesian coordinate system is specified as 

0 0 2 2    −  ， ,  / /X a Y b h Z h .  

 

Figure 1. Geometric configuration and Cartesian coordinate system of the sandwich plate. 

To simplify the definition, the point of central symmetry of the reference path is typically 

specified to be at the center of each individual layer of the skin, as illustrated in Figure 2, and the 

Cartesian coordinate system is defined as 
2 2 2 2 2 2−   −   −  / / ,  / / ,  / /

layer layer
a x a b x b h z h

. 

Assuming that the angle of the fiber direction varies linearly along the x–direction, it is expressed 

mathematically as follows:[20] 
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where, 0
  is the starting angle of the fiber, characterizing the angle between the tangent of the 

fiber curve at the center point and the x–axis of the relative horizontal line, the fiber’s ending angle, 

or 1
 , is the angle formed by the tangent of the fiber curve and the x-axis of the relative horizontal 

line at the location where the layer's outer boundary is 2/a , and a  is the plate length.  

 

Figure 2. Schematic representation of the fiber orientation angles. 

Integrating the above equation gives the reference path for the curvilinear fiber placement as follows: 
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2.2. Modelling Theory 

Between the skin and core materials of sandwich plates, there are significant differences in 

stiffness and material properties, making the performance analysis of the sandwich structure quite 

intricate. As a result, the calculation model selected has a significant impact on how accurately the 

sandwich structure is calculated.[30] Transverse shear deformation is not taken into account by the 

classical laminated plate theory (CLPT), which is predicated on Kirchhoff's assumptions. Therefore, 

for plates of moderate thickness, CLPT's estimates on both static and dynamic analysis are biased.[31–

34] For the purpose of this study's free vibration analysis of sandwich plates, the author employed 

the FSDT modelling theory,[35] which accounts for the impact of shear deformation. 

Based on Kirchhoff’s first two assumptions, the third assumption was not considered. In case a 

symmetric sandwich plate is used, the vibrations in the transverse and in-plane directions are 

separated by the symmetry in the z direction, and the in-plane deformation at 0=z can be ignored. 

The displacement field has the following expression.[36] 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

0

0
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

= +

= +

=

, , , , , , ,

, , , , , , ,

, , , , ,

x

y

u x y z t u x y t z x y t

v x y z t v x y t z x y t

w x y z t w x y t                          (3) 
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where the displacements along the three coordinate axes are denoted by u, v, and w, and the 

midplane of the plate rotates about the x and y axes at angles x  and  y , respectively. 

According to the von Kármán strain–displacement relationship, the components of the linear 

strains can be expressed as follows: 

2
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x

x y

y

yyz
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x yxxy

u w
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xv v

y y
y

w z

y

w

x
y xu v w w
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Applying Hooke’s law and assuming plane stress, the stress components of the plate areas are 

obtained in the following way: 

 

11 12 16

12 22 62

61 26 66
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45 44
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where ijQ
 are given in the following way:   
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where 

1 2 21 1

11 22 12

12 21 12 21 12 21

66 12 55 13 44

1 1 1


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− − −
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,  ,  ,

,  ,  
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where i
E , ij

G
, and 


ij  are the mechanical properties and k = 5/6 is the shear correction factor 

used in this study. [37] 

Hamilton's principle can be used to generate the moving equations in the following way:[35] 
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where U is the strain form and T is the kinetic form of energy, respectively. 

The strain energy can be shown in the following way: 
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The kinetic energy can be shown in the following way: 
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The moving equations for the sandwich plate's free vibration may be acquired by substituting 

equations (4)–(7), (9) and (10) into equation (8): 
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h
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. 

2.3 Equation of Motion 

The stress resultants Mij and transverse shear force Qij can be determined by integrating the stresses 

in each single layer along the direction of thickness. 
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Equation (11) can be substituted with equation (12) to assemble the following formulations for 

the governing equations of the sandwich plate's free vibration. 
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where Aij and Dij are the stretching and bending stiffnesses, respectively.  

2.4. Differential Quadrature Method 

DQM is essentially a differential equation in the function at each node of the derivative with the 

calculation of the region of all nodes at the function value of the weighted sum to replace.[25] The 

required differential equation's numerical solution can be found in the resultant system of equations. 

This is how DQM transforms the differential equation solution problem into the linear equation 

system solving problem.[38–40] Appendix I provides the specific implementation of this technique. 

To simplify the calculation, for the DQM discretization of the moving equations, the expressions 

for the weighting coefficients were obtained: 

( )
( )

( )
( )

( )
( )

( )
( )1 1 2 2

1 1 2 2

2 2
= , = , = , =

ij ij ij ij
ij ij ij ij

A B A B
A B A B

a b a b                   (16) 

The separating variables for the displacement terms (w, 
x

 , and 
y

 ) can be written in the 

following way: 

( ) ( ) ( ) ( ) ( ) ( )     = = =, , , ,  , , , ,  , , ,i t i t i t
x y y y

w x y t W x y e x y t x y e x y t x y e
   (17) 

where ( ),W x y
 is the vibration mode function, x  and 


y  are the rotational angles functions 

and   is the fundamental frequency of the sandwich plate. 

To facilitate subsequent calculations and comparisons, the data are dimensionless as follows: 

( ) ( )
2

110 440 2

 
    

        
= =  

 
,  ,  = , = ,  =

ij ij

f

D Ayx b
D A

a b D A h E
              (18) 

where 110
D  represents ( )11

D x
 at x = 0 and 440

A  represents ( )44
A x

 at x = 0. 

