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Abstract: Traditional methods for crawling and parsing web applications predominantly rely on 

extracting hyperlinks from initial pages and recursively following linked resources. This approach 

constructs a graph where nodes represent unstructured data from web pages, and edges signify 

transitions between them. However, these techniques are limited in capturing the dynamic and 

interactive behaviors inherent to modern web applications. In contrast, the proposed method models 

each node as a structured representation of the application’s current state, with edges reflecting 

user-initiated actions or transitions. This structured representation enables a more comprehensive 

and functional understanding of web applications, offering valuable insights for downstream 

tasks such as automated testing and behavior analysis. 
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I. Introduction 

Web applications require rich data representation for down- stream tasks such as automation 

testing, user behavior analy- sis, and functional verification. Traditional web parsers operate through 

a structured yet simplistic algorithm: 

(1) Initialize a queue with the starting page. 

(2) Set a maximum depth (if applicable) and initialize the current depth to zero. 

(3) While the queue is not empty and the maximum depth is not exceeded: 

(a) Dequeue the next page from the queue. 

(b) If the page has not been visited: 

(i) Navigate to the page. 

(ii) Extract the desired data and store it as a node. 

(iii) Extract all hyperlinks from the page. 

(iv) Add all unseen and unvisited hyperlinks to the queue. 

(v) Mark the current page as visited. 

(c) Increment the depth if moving to a new level. 

(4) Stop when all pages are visited or the maximum depth is reached. 

While this approach effectively scrapes static web applica- tions, it falls short in handling 

dynamic applications, where significant portions of the application are unreachable through simple 

hyperlink navigation. Modern web applications often follow structured user flows, which involve 

interaction beyond hyperlinks. For instance, in an e-commerce site, reaching the checkout page might 

require several actions: searching for a product, adding it to the cart, entering a delivery location, 

and only then accessing the checkout. Traditional parsers, which rely solely on clicking hyperlinks, 

cannot capture such dynamic flows and are limited in their ability to represent the application’s state 

accurately. 

Additionally, many web applications exhibit variability at the same endpoint depending on the 

user’s context. For ex- ample, a checkout page may display ”Ready to purchase” for one user and 

”Item cannot be delivered to your location” for another, based on the delivery address provided. 

In this work, the proposed solution overcomes these limita- tions by representing each unique 

state of a web application as a node, with edges defined by specific actions taken within the 
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application. This method captures the full complexity of user flows, allowing for a more accurate and 

interpretable knowledge representation of web applications. 

II. Background 

Early web crawlers, such as World Wide Web Wanderer (1993) [1], were primarily designed to map 

the size of the web by collecting basic HTML from static websites [2]. As the web expanded, tools 

like JumpStation emerged, becoming the first search engine to use crawlers for indexing web content 

[3]. These early systems, however, were limited to handling static web content, as dynamic web pages 

driven by JavaScript and AJAX had not yet become widespread. 

The emergence of dynamic content significantly compli- cated the process of web scraping for 

traditional parsers. Frameworks such as Beautiful Soup (2004) were introduced to facilitate the 

extraction of structured data from increasingly complex web pages. Although effective for parsing 

static HTML content, these tools were inherently limited in their capacity to handle dynamic, 

JavaScript-driven web elements or to interact with user-initiated events. As modern web appli- 

cations began to rely heavily on dynamic content loading and client-side interactions, more advanced 

methodologies became necessary to accurately capture these behaviors. Several tools have been 

developed to address these challenges. Selenium [4] is widely used for automating browser 

interactions, allowing developers to simulate user actions such as clicking, typing, and submitting 

forms. 

To address these limitations, visual web scraping tools like Octoparse [5] emerged, offering user-

friendly interfaces that allowed non-programmers to automate the extraction of both static and 

dynamic website data. These tools simulate user behavior, such as clicks and form submissions, to 

capture data. However, tools like Octoparse lack self-exploration capabili- ties and are unable to 

reason through or autonomously navigate complex web applications. As a result, they struggle to 

capture the full range of state transitions and user interactions that are essential for modeling modern, 

dynamic web applications. 

