
Article Not peer-reviewed version

Representing Web Applications As

Knowledge Graphs

Yogesh Chandrasekharuni *

Posted Date: 10 October 2024

doi: 10.20944/preprints202410.0755.v1

Keywords: Knowledge Graphs; Web Appllications; Language Models

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3911458

Article

Representing Web Applications as

Knowledge Graphs

Yogesh Chandrasekharuni

Skil Inc, USA; yogesh@skil.ai

Abstract: Traditional methods for crawling and parsing web applications predominantly rely on

extracting hyperlinks from initial pages and recursively following linked resources. This approach

constructs a graph where nodes represent unstructured data from web pages, and edges signify

transitions between them. However, these techniques are limited in capturing the dynamic and

interactive behaviors inherent to modern web applications. In contrast, the proposed method models

each node as a structured representation of the application’s current state, with edges reflecting

user-initiated actions or transitions. This structured representation enables a more comprehensive

and functional understanding of web applications, offering valuable insights for downstream

tasks such as automated testing and behavior analysis.

Keywords: Knowledge Graphs; Web Appllications; Language Models

I. Introduction

Web applications require rich data representation for down- stream tasks such as automation

testing, user behavior analy- sis, and functional verification. Traditional web parsers operate through

a structured yet simplistic algorithm:

(1) Initialize a queue with the starting page.

(2) Set a maximum depth (if applicable) and initialize the current depth to zero.

(3) While the queue is not empty and the maximum depth is not exceeded:

(a) Dequeue the next page from the queue.

(b) If the page has not been visited:

(i) Navigate to the page.

(ii) Extract the desired data and store it as a node.

(iii) Extract all hyperlinks from the page.

(iv) Add all unseen and unvisited hyperlinks to the queue.

(v) Mark the current page as visited.

(c) Increment the depth if moving to a new level.

(4) Stop when all pages are visited or the maximum depth is reached.

While this approach effectively scrapes static web applica- tions, it falls short in handling

dynamic applications, where significant portions of the application are unreachable through simple

hyperlink navigation. Modern web applications often follow structured user flows, which involve

interaction beyond hyperlinks. For instance, in an e-commerce site, reaching the checkout page might

require several actions: searching for a product, adding it to the cart, entering a delivery location,

and only then accessing the checkout. Traditional parsers, which rely solely on clicking hyperlinks,

cannot capture such dynamic flows and are limited in their ability to represent the application’s state

accurately.

Additionally, many web applications exhibit variability at the same endpoint depending on the

user’s context. For ex- ample, a checkout page may display ”Ready to purchase” for one user and

”Item cannot be delivered to your location” for another, based on the delivery address provided.

In this work, the proposed solution overcomes these limita- tions by representing each unique

state of a web application as a node, with edges defined by specific actions taken within the

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202410.0755.v1
http://creativecommons.org/licenses/by/4.0/

 2

application. This method captures the full complexity of user flows, allowing for a more accurate and

interpretable knowledge representation of web applications.

II. Background

Early web crawlers, such as World Wide Web Wanderer (1993) [1], were primarily designed to map

the size of the web by collecting basic HTML from static websites [2]. As the web expanded, tools

like JumpStation emerged, becoming the first search engine to use crawlers for indexing web content

[3]. These early systems, however, were limited to handling static web content, as dynamic web pages

driven by JavaScript and AJAX had not yet become widespread.

The emergence of dynamic content significantly compli- cated the process of web scraping for

traditional parsers. Frameworks such as Beautiful Soup (2004) were introduced to facilitate the

extraction of structured data from increasingly complex web pages. Although effective for parsing

static HTML content, these tools were inherently limited in their capacity to handle dynamic,

JavaScript-driven web elements or to interact with user-initiated events. As modern web appli-

cations began to rely heavily on dynamic content loading and client-side interactions, more advanced

methodologies became necessary to accurately capture these behaviors. Several tools have been

developed to address these challenges. Selenium [4] is widely used for automating browser

interactions, allowing developers to simulate user actions such as clicking, typing, and submitting

forms.