Substituting equations (16)–(18) into equations (13)–(15) and performing a DQM discretization, 

the governing equations can be shown as follows: 

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 1 1

55 44 45
1 1 1 1

1 1 1

55 45 45
1 1 1

1
2

44 0
1

2  

     

  

= = = =

= = =

=

+ +

+ + +

+ = −

   

  



, , ,

,

y yx x

yx x

y

N NN N

im jn im jni mj i in i mn
m n m n

NN N

im jn imi x mj i x in i y mj
m n m

N

jni y in ij
n

A A W A B W A A B W

A A A B A A

A B I W
           (19) 

( )
( )

( )
( )

( )

( )
( )

( )
( ) ( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )( )
( )

1 1

55 45 55
1 1

2 1 1 2

11 16 66
1 1 1 1

2 2

45 16 26
1 1

1

12 66
1

2

   

     

     

 

= =

= = = =

= =

=

− − −

+ + +

− + +

+ +

 

   

 



,

, , ,

, , ,

x x

y yx x

yx

x

N N

im jni mj i in i x mn
m m

N NN N

im im jn jni x mj i x mn i x in
m m n n

NN

im jni y mn i y mj i y in
m n

N

im ji i
m

A A W A B W A

D A D A B D B

A D A D B

D D A B
( )1

2

2
1

  
=

= − , ,

yN

n y mn x ij
n

I
             (20) 
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( )
( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )( )
( ) ( )

( ) ( )
( )

( )
( )

( )
( )

1 1

45 44
1 1

2 2

45 16 26
1 1

1 1

66 12
1 1

2 2

44 66 22
1 1

1

26
1

2

 

     

  

     



= =

= =

= =

= =

=

− −

− + +

+ +

− + +

+

 

 

 

 



, , ,

,

, , ,

x x

yx

yx

yx

x

N N

im jni mj i in
m m

NN

im jni x mn i x mj i x in
m n

NN

im jni i x mn
m n

NN

im jni y mn i y mj i y in
m n

N

im ji
m

A A W A B W

A D A D B

D D A B

A D A D B

D A B
( )1

2

2
1

  
=

= − , ,

yN

n y mn y ij
n

I
                       (21) 

where  

( ) ( ) ( )         = = =
, ,

, ,  , ,  ,
ij i j x ij x i j y ij y i j

W W
                   (22) 

To simplify the calculation, equations (19)–(21) can be stated more succinctly in the following 

way: 

1 1 1 0
2

2 22 2

23 3 3

0 0

0 0

0 0

 

 

 

  

 

      
      
  = −    
      
       

, , ,

, , ,

, , ,

x y

x y

x y

W

x x
W

y y

W

K K K W WI

K K K I

IK K K
                (23) 

or 

            
2

    = −   =    ,  
T

TTT yxK R I R R W
                 (24) 

Similarly, the boundary conditions can be derived by discretization using the DQM 

    0=T R
                             (25) 

The solution of the specific matrix  T
 is given in the next section. 

To find the basic frequencies, or eigenvalues, and the accompanying eigenvectors, all mesh 

points were divided into two groups: internal domain points and boundary points. The boundary 

points, indicated by {b} in vector form, are situated at the plate's four edges. The domain points are 

the set of all remaining interior points and are denoted by {d}. After substituting the boundary 

conditions into the governing equations, the following equation is obtained by dividing and 

rearranging the matrix according to the above division:  

2
0


        

= −    
        

bb bd b

db dd d d

K K R

K K R R                       (26) 

By eliminating the non–zero element  b
R

, equation (26) can be shown in the following way: 

( ) 2 0− =
d

K R
                              (27) 

where 
1−= −

dd db bb bd
K K K K K . The fundamental frequencies and amplitudes of the plate can be 

determined by solving equation (27) using the standard eigenvalue matrix. 

2.5 Boundary Conditions 

For the four edges—clamped, simply supported, and free—CCCC, SSSS, and FFFF can be 

utilized as the boundary conditions. Hybrid boundary conditions such as CSCS, CFCF, and CFFF 

were also used in this study. The following are the boundary condition phrases for each edge: 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2024 doi:10.20944/preprints202410.0840.v1

https://doi.org/10.20944/preprints202410.0840.v1


 9 

 

(a) Clamped  

0 0 1 0 1 = = = = = = =,   or  (  or ),yxw x x y y                         (28) 

(b) Simply supported 

0 0 1

0 0 1








= = = = =


= = = = =

,   or ,

,    ,

x
y

y

x

w x x
x

w y or y
y                               (29) 

(c) Free 

0 0 1

0 0 1

= = = = =

= = = = =

,  ,   ,

,  ,   ,

x x xy

x y xy

Q M M x or x

Q M M y or y
                                (30) 

Substituting equation (12) into equation (30), gives the following: 

45 55

11 12 16

16 22 66

44 45

12 22 26

0

0

0 0 1

0

 

  

  

 

  

    
+ + + =   
   

    
+ + + = 

     

    
+ + + = = = 

     

    
+ + + =   
   

  
+ + +

  

,

,

,   or ,

,

y x

y yx x

y yx x

y x

y yx x

w w
A A

y x

D D D
x y y x

D D D x x
x y y x

w w
A A

y x

D D D
x y y

16 22 66

0

0 0 1
  

 
= 

  

    
+ + + = = = 

     

,

,    ,
y yx x

x

D D D y or y
x y y x

                (31) 

Equations (28)–(30) can be combined to express the boundary conditions for a sandwich plate 

with hybrid boundary conditions. 