More recent efforts have focused on combining dynamic analysis with event-based crawling 

techniques. For instance, jA¨k [6] employs dynamic analysis to hook into JavaScript APIs and detect 

network events, dynamically-generated URLs, and user form submissions. By leveraging a 

navigation graph, j Ä  k can explore 86% more of a web application’s surface compared to traditional 

approaches. Similarly, Crawljax [7] uses state abstraction to generate a state-flow graph for AJAX- 

based applications, which can be used to automate testing of dynamic user flows. 

Knowledge graph-based systems, such as Squirrel [8], have been proposed to crawl the 

semantic web and represent data in structured formats. However, these approaches are typically 

limited to RDF-based web data and do not capture the dynamic, user-driven interactions seen in 

modern web applications. 

Our proposed solution builds upon these existing tools by representing web applications as 

a knowledge graph. In this approach, each node represents a unique state of the application, while 

edges represent user actions leading to tran- sitions between states. This structured representation 

allows us to capture dynamic workflows and state transitions more effectively, making the system 

ideal for downstream tasks like automated testing and error handling in complex web environments. 

III. Methodology 

The key components of the system are designed to capture the dynamic behavior of web 

applications, including user inter- actions and state transitions. The system consists of three main 

components: the Functionality Inferring Module, the Action Executor, and the Reward/Penalty Model. 

Each component interacts with the others to build an interpretable, action-based graph of the web 

application. 

A. State 
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In this system, a state refers to the configuration of a web application at a specific point in 

time, characterized by its visual and structural properties. Each state encapsulates the outcomes 

of user interactions and changes within the web application, offering a detailed snapshot of both 

its user interface and underlying functionality. 

A state is defined by the following key components: 

- Screenshot: A visual capture of the web application’s interface at a particular moment, serving 

as a reference for the graphical presentation as perceived by the user. 

- Page Source: The HTML and Document Object Model (DOM) structure that constitutes the web 

page. This includes critical elements such as forms, buttons, and in- teractive components that 

define the layout and available functionalities. 

- Metadata: Ancillary data related to the current web session, including HTTP headers, cookies, 

and session- specific variables. This metadata provides additional con- text regarding the state 

of the application, reflecting conditions like user authentication, session persistence, or dynamic 

content adjustments. 

State transitions occur when users interact with the ap- plication, such as through navigation, 

form submission, or button clicks. These transitions, captured as edges in the graph, form the 

relationships between states and drive the knowledge representation. 

In complex web applications, multiple states may cor- respond to a single URL, but may vary 

due to session- specific factors or dynamically rendered content. For instance, a checkout page may 

present distinct states depending on whether items have been added to the cart or whether delivery 

options are available for the user’s location. These variations are captured through the combination 

of structural data and metadata. 

B. Action 

In the context of this system, an Action refers to a user- initiated operation or event that 

transitions the web application from one state to another. Actions represent the interaction points 

between the user and the web application, such as clicking a button, submitting a form, navigating to 

a new page, or triggering an AJAX request. These actions are fundamental to the system’s ability to 

explore and infer functionalities within the web application. 

Actions are captured and represented as edges in the knowl- edge graph, where each edge 

connects two nodes (states) and denotes the transition caused by a specific interaction. The goal of 

the system is to not only capture the actions that lead to state transitions but also to rank and 

prioritize them based on their significance to the web application’s functionality. 

Key characteristics of an action include: 

- Action Type: Actions can vary widely, from simple navigation (e.g., following a hyperlink) to 

complex in- teractions (e.g., filling out and submitting a form). These actions are categorized into 

types based on the nature of the interaction, such as clicks, form submissions, key- board inputs, 

or dynamic event triggers (e.g., JavaScript events). 

- Action Context: Each action is tied to a specific element in the DOM structure, such as a button, 

link, or form field. The context includes metadata such as the element’s attributes (e.g., ID, class) 

and its location within the page hierarchy. This context helps the system understand how the 

action relates to the structure of the web application. 

- Effect on State: Actions are only significant if they result in a state change, meaning they 

transition the web application from one distinct state to another. The Functionality Inferring 

Module analyzes the effect of each action on the state, ensuring that only meaningful transi- tions 

are captured. For example, submitting a form might transition the user from a login page to 

a dashboard, whereas clicking a non-interactive element would not result in a state change. 