To address these limitations, visual web scraping tools like Octoparse [5] emerged, offering user-

friendly interfaces that allowed non-programmers to automate the extraction of both static and

dynamic website data. These tools simulate user behavior, such as clicks and form submissions, to

capture data. However, tools like Octoparse lack self-exploration capabili- ties and are unable to

reason through or autonomously navigate complex web applications. As a result, they struggle to

capture the full range of state transitions and user interactions that are essential for modeling modern,

dynamic web applications.

More recent efforts have focused on combining dynamic analysis with event-based crawling

techniques. For instance, jA¨k [6] employs dynamic analysis to hook into JavaScript APIs and detect

network events, dynamically-generated URLs, and user form submissions. By leveraging a

navigation graph, j Ä k can explore 86% more of a web application’s surface compared to traditional

approaches. Similarly, Crawljax [7] uses state abstraction to generate a state-flow graph for AJAX-

based applications, which can be used to automate testing of dynamic user flows.

Knowledge graph-based systems, such as Squirrel [8], have been proposed to crawl the

semantic web and represent data in structured formats. However, these approaches are typically

limited to RDF-based web data and do not capture the dynamic, user-driven interactions seen in

modern web applications.

Our proposed solution builds upon these existing tools by representing web applications as

a knowledge graph. In this approach, each node represents a unique state of the application, while

edges represent user actions leading to tran- sitions between states. This structured representation

allows us to capture dynamic workflows and state transitions more effectively, making the system

ideal for downstream tasks like automated testing and error handling in complex web environments.

III. Methodology

The key components of the system are designed to capture the dynamic behavior of web

applications, including user inter- actions and state transitions. The system consists of three main

components: the Functionality Inferring Module, the Action Executor, and the Reward/Penalty Model.

Each component interacts with the others to build an interpretable, action-based graph of the web

application.

A. State

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 3

In this system, a state refers to the configuration of a web application at a specific point in

time, characterized by its visual and structural properties. Each state encapsulates the outcomes

of user interactions and changes within the web application, offering a detailed snapshot of both

its user interface and underlying functionality.

A state is defined by the following key components:

- Screenshot: A visual capture of the web application’s interface at a particular moment, serving

as a reference for the graphical presentation as perceived by the user.

- Page Source: The HTML and Document Object Model (DOM) structure that constitutes the web

page. This includes critical elements such as forms, buttons, and in- teractive components that

define the layout and available functionalities.

- Metadata: Ancillary data related to the current web session, including HTTP headers, cookies,

and session- specific variables. This metadata provides additional con- text regarding the state

of the application, reflecting conditions like user authentication, session persistence, or dynamic

content adjustments.

State transitions occur when users interact with the ap- plication, such as through navigation,

form submission, or button clicks. These transitions, captured as edges in the graph, form the

relationships between states and drive the knowledge representation.

In complex web applications, multiple states may cor- respond to a single URL, but may vary

due to session- specific factors or dynamically rendered content. For instance, a checkout page may

present distinct states depending on whether items have been added to the cart or whether delivery

options are available for the user’s location. These variations are captured through the combination

of structural data and metadata.

B. Action

In the context of this system, an Action refers to a user- initiated operation or event that

transitions the web application from one state to another. Actions represent the interaction points

between the user and the web application, such as clicking a button, submitting a form, navigating to

a new page, or triggering an AJAX request. These actions are fundamental to the system’s ability to

explore and infer functionalities within the web application.

Actions are captured and represented as edges in the knowl- edge graph, where each edge

connects two nodes (states) and denotes the transition caused by a specific interaction. The goal of

the system is to not only capture the actions that lead to state transitions but also to rank and

prioritize them based on their significance to the web application’s functionality.