After applying the DQM to discretize the above equations, the following equations can be got:  

(a) Clamped 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1

1 1

0

0

0 0 1 0 1

       

           

             

= = = =

= = = =

= = = = = =

, , , , ,

, , , , ,

, , , , ,  ,   ,

x y

x y

x y

j N j i i N

x j x N j x i x i N

y j y N j y i y i N

W W W W

or
   (32) 

(b) Simply supported 
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( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

1

1

1

1

1

1

0

0

0 0 1

0

0

0 0 1

   

     

   

   

     

   

=

=

= =

= =

= =

= =

= =

= =





, , ,

, , ,  

, ,  , ,  

, , ,

, , ,  

, ,  ,

x

x

x

y

y

y

j N j

y j y N j

N

im x m j
m

i i N

x i x i N

N

jn y i n
n

W W

A

W W

B
                        (33) 

(c) Free 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( )

( )
( )

1 1

45 55
1 1

1 1 1 1

11 12 16
1 1 1 1

1 1

16 26
1 1

0

0

   

      

   

= =

= = = =

= =

   
 + + + =   

  

 
 + + + =
 
 

+ +

 

   

 

, ,

, , , ,

, ,

,

,

y x

y yx x

yx

N N

jn imi y mn in i x mn mj
n m

N NN N

im jn jn imi x mj i y in i x in y mj
m n n m

NN

im jni x mj i y in
m n

A B W A A W

D A D B D B A

D A D B D ( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

1 1

66
1 1

1 1

44 45
1 1

1 1 1 1

12 22 26
1 1 1 1

0

0 1

0

  

 

   

      

= =

= =

= = = =

 
 + =
 
 

= =

   
 + + + =   

  

+ + +

 

 

   

, ,

, ,

, , ,

,

,   ,

,

y x

y x

y yx x

N N

jn imi x in y mj
n m

N N

jn imi y mn in i x mn mj
n m

N NN N

im jn jn imi x mj i y in i x in
m n n m

B A

or

A B W A A W

D A D B D B A

( )
( )

( )
( )

( )
( ) ( )1 1 1 1

16 26 66
1 1 1 1

0

0

0 1

      

 

= = = =

 
  =
 
 

 
 + + + =
 
 

= =

   

,

, , , ,

,

,

,   ,

y yx x

y mj

N NN N

im jn jn imi x mj i y in i x in y mj
m n n m

D A D B D B A

or    (34) 

In this way, the specific matrix  T
 in equation (25) can be calculated.  

3. Results and Discussion 

3.1. Validation and Convergence Studies 

The validation and convergence investigations of the free vibration for VSCL sandwich plates 

using the DQM solution method are provided in this part. By comparing the results with other FSDT-

based numerical solution solutions for currently available CSCL sandwich plates, the quantity of 

DQM grid points was ascertained. In the study, material I and material III in Table 1. were used as 

the skins and the core, respectively.  

Table 1. Mechanical properties of the materials. 

 Materia

l 

E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ν12 ρ(kg/m3

) 

Face sheets I 131 10.34 6.895 6.205 6.895 0.22 1627 

 II 138 8.96 7.1 7.1 7.1 0.30 1 

Core III 6.89×10-3 6.89×10-3 3.45×10-3 3.45×10-3 3.45×10-3 0.30 97 

 IV 0.04 0.04 0.016 0.016 0.06 0.25 1 

 V 0.104 0.104 0.05 0.05 0.05 0.32 130 

 VI 0.057 0.328 0.056 1.115 2.2×10-3 0.406 335.762 
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First, the quantity of grid points at which the natural frequency generated by this method might 

be stabilized is determined by selecting an anti–symmetric sandwich plate of [0/90/core/0/90] with 

the geometric parameters , , and . With an increasing number of grid 

points, Figure 3. displays the pattern of the sandwich plate's first three orders of natural frequency. 

It is evident that when the quantity of grid points rises, the frequency values' computation results 

typically yield steady results. It shows that the application of DQM to the problem in this study can 

provide convergent results.  

 

Figure 3. First three orders of natural frequency with the increase of grid points. 

The quantity of grid points in this investigation was selected as 
38= =

x y
N N

 when DQM was 

used. For comparison, various aspect ratios ( /a h ) and ( /a b ) were chosen, as shown in Tables 2–3. 

Table 2. The dimensionless fundamental frequency of anti–symmetric 
0 90 0 90  / / / /core

 sandwich plate 

(a / b = 1, tc / tf = 10). 

a/h 
Methods    

Ref[14] Ref [16] Ref [41] Present 

2 5.2017 5.6114 5.6114 5.3246 

4 9.0312 9.5447 9.5447 9.2547 

10 13.8694 14.1454 14.1454 14.2559 

20 15.5295 15.6124 15.6124 15.6742 

30 15.9155 15.9438 15.9438 15.8596 

40 16.0577 16.0655 16.0655 16.0028 

50 16.1264 16.1229 16.1229 16.1256 

60 16.1612 16.1544 16.1544 16.1698 

70 16.1845 16.1735 16.1735 16.1752 

80 16.1991 16.1859 16.1859 16.1872 

90 16.2077 16.1944 16.1944 16.1966 

100 16.2175 16.2006 16.2006 16.2369 

Table 3. The dimensionless fundamental frequency of anti–symmetric 
0 90 0 90  / / / /core

 sandwich plate 

(tc / tf = 10, a / h = 10). 

a/b 
Methods    

Ref [14] Ref [16] Ref [41] Present 

/ 0.5=a b / 10=a h / 10=c ft t
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0.5 39.4840 40.3559 40.1511 40.2645 

1 13.8694 14.1454 14.1454 14.2559 

1.5 9.4910 9.8376 9.7826 9.3789 

2 10.1655 8.0759 7.9863 8.1679 

2.5 6.5059 6.9340 6.8463 6.9473 

3 5.6588 6.0727 5.9993 6.0227 

5 3.6841 3.9929 3.9658 4.0763 

As is evident from Tables 2–3, the results of the DQM used in this study to calculate the 

composite sandwich plates are only slightly different from those of the references, indicating that the 

mechanical model and calculation method used in this study are correct. At the same time, only 38 × 

38 grid points are used in this study, which enables high accuracy of the results. Regarding 

computation effectiveness, the current paper's approach is better. 