- Action Priority: Not all actions contribute equally to the exploration of the application’s 

functionality. The system prioritizes actions that lead to new or unexplored states. Actions that 

produce trivial or redundant transitions (e.g., right-clicking or hovering over an element without 

caus- ing a meaningful change) are deprioritized by the Re- ranking Module, ensuring that the 

exploration process is efficient. 
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Figure 1. System Overview of the Proposed Methodology. 

C. Functionality Inferring Module 

The Functionality Inferring Module is responsible for ana- lyzing the current state of the web 

application and predicting potential actions that could transition the application to new states. This 

module synthesizes information from the current observation, previously explored functionalities, 

and the state- action history to identify and rank possible actions. The primary goal is to maximize 

the discovery of new function- alities and ensure that the system explores meaningful user 

interactions. 

The module comprises four key components: 

(1) Reasoning Agent: This agent processes the current ob- servation—comprising the page source, 

screenshot, and meta- data—alongside the record of previously explored function-alities. It 

synthesizes multiple queries to interface with the database, determining what functionalities 

have already been explored and what actions are possible given the current state and past 

interactions. The Reasoning Agent outputs a list of possible actions that can be performed based 

on the current and previous states, ensuring a thorough exploration of the application’s 

functionalities. 

(a) Multi-modal LLM for State Understanding: The Rea- soning Agent employs a multi-modal 

LLM to comprehensively understand the current state of the web application. By ana- 

lyzing various inputs—including the page source, screenshots, and session metadata—the 

LLM can generate a semantic and structural understanding of the application’s current 

state. 

(b) Database Interface for Explored Functionalities: In addition to understanding the current 

state, the Reason- ing Agent interfaces with a database of previously explored 

functionalities. This ensures that the agent avoids redundant actions and focuses on 

unexplored areas of the application. The database stores all previously visited states and 

actions taken, forming a history of interactions with the web application. By querying this 

database, the agent can identify which actions have already been executed and which 

states have already been visited, allowing it to prioritize new interactions. 
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(c) Generation of Possible Actions: Based on the current state and the record of explored 

functionalities, the Reasoning 

 

Figure 2. Functionality Inferring Module. 

 
(a) A simplified and incomplete graph generated by traditional parsers, showcasing limited user interactions 

with only basic state transitions. This representation is insufficient for capturing the complexity of dynamic 

web applications 
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(b) A detailed graph generated by our proposed solution, illustrating a more comprehensive representation of 

user interactions with dynamic state transitions, complex user flows, and action-based edges that offer richer 

insights into web application behavior. 

Figure 3. Comparison of traditional parsers (Figure 3a) vs. our proposed solution (Figure 3b) for 

modeling web application behavior. 

Agent outputs a list of plausible actions that can be performed. These actions may include 

navigation, form submissions, button clicks, or more complex interactions involving multi- step 

processes. 

(2) Re-ranking Module: Once the Reasoning Agent gener- ates a list of possible actions, the Re-

ranking Module evaluates these actions and reorders them based on metrics such as entropy and 

expected reward. The objective is to prioritize actions that are most likely to uncover new 

functionalities or lead to significant state transitions, while deprioritizing trivial or redundant 

interactions (e.g., non-functional actions like right-clicking on an element). This dynamic re-

ranking process ensures that the exploration of the application remains focused on discovering 

meaningful user flows and interactions, ultimately maximizing the system’s efficiency and 

effective- ness in navigating complex web applications. 

(3) Next Actions Prediction Agent: The Next Actions Pre- diction Agent uses a finetuned multi-modal 

LLM that refines the list of actions. It selects the top-ranked actions from the Possible Actions 

List and predicts the next best steps to take. This agent combines insights from both the re-

ranked list and the system’s understanding of the web application to choose actions that will 

maximize the system’s overall reward. 

The Functionality Inferring Module operates through a feed- back loop. After executing each 

action, the module updates its understanding of the web application’s behavior, incorporating newly 

observed states and actions. This feedback ensures that the system continually improves its 

predictions and focuses on uncovering the most important functionalities. 