Key characteristics of an action include:

- Action Type: Actions can vary widely, from simple navigation (e.g., following a hyperlink) to

complex in- teractions (e.g., filling out and submitting a form). These actions are categorized into

types based on the nature of the interaction, such as clicks, form submissions, key- board inputs,

or dynamic event triggers (e.g., JavaScript events).

- Action Context: Each action is tied to a specific element in the DOM structure, such as a button,

link, or form field. The context includes metadata such as the element’s attributes (e.g., ID, class)

and its location within the page hierarchy. This context helps the system understand how the

action relates to the structure of the web application.

- Effect on State: Actions are only significant if they result in a state change, meaning they

transition the web application from one distinct state to another. The Functionality Inferring

Module analyzes the effect of each action on the state, ensuring that only meaningful transi- tions

are captured. For example, submitting a form might transition the user from a login page to

a dashboard, whereas clicking a non-interactive element would not result in a state change.

- Action Priority: Not all actions contribute equally to the exploration of the application’s

functionality. The system prioritizes actions that lead to new or unexplored states. Actions that

produce trivial or redundant transitions (e.g., right-clicking or hovering over an element without

caus- ing a meaningful change) are deprioritized by the Re- ranking Module, ensuring that the

exploration process is efficient.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 4

Figure 1. System Overview of the Proposed Methodology.

C. Functionality Inferring Module

The Functionality Inferring Module is responsible for ana- lyzing the current state of the web

application and predicting potential actions that could transition the application to new states. This

module synthesizes information from the current observation, previously explored functionalities,

and the state- action history to identify and rank possible actions. The primary goal is to maximize

the discovery of new function- alities and ensure that the system explores meaningful user

interactions.

The module comprises four key components:

(1) Reasoning Agent: This agent processes the current ob- servation—comprising the page source,

screenshot, and meta- data—alongside the record of previously explored function-alities. It

synthesizes multiple queries to interface with the database, determining what functionalities

have already been explored and what actions are possible given the current state and past

interactions. The Reasoning Agent outputs a list of possible actions that can be performed based

on the current and previous states, ensuring a thorough exploration of the application’s

functionalities.

(a) Multi-modal LLM for State Understanding: The Rea- soning Agent employs a multi-modal

LLM to comprehensively understand the current state of the web application. By ana-

lyzing various inputs—including the page source, screenshots, and session metadata—the

LLM can generate a semantic and structural understanding of the application’s current

state.

(b) Database Interface for Explored Functionalities: In addition to understanding the current

state, the Reason- ing Agent interfaces with a database of previously explored

functionalities. This ensures that the agent avoids redundant actions and focuses on

unexplored areas of the application. The database stores all previously visited states and

actions taken, forming a history of interactions with the web application. By querying this

database, the agent can identify which actions have already been executed and which

states have already been visited, allowing it to prioritize new interactions.

Update observation

Suggested Actions

Previous states

Previous actions

Web App Current State

Observation

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 5

(c) Generation of Possible Actions: Based on the current state and the record of explored

functionalities, the Reasoning

Figure 2. Functionality Inferring Module.

(a) A simplified and incomplete graph generated by traditional parsers, showcasing limited user interactions

with only basic state transitions. This representation is insufficient for capturing the complexity of dynamic

web applications

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 6

(b) A detailed graph generated by our proposed solution, illustrating a more comprehensive representation of

user interactions with dynamic state transitions, complex user flows, and action-based edges that offer richer

insights into web application behavior.

Figure 3. Comparison of traditional parsers (Figure 3a) vs. our proposed solution (Figure 3b) for

modeling web application behavior.

Agent outputs a list of plausible actions that can be performed. These actions may include

navigation, form submissions, button clicks, or more complex interactions involving multi- step

processes.

(2) Re-ranking Module: Once the Reasoning Agent gener- ates a list of possible actions, the Re-

ranking Module evaluates these actions and reorders them based on metrics such as entropy and

expected reward. The objective is to prioritize actions that are most likely to uncover new

functionalities or lead to significant state transitions, while deprioritizing trivial or redundant

interactions (e.g., non-functional actions like right-clicking on an element). This dynamic re-

ranking process ensures that the exploration of the application remains focused on discovering

meaningful user flows and interactions, ultimately maximizing the system’s efficiency and

effective- ness in navigating complex web applications.