3.2. Parameter Study 

A parameter research of the free vibrations was carried out to enhance the vibratory behavior of 

the VSCL sandwich plates. The fundamental frequency of the sandwich plate was examined in 

relation to the fiber orientation angles, boundary conditions, number of layers, and core/skin 

thickness.  

3.2.1. Fiber Orientation Angles 

First, the effect of changes in the start and termination angles was investigated. In this section, a 

VSCL sandwich plate with four symmetric skins 0 1 0 1
      
 

| / / |
s s

core
  is chosen as the 

object of investigation. Materials II in Table 1. were used as the face sheets and materials IV and  VI 

in Table 1. were used as the two kinds of core, respectively. Among the two selected core materials, 

material VI is an aluminum honeycomb core.[42] The plate thickness h = 0.1a, the core thickness

4

5
=

c

h
h

 , and each single layer were taken as 40
=

layer

h
h

 . For comparison, the first and second 

dimensionless natural frequencies 

2

2

 


 
 
 

=

f

b

h E
 were chosen. The fiber orientation angles 0

  

and 1
  are both varied from 0° to 90°. Both CCCC and SSSS boundary conditions were considered, 

and the results are listed in Tables 4–7, respectively. 

Table 4. First and second natural frequencies of the VSCL sandwich square plate

0 1 0 1
      
 

| / / |
s s

core
, material II and material IV, CCCC. 

  Θ1      

Mode Θ0 0 10 30 50 70 90 

1 0 6.9527 6.9507 6.9469 6.9353 6.9234 6.9187 

 10 6.9567 6.9714 6.9709 6.9563 6.9507 6.9457 

 30 7.0264 7.0402 7.0410 7.0154 6.9912 6.9542 

 50 9.3974 7.1262 7.1094 7.0565 7.0051 6.9721 

 70 7.1675 7.1753 7.1462 7.0852 7.0095 6.9871 

 90 7.0478 7.0756 7.0947 7.0678 7.0145 6.9923 

2 0 8.9047 8.9219 8.9851 9.0576 9.1216 9.1347 

 10 8.9209 8.9581 9.0495 9.1234 9.1876 9.2137 

 30 9.0898 9.1422 9.2457 9.3088 9.2852 9.2943 

 50 9.3519 9.4053 9.4747 9.3883 9.2260 9.2127 

 70 9.5884 9.6095 9.4978 9.2751 9.0877 9.0622 

 90 9.9746 9.9823 9.9946 9.8496 9.0347 9.0014 
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Table 5. First and second natural frequencies of the VSCL sandwich square plate

0 1 0 1
      
 

| / / |
s s

core
, material II and material IV, SSSS. 

  Θ 1      

Mode Θ0 0 10 30 50 70 90 

1 0 6.3067 6.3409 6.4822 6.5774 6.5977 6.6124 

 10 6.3272 6.3885 6.5296 6.6102 6.6269 6.6314 

 30 6.4312 6.5006 6.6158 6.6561 6.6488 6.6572 

 50 6.5537 6.5946 6.6688 6.6735 6.6101 6.6016 

 70 6.5528 6.5856 6.6296 6.6106 6.5174 6.4174 

 90 6.4736 6.5469 6.6026 6.5863 6.4936 6.4247 

2 0 8.3372 8.3594 8.4891 8.6027 8.6967 8.7246 

 10 8.3577 8.4062 8.5464 8.6607 8.7622 8.8451 

 30 8.5293 8.601 8.7364 8.8492 8.8618 8.8924 

 50 8.7891 8.8465 8.9353 8.9003 8.7389 8.7137 

 70 8.9093 8.9362 8.8803 8.7339 8.5645 8.4547 

 90 9.3178 9.3267 9.3756 9.3149 8.9146 8.8472 

Table 6. First and second natural frequencies of the VSCL sandwich square plate

0 1 0 1
      
 

| / / |
s s

core
, material II and material VI, CCCC. 

  Θ1      

Mode Θ0 0 10 30 50 70 90 

1 0 11.0793 11.0781 11.0697 11.0648 11.0453 11.0357 

 10 11.0771 11.0953 11.0914 11.0766 11.0756 11.0714 

 30 11.1549 11.1668 11.1625 11.1398 11.1157 11.1047 

 50 13.5267 11.2479 11.2376 11.1803 11.1316 11.1243 

 70 11.2943 11.1749 11.3022 11.2033 11.2733 11.3478 

 90 11.2223 11.2055 11.1914 11.1375 11.1398 11.2047 

2 0 36.0282 36.0495 36.1104 36.1777 36.2433 36.2647 

 10 36.0492 36.0856 36.1773 36.2468 36.3136 36.3224 

 30 36.2157 36.266 36.3757 36.4304 36.4078 36.3924 

 50 36.4774 36.5317 36.5965 36.5162 36.3525 36.2176 

 70 36.7176 37.0954 36.7352 37.1054 36.6247 36.7341 

 90 37.1175 36.3956 36.9743 36.2134 36.1622 36.1527 

Table 7. First and second natural frequencies of the VSCL sandwich square plate

0 1 0 1
      
 

| / / |
s s

core
, material II and material VI, SSSS. 