D. Action Executor 

The Action Executor is responsible for executing actions or sequences of actions within the 

web application based on the inputs from the Re-ranking Module and Next Actions Prediction Agent. 

It performs interactions such as clicks, form submissions, and complex multi-step operations. 

(1) Action Execution: The Executor applies selected actions, which may involve single interactions 

(e.g., clicking a button) or multi-step sequences (e.g., form submissions). It handles various 
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action types, including user interface actions, naviga- tional transitions, and event-driven 

triggers like JavaScript. 
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(2) State Validation: After executing actions, the Executor verifies whether the action resulted in a 

meaningful state change by capturing the updated page source, screenshots, and metadata. This 

validation is critical for updating the knowledge graph. 

(3) Error Handling and Recovery: In the case of failed 

(4) actions due to issues like incorrect inputs or unhandled edge cases, the Executor logs the error 

and retries or performs recovery actions to restore the application to a stable state. 

E. Reward/Penalty Model 

The Reward/Penalty Model quantifies the system’s progress in exploring meaningful 

functionalities within the web applica- tion. After the Action Executor performs an action and returns 

the new state, this model evaluates the outcome by assigning a score between -1 and +1, indicating 

the action’s value. Positive scores reflect significant progress, while negative scores highlight trivial 

or redundant actions. 

(1) Rewarding Significant Progress: Actions that lead to new state transitions or the discovery of 

unexplored function- alities receive positive rewards (closer to +1). For example, navigating from 

the home page to product listings or accessing the checkout process are high-reward actions as 

they reveal critical application behaviors. 

(2) Penalizing Redundant Actions: When actions result in trivial transitions (e.g., reaching a leaf 

node where no further meaningful actions can be taken), the model assigns penalties (closer to -

1). This prevents the system from getting stuck in unproductive states, such as a ”Thank you” 

page after purchase completion. 

(3) Stopping Exploration: If no actions produce a positive reward, the system halts exploration for 

that path. This ensures resources are not wasted on dead ends and exploration focuses on 

uncovering valuable transitions. 

(4) Retrials: In cases where the action taken results in a reward score close to the defined 

threshold but not sufficiently positive, this model will initiate a retrial if the maximum number 

of retries has not been exhausted. 

IV. Experiments 

To evaluate the effectiveness of our proposed approach, we conducted experiments on a real-

world e-commerce web- site, Dentomart.com, which specializes in selling dentistry equipment. 

This website includes a wide range of dynamic and interactive components, such as product search, 

filtering, cart management, and user authentication, making it an ideal candidate for testing the 

limitations of traditional parsers and the capabilities of our solution. 

A. Traditional Parser Setup 

For comparison purposes, we implemented a traditional parser using the Scrapy framework, 

which is commonly used for web scraping. Our Scrapy-based parser follows a basic depth-first 

approach for crawling web pages, extracting hy- perlinks, and collecting static page content. 

Specifically, the parser was configured with the following parameters: 

- Max crawl depth: 3 levels 

- Follow redirects: Enabled 

- Concurrent requests: 8 

- User-agent rotation: Implemented to mimic various browsers 

B. Proposed Solution Setup 

To address the limitations of traditional parsers, we build a directed graph that models 

Dentomart.com. The graph was constructed using the following hyperparameters: 

- min reward: 0 — The minimum threshold for reward- based transitions, used to eliminate low-

value or redun- dant actions. 

- max leaf branches: 999 — The maximum number of branches a leaf node can have before being 

pruned. 
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- max consecutive actions: 5 — The maximum number of consecutive actions allowed within a 

single state before forcing a transition. 

- max retries: 3 — The maximum number of attempts for each action before considering it a failed 

interaction. 

C. Evaluation Metrics 

We compared the performance of the traditional Scrapy- based parser and our proposed solution 

using the following key metrics: 

(1) State coverage: The number of unique states visited by each method. For traditional parsers, a 

unique state is typically identified by a unique URL within the domain. Higher state coverage is 

better because it reflects a more comprehensive exploration of the web application, including all 

key functionalities and dynamic states. 

(2) Edge complexity: The total number of edges (interac- tions) captured between states. Ideally, 

this value is close to n − 1, where n is the total number of states. This indicates minimal 

distractions between flows, with no unrelated or re- dundant transitions, suggesting that each 

transition contributes meaningfully to the functionality being explored. 