(3) Next Actions Prediction Agent: The Next Actions Pre- diction Agent uses a finetuned multi-modal

LLM that refines the list of actions. It selects the top-ranked actions from the Possible Actions

List and predicts the next best steps to take. This agent combines insights from both the re-

ranked list and the system’s understanding of the web application to choose actions that will

maximize the system’s overall reward.

The Functionality Inferring Module operates through a feed- back loop. After executing each

action, the module updates its understanding of the web application’s behavior, incorporating newly

observed states and actions. This feedback ensures that the system continually improves its

predictions and focuses on uncovering the most important functionalities.

D. Action Executor

The Action Executor is responsible for executing actions or sequences of actions within the

web application based on the inputs from the Re-ranking Module and Next Actions Prediction Agent.

It performs interactions such as clicks, form submissions, and complex multi-step operations.

(1) Action Execution: The Executor applies selected actions, which may involve single interactions

(e.g., clicking a button) or multi-step sequences (e.g., form submissions). It handles various

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 7

action types, including user interface actions, naviga- tional transitions, and event-driven

triggers like JavaScript.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 8

(2) State Validation: After executing actions, the Executor verifies whether the action resulted in a

meaningful state change by capturing the updated page source, screenshots, and metadata. This

validation is critical for updating the knowledge graph.

(3) Error Handling and Recovery: In the case of failed

(4) actions due to issues like incorrect inputs or unhandled edge cases, the Executor logs the error

and retries or performs recovery actions to restore the application to a stable state.

E. Reward/Penalty Model

The Reward/Penalty Model quantifies the system’s progress in exploring meaningful

functionalities within the web applica- tion. After the Action Executor performs an action and returns

the new state, this model evaluates the outcome by assigning a score between -1 and +1, indicating

the action’s value. Positive scores reflect significant progress, while negative scores highlight trivial

or redundant actions.

(1) Rewarding Significant Progress: Actions that lead to new state transitions or the discovery of

unexplored function- alities receive positive rewards (closer to +1). For example, navigating from

the home page to product listings or accessing the checkout process are high-reward actions as

they reveal critical application behaviors.

(2) Penalizing Redundant Actions: When actions result in trivial transitions (e.g., reaching a leaf

node where no further meaningful actions can be taken), the model assigns penalties (closer to -

1). This prevents the system from getting stuck in unproductive states, such as a ”Thank you”

page after purchase completion.

(3) Stopping Exploration: If no actions produce a positive reward, the system halts exploration for

that path. This ensures resources are not wasted on dead ends and exploration focuses on

uncovering valuable transitions.

(4) Retrials: In cases where the action taken results in a reward score close to the defined

threshold but not sufficiently positive, this model will initiate a retrial if the maximum number

of retries has not been exhausted.

IV. Experiments

To evaluate the effectiveness of our proposed approach, we conducted experiments on a real-

world e-commerce web- site, Dentomart.com, which specializes in selling dentistry equipment.

This website includes a wide range of dynamic and interactive components, such as product search,

filtering, cart management, and user authentication, making it an ideal candidate for testing the

limitations of traditional parsers and the capabilities of our solution.

A. Traditional Parser Setup

For comparison purposes, we implemented a traditional parser using the Scrapy framework,

which is commonly used for web scraping. Our Scrapy-based parser follows a basic depth-first

approach for crawling web pages, extracting hy- perlinks, and collecting static page content.

Specifically, the parser was configured with the following parameters:

- Max crawl depth: 3 levels

- Follow redirects: Enabled

- Concurrent requests: 8

- User-agent rotation: Implemented to mimic various browsers

B. Proposed Solution Setup

To address the limitations of traditional parsers, we build a directed graph that models

Dentomart.com. The graph was constructed using the following hyperparameters:

- min reward: 0 — The minimum threshold for reward- based transitions, used to eliminate low-

value or redun- dant actions.