  Θ1      

Mode Θ0 0 10 30 50 70 90 

1 0 10.4352 10.4633 10.6112 10.7011 10.7187 10.7231 

 10 10.4534 10.5097 10.6595 10.7313 10.7482 10.7513 

 30 10.5547 10.6224 10.7407 10.7839 10.7782 10.7924 

 50 10.6788 10.7174 10.7937 10.7974 10.7397 10.8043 

 70 10.6768 10.7098 10.7523 10.7334 10.6432 10.6243 

 90 10.5944 10.6674 10.7316 10.7103 10.6142 10.5378 

2 0 35.4595 35.4859 35.6165 35.7305 35.8212 35.8934 

 10 35.4812 35.5335 35.6683 35.7815 35.8853 35.9136 

 30 35.6575 35.7275 35.8633 35.9785 35.9869 36.0034 

 50 35.9093 35.9717 36.0571 36.0281 35.8644 35.9436 
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 70 36.0297 36.0617 36.0074 35.8588 35.6927 35.6219 

 90 36.4395 36.4497 36.5019 36.4393 36.0425 35.9547 

Tables 4–7 reveal that the majority of fundamental frequencies typically rise with the increase of 

fiber orientation angle. A corresponding decrease in the natural frequency was observed when the 

fiber orientation angle reached the maximum value. Therefore, sandwich plates can be made stiffer 

by using curvilinear fibers with low curvatures. In certain instances, industry designers must alter 

the fundamental frequency to a greater or lesser value for the purpose of preventing resonance. This 

can be accomplished by using VSCL sandwich plates without having to change the size of the plate 

or constituent materials. The reason for this is that the natural frequency is sensitive to changes in 

fiber orientation in each layer. 

3.2.2. Boundary Conditions  

In order to investigate the first two fundamental frequencies at various fiber orientation angles, 

five boundary conditions were taken into consideration in this section. A comparative study between 

the CSCL and VSCL sandwich plates was also conducted. In this section, sandwich plates with single-

ply skins 0 1 0 1
     | / / |core

  are chosen, and the fiber orientation angles 0
   and 1

   are 

varied from 0° to 70°. Materials II and V from Table 1. were used as the skins and the core, 

respectively. The plate thickness 0 1= .h a , core thickness

8

9
=

c

h
h

, and each single layer were taken as 

18
=

layer

h
h

. Tables 8–12 present the results with five boundary conditions: CCCC, SSSS, CSCS, CFCF, 

and CFFF. The natural frequencies of the CSCL sandwich plates are bolded in these tables. 

Table 8. The first two natural frequencies of the VSCL sandwich square plate 0 1 0 1
     | / / |core

, 

CCCC. 

  Θ1    

Mode Θ0 0 30 50 70 

1 0 39.6473 39.6247 39.6030 39.5948 

 30 39.6313 39.3563 39.3423 39.3246 

 50 39.5363 39.3478 39.2798 39.2636 

 70 39.6216 39.5347 39.4298 39.4889 

2 0 58.9473 59.7766 60.8274 61.2839 

 30 58.8647 59.5879 59.3649 59.3278 

 50 58.8897 59.8846 59.8808 59.2867 

 70 58.9146 59.9078 59.2678 59.2475 

Table 9. The first two natural frequencies of the VSCL sandwich square plate 0 1 0 1
     | / / |core

, 

SSSS. 

  Θ1    

Mode Θ0 0 30 50 70 

1 0 34.2142 35.0553 35.9351 35.1028 

 30 34.1379 35.6275 35.9874 35.1498 

 50 34.2378 35.4367 36.0994 35.7698 

 70 34.5134 35.4793 35.8569 34.9646 

2 0 54.0617 55.2244 56.8894 58.1559 

 30 54.0024 56.2285 56.9712 57.1236 

 50 54.3478 56.4783 57.0087 56.2863 

 70 54.7369 56.8923 55.8963 55.1944 
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Table 10. The first two natural frequencies of the VSCL sandwich square plate 0 1 0 1
     | / / |core

, 

CSCS. 

  Θ1    

Mode Θ0 0 30 50 70 

1 0 37.5031 37.8185 38.4084 37.9751 

 30 37.4231 37.3931 37.3647 37.2168 

 50 37.3895 37.3678 37.3476 37.1678 

 70 37.2336 37.1436 37.0247 36.8877 

2 0 57.8964 58.7024 60.1376 58.7718 

 30 57.6423 58.3142 59.1235 57.9871 

 50 57.1278 58.1756 57.8934 57.9923 

 70 56.5671 56.2726 56.3179 56.1968 

Table 11. The first two natural frequencies of the VSCL sandwich square plate 0 1 0 1
     | / / |core

, 

CFCF. 

  Θ1    

Mode Θ0 0 30 50 70 

1 0 25.3726 25.8954 27.2084 29.2269 

 30 25.7569 26.5778 27.5736 29.7863 

 50 26.7126 27.1244 28.5534 29.9713 

 70 28.5698 28.9347 29.5431 30.5653 

2 0 31.2536 31.9102 33.0809 34.7477 

 30 31.8534 33.8788 34.1746 34.3478 

 50 32.4782 34.2378 34.3559 34.6023 

 70 33.4789 34.2478 34.4823 34.6283 

Table 12. The first two natural frequencies of the VSCL sandwich square plate 0 1 0 1
     | / / |core

, 

CFFF. 

  Θ1    

Mode Θ0 0 30 50 70 

1 0 8.5298 8.7551 9.4121 11.3263 

 30 9.1572 9.2474 10.0278 11.5621 

 50 10.5317 10.6781 10.8187 12.4623 

 70 12.2578 12.6712 12.9152 13.2824 

2 0 16.6078 17.0308 17.8546 19.3829 

 30 17.8254 18.3633 18.9512 19.4782 

 50 18.2756 18.4278 19.6162 19.5172 

 70 18.5627 18.6785 18.9245 19.1076 

Tables 8–12 demonstrate that for the SSSS, CSCS, CFCF, and CFFF boundary conditions, the 

VSCL sandwich plate's natural frequency tends to grow when the ending angle 1
  increases, the 

situation is reversed for the CCCC. For CFCF and CFFF, the VSCL sandwich plate's fundamental 

frequency increased by 15.175% and 32.708%, respectively, when the ending angle 1
  was increased 

from 0° to 70°. Nonetheless, under SSSS and CSCS boundary circumstances, the VSCL sandwich 

plate's fundamental frequency dropped by 2.228% and 1.128%, respectively, when the endings angle 

1
  is increased from 50° to 70°. According to the findings, the fundamental frequencies of the VSCL 

sandwich plates are affected by the fiber orientation angle as the curvilinear fiber’s curvature 

increases. 
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3.2.3. Number of Layers 

This section looks into how the amount of layers affects sandwich plate’s fundamental 

frequency. Based on sandwich plates with single-ply skins 0 1 0 1
     | / / |core

, the quantity 

of layers was raised, and sandwich plates with two-layer anti-symmetric skins 

0 1 0 1
       | / / |core

  were selected. The thicknesses and mechanical properties were 

selected to match those mentioned in the preceding section. The results with five boundary conditions 

are listed in Tables 13–17. 