(3) Failure recovery: The ratio of actions that failed on the first attempt but succeeded within the max

retries allowed by the system. A higher value indicates better robustness, as the system is able 

to recover from failures and explore alternative paths or retry actions successfully. 

(4) Time to completion: The total time taken by each method to complete the crawl. In this metric, 

lower values are better, as faster completion means more efficient exploration. 

(5) Graph density: This metric measures the ratio of actual edges to the total possible edges in the 

graph. Lower density implies that the graph is not overly crowded with meaningless 

connections, which would indicate more structure and clarity in the transitions between states. 

(6) Shortest path length: The average shortest path length between any two nodes in the graph, which 

measures the overall connectivity. A longer shortest path may indicate more unique states and 

deeper exploration of the application. For traditional parsers, the path length may be shorter due 

to fewer unique states being captured, while in our approach, it is likely longer because of the 

broader state coverage and complex interactions. 

(7) Betweenness centrality: This metric measures the im- portance of nodes in connecting different 

parts of the graph. A higher value suggests that certain states (nodes) serve as crucial junctions 

in the web application’s flows. This can be useful in identifying critical pages, such as login 

screens or checkout processes, that play a significant role in navigating through the application. 

A higher betweenness centrality is often desirable for identifying key interaction points in the 

user journey. 

V. Results 

We conducted experiments on the Dentomart web appli- cation, comparing a traditional Scrapy-

based parser with our proposed solution. The traditional parser captured basic static states and edges 

but struggled with dynamic content and failed to capture user-triggered behaviors like form 

submissions or AJAX-based content loading. In contrast, our proposed solu- tion effectively modeled 

dynamic state transitions, capturing significantly more states and edges, though with a longer time 

to completion. 

A. Key Metrics 

Table 1. summarizes the key differences between the tradi- tional parser and our solution. 

Table 1. Comparison of traditional parser vs. proposed solution across key metrics. 

Metric Traditional Parser Proposed Solution 

State complexity (no. of states) 24 95 

Edge complexity (no. of edges) 86 94 

Failure recovery rate N/A 0.72 

Time to completion (seconds) 300 5500 
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Graph density 0.72 0.15 

Shortest path length 2.1 6.4 

Betweenness centrality (avg) 0.59 0.02 

The proposed solution achieved much better state coverage and edge complexity, capturing a 

significantly higher number of interactions. It also excelled in detecting dynamic behaviors with 

robust failure recovery, which the traditional parser missed entirely. Notably, the average 

betweenness centrality in our approach is lower than in traditional parsers. This is primarily due 

to the higher number of unique states our model identifies, each representing distinct state transitions 

triggered by user interactions and dynamic content. These unique states are less likely to serve as 

intermediary nodes across multiple flows, reducing their overall centrality in the graph. In contrast, 

traditional parsers often rely on hyperlinks, leading to more shared or reused states across different 

flows, which increases the likelihood of those states acting as bridges. Consequently, while traditional 

parsers produce more centralized graphs, our method results in a more diverse and decentralized 

structure with fewer critical intersections. 

B. Procedurally Generated Test Cases by Graph Traversal 

One significant downstream application of the rich graph- based representation produced by 

our solution is automated testing. Each root-to-leaf path in the graph corresponds to a unique 

user flow or interaction sequence within the web application. Since every functionality within the 

application is reflected as a distinct path, we were able to procedurally generate test cases by 

traversing these root-to-leaf paths. 

In total, the proposed solution generated 51 unique test cases, covering a wide range of user 

interactions such as logging in, searching for products, adding items to the cart, and completing the 

checkout process. By automating the traversal of these paths, test cases can be programmatically 

generated, ensuring comprehensive coverage of user interactions, includ- ing edge cases and complex 

workflows that may be difficult to test manually. 

This procedural test generation ensures that the entire functionality of the application is tested, 

and the dynamic states and behaviors captured by the graph provide detailed insight into every 

possible user interaction. As a result, the system can easily identify potential bugs, usability issues, 

or performance bottlenecks by systematically exploring each unique path through the application. 
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