- max leaf branches: 999 — The maximum number of branches a leaf node can have before being

pruned.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 9

- max consecutive actions: 5 — The maximum number of consecutive actions allowed within a

single state before forcing a transition.

- max retries: 3 — The maximum number of attempts for each action before considering it a failed

interaction.

C. Evaluation Metrics

We compared the performance of the traditional Scrapy- based parser and our proposed solution

using the following key metrics:

(1) State coverage: The number of unique states visited by each method. For traditional parsers, a

unique state is typically identified by a unique URL within the domain. Higher state coverage is

better because it reflects a more comprehensive exploration of the web application, including all

key functionalities and dynamic states.

(2) Edge complexity: The total number of edges (interac- tions) captured between states. Ideally,

this value is close to n − 1, where n is the total number of states. This indicates minimal

distractions between flows, with no unrelated or re- dundant transitions, suggesting that each

transition contributes meaningfully to the functionality being explored.

(3) Failure recovery: The ratio of actions that failed on the first attempt but succeeded within the max

retries allowed by the system. A higher value indicates better robustness, as the system is able

to recover from failures and explore alternative paths or retry actions successfully.

(4) Time to completion: The total time taken by each method to complete the crawl. In this metric,

lower values are better, as faster completion means more efficient exploration.

(5) Graph density: This metric measures the ratio of actual edges to the total possible edges in the

graph. Lower density implies that the graph is not overly crowded with meaningless

connections, which would indicate more structure and clarity in the transitions between states.

(6) Shortest path length: The average shortest path length between any two nodes in the graph, which

measures the overall connectivity. A longer shortest path may indicate more unique states and

deeper exploration of the application. For traditional parsers, the path length may be shorter due

to fewer unique states being captured, while in our approach, it is likely longer because of the

broader state coverage and complex interactions.

(7) Betweenness centrality: This metric measures the im- portance of nodes in connecting different

parts of the graph. A higher value suggests that certain states (nodes) serve as crucial junctions

in the web application’s flows. This can be useful in identifying critical pages, such as login

screens or checkout processes, that play a significant role in navigating through the application.

A higher betweenness centrality is often desirable for identifying key interaction points in the

user journey.

V. Results

We conducted experiments on the Dentomart web appli- cation, comparing a traditional Scrapy-

based parser with our proposed solution. The traditional parser captured basic static states and edges

but struggled with dynamic content and failed to capture user-triggered behaviors like form

submissions or AJAX-based content loading. In contrast, our proposed solu- tion effectively modeled

dynamic state transitions, capturing significantly more states and edges, though with a longer time

to completion.

A. Key Metrics

Table 1. summarizes the key differences between the tradi- tional parser and our solution.

Table 1. Comparison of traditional parser vs. proposed solution across key metrics.

Metric Traditional Parser Proposed Solution

State complexity (no. of states) 24 95

Edge complexity (no. of edges) 86 94

Failure recovery rate N/A 0.72

Time to completion (seconds) 300 5500

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 10

Graph density 0.72 0.15

Shortest path length 2.1 6.4

Betweenness centrality (avg) 0.59 0.02

The proposed solution achieved much better state coverage and edge complexity, capturing a

significantly higher number of interactions. It also excelled in detecting dynamic behaviors with

robust failure recovery, which the traditional parser missed entirely. Notably, the average

betweenness centrality in our approach is lower than in traditional parsers. This is primarily due

to the higher number of unique states our model identifies, each representing distinct state transitions

triggered by user interactions and dynamic content. These unique states are less likely to serve as

intermediary nodes across multiple flows, reducing their overall centrality in the graph. In contrast,

traditional parsers often rely on hyperlinks, leading to more shared or reused states across different

flows, which increases the likelihood of those states acting as bridges. Consequently, while traditional

parsers produce more centralized graphs, our method results in a more diverse and decentralized

structure with fewer critical intersections.