Table 13. The first four natural frequencies of the VSCL and CSCL sandwich square plate

0 1 0 1
       | / / |core

, CCCC. 

  Mode 

Face sheets ±<Θ0|Θ1> 1 2 3 4 

CSCL <0|0> 39.6465 58.9464 65.5382 79.5688 

 ±<10|10> 39.7633 59.4381 65.2119 79.8171 

 ±<20|20> 40.2143 60.7233 64.8844 80.4201 

 ±<30|30> 40.7764 62.2097 64.6121 80.9608 

 ±<40|40> 41.1206 63.3955 64.1663 81.2667 

 ±<50|50> 41.1286 63.3893 64.1589 81.2711 

 ±<60|60> 40.7783 62.2134 64.6091 80.9550 

 ±<70|70> 40.2143 60.7233 64.8844 80.4201 

 ±<80|80> 39.7633 59.4381 65.2119 79.8171 

 ±<90|90> 39.6465 58.9464 65.5382 79.5688 

VSCL <0|0> 39.6465 58.9464 65.5382 79.5688 

 ±<0|10> 39.5995 59.0649 65.1865 79.4612 

 ±<0|20> 39.6158 59.4321 64.7485 79.4525 

 ±<0|30> 39.7611 59.9688 64.4655 79.6308 

 ±<0|40> 39.9594 60.5895 64.2308 79.8756 

 ±<0|50> 40.1837 61.2613 63.9596 80.1436 

 ±<0|60> 40.4192 62.0193 63.5153 80.4052 

 ±<0|70> 40.5387 62.6344 62.9034 80.5004 

 ±<0|80> 40.6371 62.9314 63.5687 80.6479 

 ±<0|90> 40.9426 63.2478 63.9742 80.9412 

Table 14. The first four natural frequencies of the VSCL and CSCL sandwich square plate

0 1 0 1
       | / / |core

, SSSS. 

  Mode 

Face sheets ±<Θ0|Θ1> 1 2 3 4 

CSCL <0|0> 34.2107 54.0555 61.2997 74.7633 

 ±<10|10> 35.0924 55.0091 61.6123 75.6645 

 ±<20|20> 36.6785 56.8276 62.1063 77.1309 

 ±<30|30> 37.9304 58.8233 62.2413 78.1959 

 ±<40|40> 38.5861 60.7359 61.8691 78.8032 

 ±<50|50> 38.5955 60.7358 61.8698 78.8023 

 ±<60|60> 37.9282 58.8248 62.2369 78.1875 

 ±<70|70> 36.6879 56.8271 62.1069 77.1257 

 ±<80|80> 35.0924 55.0091 61.6123 75.6645 

 ±<90|90> 34.2107 54.0555 61.2997 74.7633 

VSCL <0|0> 34.2107 54.0555 61.2997 74.7633 

 ±<0|10> 34.6226 54.4466 61.4801 75.1274 
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 ±<0|20> 35.4858 55.2652 61.8013 75.7836 

 ±<0|30> 36.3912 56.1253 62.0164 76.4088 

 ±<0|40> 37.1433 56.8983 62.0999 76.9914 

 ±<0|50> 37.7003 57.7874 61.9965 77.5991 

 ±<0|60> 38.0251 59.0446 61.4271 78.0214 

 ±<0|70> 37.8989 59.7674 60.3035 77.7714 

 ±<0|80> 38.3278 60.0235 60.7468 78.3712 

 ±<0|90> 38.7412 60.7456 60.9312 78.9178 

Table 15. The first four natural frequencies of the VSCL and CSCL sandwich square plate

0 1 0 1
       | / / |core

, CSCS. 

  Mode 

Face sheets ±<Θ0|Θ1> 1 2 3 4 

CSCL <0|0> 37.5024 57.8947 62.3989 77.0217 

 ±<10|10> 37.8793 58.6101 62.5111 77.6454 

 ±<20|20> 38.6935 60.1009 62.6884 78.6969 

 ±<30|30> 39.4105 61.7087 62.6701 79.5307 

 ±<40|40> 39.6738 62.2541 63.0058 79.9913 

 ±<50|50> 39.4414 61.2449 63.7949 79.9937 

 ±<60|60> 38.8023 59.6105 64.2041 79.5934 

 ±<70|70> 37.8323 57.5893 64.3516 78.8537 

 ±<80|80> 37.5264 57.1583 64.1025 78.4527 

 ±<90|90> 37.2354 56.8524 63.9412 78.0278 

VSCL <0|0> 37.5024 57.8947 62.3989 77.0217 

 ±<0|10> 37.6643 58.1857 62.4688 77.2209 

 ±<0|20> 38.0344 58.8009 62.5795 77.6296 

 ±<0|30> 38.4568 59.4867 62.6558 78.0703 

 ±<0|40> 38.8543 60.1697 62.6324 78.5416 

 ±<0|50> 39.1992 60.9189 62.4429 79.0081 

 ±<0|60> 39.3641 61.7311 61.8114 79.2853 

 ±<0|70> 39.0592 60.2489 62.5273 79.1059 

 ±<0|80> 38.8257 59.5672 62.0147 78.8521 

 ±<0|90> 38.5178 59.1782 61.6871 78.2347 

Table 16. The first four natural frequencies of the VSCL and CSCL sandwich square plate

0 1 0 1
       | / / |core

, CFCF. 

  Mode 

Face sheets ±<Θ0|Θ1> 1 2 3 4 

CSCL <0|0> 25.3703 31.2492 49.9557 56.6619 

 ±<10|10> 25.5619 32.7302 50.2086 57.8003 

 ±<20|20> 26.2851 35.1405 51.1297 59.5543 

 ±<30|30> 27.5682 36.7949 52.8277 60.5013 

 ±<40|40> 28.8566 37.6394 54.8188 59.5414 

 ±<50|50> 29.7612 37.8786 56.4734 58.0694 

 ±<60|60> 30.3433 37.5588 56.1658 57.6965 

 ±<70|70> 25.3733 31.2523 49.9548 56.6652 

 ±<80|80> 25.1247 31.0247 49.2178 56.1247 

 ±<90|90> 25.0147 30.8563 48.3578 55.2357 

VSCL <0|0> 25.3703 31.2492 49.9557 56.6619 

 ±<0|10> 25.4315 31.5943 50.0411 56.9475 
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 ±<0|20> 25.6361 32.3863 50.2951 57.6348 

 ±<0|30> 26.0476 33.3245 50.7796 58.5386 

 ±<0|40> 26.7302 34.2974 51.5551 59.6346 

 ±<0|50> 27.6357 35.2767 52.7227 60.9147 

 ±<0|60> 28.6174 36.2144 54.3692 60.8805 

 ±<0|70> 29.5493 36.8882 56.2009 59.7979 

 ±<0|80> 29.8971 37.2567 58.1478 60.8941 

 ±<0|90> 30.4526 37.8924 59.8654 61.7891 

Table 17. The first four natural frequencies of the VSCL and CSCL sandwich square plate

0 1 0 1
       | / / |core

, CFFF. 

  Mode 

Face sheets ±<Θ0|Θ1> 1 2 3 4 

CSCL <0|0> 8.5282 16.5998 27.9785 30.2843 

 ±<10|10> 8.6335 18.0326 28.2266 31.9156 

 ±<20|20> 9.0336 20.3567 29.0842 35.0327 

 ±<30|30> 9.8914 21.9399 30.6438 39.7197 

 ±<40|40> 11.1856 22.6782 32.7076 47.1182 

 ±<50|50> 12.6164 22.7131 35.0052 47.6474 

 ±<60|60> 13.8076 22.0365 37.2562 44.5822 

 ±<70|70> 14.5736 20.6705 38.9595 41.8909 

 ±<80|80> 15.4788 22.6871 39.4871 47.8712 

 ±<90|90> 16.2357 23.9745 40.8912 48.6812 

VSCL <0|0> 8.5282 16.5998 27.9785 30.2843 

 ±<0|10> 8.5626 16.8994 28.0598 30.7746 

 ±<0|20> 8.6754 17.5511 28.3184 32.1932 

 ±<0|30> 8.9182 18.3178 28.8461 34.7479 

 ±<0|40> 9.3943 19.0856 29.7155 39.1078 

 ±<0|50> 10.2252 19.8431 31.0342 44.8934 

 ±<0|60> 11.4782 20.5674 32.9513 46.3146 

 ±<0|70> 12.9179 21.1012 35.5303 35.5345 

 ±<0|80> 13.6567 22.5481 36.7841 46.7812 

 ±<0|90> 14.8455 23.4841 37.5984 48.6944 

From Tables 13–17, it is clear that when 1
  increases, the fundamental frequency shifts. In the 

CCCC boundary condition, when 1
  rises from 0° to 10° and from 10° to 90°, the natural frequency 

falls and increases, respectively. Under the SSSS and CSCS boundary conditions, the natural 

frequency increases when 1
   increases from 0° to 60° and decreases from 60° to 90°. When the 

number of layers grows, the fundamental frequency for sandwich plates with anti-symmetric two-

layer skins often rises as well. 

When CCCC and CSCS were met, the fundamental frequencies of the VSCL sandwich plates 

were found to be greater than those of the CSCL sandwich plates. This was determined by comparing 

the fundamental frequencies of the two sandwich plates. Sandwich plate vibration properties can be 

considerably altered by the application of curvilinear fiber. For instance, when comparing 

0 1
40 =  =  to 0 1

50 =  =  under the boundary conditions of SSSS and CCCC, the fundamental 

frequency of CSCL plates is zero, but the fundamental frequencies of VSCL plates are changed when 

1


 increases from 40° to 50°. 

3.2.4. Core/Skin Thickness 
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Sandwich plates that are symmetric and anti-symmetric are used in this part to examine the 

connection between the fundamental frequency and the ratio of the core to skin. The skins and core 

were selected with the same thickness and mechanical characteristics as those in the preceding 

section, except for the plate thickness 0 01= .h a . The core thickness/face sheet thickness, hc / hf, varied 

from 3 to 16 as variation parameters. The fundamental frequencies of 0 1 0 1
      | / / |core

 

and 0 1 0 1
       | / / |core

  are chosen to study the variation rule and CSCS boundary 

condition is chosen. Changes in fundamental frequency with core/skin thickness ratio 
/

c f
h h

 are 

shown in Figures 4 and 5. 

 

Figure 4. Natural frequency to core/skin ratio hc/hf effect of the symmetric VSCL sandwich plate [+<20|60>/-

<20|60>/core/-<20|60>/+<20|60>] and [+<60|20>/-<60|20>/core/-<60|20>/+<60|20>], CSCS. 