B. Procedurally Generated Test Cases by Graph Traversal

One significant downstream application of the rich graph- based representation produced by

our solution is automated testing. Each root-to-leaf path in the graph corresponds to a unique

user flow or interaction sequence within the web application. Since every functionality within the

application is reflected as a distinct path, we were able to procedurally generate test cases by

traversing these root-to-leaf paths.

In total, the proposed solution generated 51 unique test cases, covering a wide range of user

interactions such as logging in, searching for products, adding items to the cart, and completing the

checkout process. By automating the traversal of these paths, test cases can be programmatically

generated, ensuring comprehensive coverage of user interactions, includ- ing edge cases and complex

workflows that may be difficult to test manually.

This procedural test generation ensures that the entire functionality of the application is tested,

and the dynamic states and behaviors captured by the graph provide detailed insight into every

possible user interaction. As a result, the system can easily identify potential bugs, usability issues,

or performance bottlenecks by systematically exploring each unique path through the application.

References

1. ”World Wide Wanderer,” 9780199571444.

2. Octoparse, “What is Web Scraping and How Does It Work,” 2024.

3. Octoparse Development Team, “Top 7 Web Scraping Tools for Data Extraction,” 2024.

4. DEV Development Team, “Advantages and Disadvantages of Using Selenium,” 2024.

5. Octoparse Development Team, “Octoparse Alternatives: 25+ Web Scrap- ing Tools & Similar Apps,” 2024.

6. G. Pellegrino, C. Tschu¨rtz, and C. Rossow, “jA¨ k: Using Dynamic Analysis to Crawl and Test Modern

Web Applications,” 2015.

7. A. Mesbah and A. van Deursen, “Crawljax: Crawling AJAX-Based Web Applications through Dynamic

Analysis,” 2012.

8. Squirrel Project Team, “Squirrel: A Knowledge Graph-based Crawler for the Semantic Web,” 2017.

9. A. Heydon and M. Najork, “Mercator: A Scalable, Extensible Web Crawler,” 1999.

10. M. Gray, “World Wide Web Wanderer: The First Web Robot,” 1993.

11. F. Yin, X. He, and Z. Liu, “Research on Scrapy-Based Distributed Crawler System for Crawling Semi-

structure Information at High Speed,” 2018.

12. J. Alarte, J. Silva, and S. Tamarit, “What Web Template Extractor Should I Use? A Benchmarking and

Comparison for Five Template Extractors,” *ACM Trans. Web*, vol. 13, no. 2, pp. 1–19, 2019.

13. A. Barbaresi, “Efficient construction of metadata-enhanced web cor- pora,” in *Proc. 10th Web as Corpus

Workshop*, Assoc. Comput. Linguistics, 2016, pp. 7–16.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

 11

14. A. Barbaresi and G. Lejeune, “Out-of-the-Box and Into the Ditch? Multilingual Evaluation of Generic Text

Extraction Tools,” in *Proc. 12th Web as Corpus Workshop*, Assoc. Comput. Linguistics, 2020, pp. 5–13.

15. M. Baroni, F. Chantree, A. Kilgarriff, and S. Sharoff, “Cleaneval: A Competition for Cleaning Web Pages,”

in *Proc. 6th Conf. Lang. Resour. Eval.*, ELRA, 2008, pp. 638–643.

16. V. Crescenzi, G. Mecca, and P. Merialdo, “Roadrunner: Towards Auto- matic Data Extraction From Large

Web Sites,” in *Proc. 27th VLDB Conf.*, 2001, pp. 109–118.

17. T. Weninger, W. H. Hsu, and J. Han, “CETR: Content Extraction via Tag Ratios,” in *Proc. 19th Int. Conf.

World Wide Web*, 2010, pp. 971–980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 October 2024 doi:10.20944/preprints202410.0755.v1

https://doi.org/10.20944/preprints202410.0755.v1