 

Figure 5. Natural frequency to core/skin ratio hc/hf effect of the anti-symmetric VSCL sandwich plate [+<20|60>/-

<20|60>/core/+<20|60>/-<20|60>] and [+<60|20>/-<60|20>/core/+<60|20>/-<60|20>], CSCS. 

As shown in Figures 4 and 5, the VSCL sandwich plates exhibit the highest natural frequency at 

the lowest core/skin thickness ratio. The average decline in fundamental frequency from the greatest 

to the lowest point was 67%. 

The findings of the aforementioned parametric study suggest that VSCL sandwich plates hold 

promise for aircraft panel design applications. By manipulating the starting and ending angles along 

with the curvature of the fiber reference path, these plates can potentially exhibit reduced lateral 
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deformation, increased stiffness, and higher natural frequencies. Moreover, lower structural mass can 

be achieved under certain mechanical and environmental loading circumstances by using VSCL 

sandwich plates. 

4. Conclusions 

This study used FSDT in conjunction with DQM to examine the free vibration of sandwich plates 

with curvilinear fiber variable stiffness skins. In this study, the x-coordinate was supposed to 

fluctuate linearly with the fiber orientation angle. Compared with other numerical solution methods, 

the DQM is computationally inexpensive, converges quickly, and it is capable of precisely forecasting 

sandwich plate fundamental frequencies. The reduction or increase in the natural frequency when 

using VSCL face sheets was investigated and compared with that of CSCL face sheets. The impacts 

of fiber orientation angles, boundary conditions, number of layers, and core/skin thickness were 

investigated parametrically. Notably, the integration of higher-order theory and layer theory can 

enhance the accuracy of sandwich plate analysis, particularly when investigating thick plates. The 

computations used in this study allow for the following deductions. 

1. In the vast majority of cases, as the fiber orientation angle increases, the fundamental 

frequency rises as well. The use of curvilinear fibers leads to VSCL sandwich plates with lower lateral 

deformations and higher natural frequencies.  

2. The sandwich plate's natural frequency was impacted by the fiber orientation angle as the 

curvilinear fibers' curvature grew. The larger the angle of the center fiber was, the more rigid the 

curvilinear fiber became. The plate's rigidity can be raised by using low-curvature curvilinear fibers. 

3. With an increase in layers came a rise in the sandwich plate's fundamental frequency. This 

also indicates that the fundamental frequency increases with rising plate thickness. 

4. The VSCL sandwich plates exhibited greater natural frequencies in comparison to the CSCL 

sandwich plates when subjected to the CCCC and CSCS boundary conditions. As boundary 

restrictions get tighter, the frequency rises. Due to their increased ability to adapt to complex 

boundary circumstances, curvilinear fibers have higher fundamental frequencies than parallel fibers. 

5. The frequency response was strongly impacted by the ratio of skin to core thickness. The 

natural frequency of the sandwich plate reached its maximum value at the lowest core–to-skin 

thickness ratio. The effect of adding more layers was in line with this trend. 

The precise insights obtained from this study guide researchers seeking viable solutions and can 

serve as a foundation for further exploration into panel flutter in VSCL sandwich plates. 
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Any continuously differentiable function ( )f x
  is taken on the interval 

  ,a b
  for a one-

dimensional issue, divided by the interval 
  ,a b

 , and set N mutually non–overlapping nodes, 

1 2 1−
=     =

N N
a x x x x b , and according to the theory of interpolation,  

( ) ( ) ( )
1=

=
N

j j
j

f x p x f x
                              (35) 

where ( )j
p x

 is called the interpolating trial function.  

Determine the kth order derivative with respect to x on both sides of equation (35) and substitute 

=
i

x x  to obtain the kth order derivative of the function at node xi 

( )( ) ( )( )
( ) ( )

1

1 2
=

= =    , ,...,

kk
N

j ii

jk k
j

d p xd f x
f x i N

dx dx              (36) 

When 

( ) ( )( )
=

k
j ik

ij k

d p x
A

dx , 

( ) ( )( )
=

k
ik

i k

d f x
f

dx , ( )=
j j

f f x
, equation (36) can be written as 

( ) ( )
1

1 2
=

= =( )   , ,...,
N

kk
i ij j

j

f A f i N
                          (37) 

where 
( )k

ij
A   is the weighting coefficient of the kth–order derivative of the function ( )f x

 . 

Equation (37) is the differential quadrature formula for a one–dimensional function, and there is a 

recurrence relationship between the weighting coefficients. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1

1 1 1

1 2
− − −

= = =

= = = = =  ...   , , ,....,
N N N

k k k k

ij ik kj ik kj ik kj
k k k

A A A A A A A i j N
     (38) 

The formula demonstrates that the distribution, number of sampling points, and order of the 

derivatives are the only factors that affect the weighting coefficients. As such, the DQM's numerical 

accuracy is typically highly sensitive to the partitioning of the grid points inside a given domain. The 

Chebyshev–Gauss–Lobatto point distribution was chosen in the form of grid spacing[43] 

( )
( )

1
1

2 1


 −
= −   = − 

−  

cos ,  ,  
i i

iL
x a x b L b a

N
                   (39) 

Extending to the two–dimensional problem, take any continuously differentiable function 

( ),w x y
 in a two–dimensional region and divide the solution domain by a rectangular mesh. In both 

directions, the total amount of grid points is denoted by x
N  and y

N
, respectively. To make the 

calculation simpler, the same number of grid points are often utilized in both directions, i.e., 

= =
x y

N N N
. 

( ) ( ) ( )
1 1

+

= =

 
=    
 ,

yx
NNt s

t s

ik jm k mt s
i kij

w
A B w x y

x y
                             (40) 

Equation (40) is the differential quadrature formula for a two–dimensional function, where 
( )k

ij
A

 and 
( )k

ij
B

 satisfy the recurrence relation.  
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