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Abstract: Understanding plant species and community status is the most fundamental step in assessing 

biodiversity and considering environmental conservation, and these depend on the identification of plant 

species. Plant identification is usually done manually using botanical illustrations, but due to the diversity of 

plant species, identifying a single species from among many candidates listed in illustrated books is a labor-

intensive and time-consuming task, even for experts. Against this background, systems for automatic plant 

species recognition are in demand by experts and amateurs alike. In this study, we proposed a method for 

automatic plant identification by applying multifractal analysis to images of leaf veins, including veinlets. In 

the experiment, we conducted two experiments: one to see if there is a change in the number of dimensions 

depending on the degree of leaf growth, and the other to see how the number of dimensions changes 

depending on the taxonomic group. As a result, there was almost no change depending on the degree of 

growth, and the number of dimensions varied depending on the taxonomic group, suggesting that different 

taxonomic groups can be classified into different taxonomic groups, suggesting that multifractal analysis can 

be applied to leaf vein images, including veinlets, to enable automatic plant identification. 

Keywords: fractal analysis; multi fractal; image analysis; plant identification 

 

1. Introduction 

There are so many plant species on the planet that as of 2020, an estimated 350,000 species of 

vascular plants have been identified [1]. Because botany defines taxonomic groups, such as families 

and genera, and assigns individual plants to those taxonomic groups, experts determine which plant 

species they fall into, despite the diversity of plants. This process of assigning an unknown plant to 

a taxon is called plant identification [2]. 

Accurate plant identification is an essential task when considering biodiversity assessment and 

environmental conservation [3]. The plant species that inhabit a given area vary greatly depending 

on the sunlight conditions, human management conditions, and the ecosystem of the land. Because 

of the immobile nature of plants, vegetation can be used as an indicator to capture the local 

environment. Therefore, plant identification is the most fundamental step when considering 

biodiversity assessment and environmental conservation [4]. In addition, with continued biodiversity 

loss, the demand for plant identification is expected to increase further [5]. 

Plant identification is usually done manually using botanical illustrations. Assign plants to taxa 

based on their identifying and morphological characteristics until finally reaching a species. There 

are two types of characteristics: quantitative, such as plant height, flower width, and number of 

petals, and qualitative, such as leaf shape and flower color. Since plants of the same species cannot 

have exactly the same characteristics, some generalization is necessary for classification [6]. 

Therefore, it is difficult for a layman to identify plants from illustrated books [7]. Even if one is an 

expert, the task of identifying a single species from a large number of candidates listed in illustrated 
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books is labor intensive and very costly in terms of time, due to the diversity of plant species [8]. 

Against this background, the system of automatic plant species recognition is in demand not only by 

experts but also by laymen. 

With the demand for automated species identification growing from many directions, in 2004 

Gaston et al [9] argued that with the development of artificial intelligence and image processing, 

automated species identification based on digital images will become concrete in the near future. 

In fact, such research has been actively conducted in recent years, including studies attempting 

to identify plants from flower and leaf images [10,11], applying Minkowski's multiscale fractal 

dimension method (Multiscale Minkowski-Sausage) to images of leaf outlines and veins to attempt 

automatic [12], and machine learning of leaf vein images and leaf shape images [13]. 

Plants are composed of various organs such as flowers, leaves, and roots, and as mentioned 

above, various characteristics such as plant height, flower width, number of petals, leaf shape, and 

flower color can be obtained. These characteristics have been used in the past for manual 

identification, but many characteristics have also been studied as information for automatic 

recognition, and a number of methods for describing the characteristics have been investigated [6]. 

Saito et al. [10] proposed a flower recognition system that uses flower images taken in their 

natural state as input. Finally, 20 samples from each of 15 families and 30 species were tested using 

the leave-one-out method, resulting in a recognition rate of 98.6%. Although this method has been 

able to obtain a high recognition rate, there are some problems: flowers can often be collected only 

for a limited period of time during the year, there are large differences in morphological and color 

characteristics depending on the flowering period, and some flowers change their flowering status 

during the daytime. Among the characteristics that can be obtained from plants, flowers are the most 

difficult to handle [6]. 

On the other hand, leaves are readily available as information because they can be easily 

collected year-round from almost any plant, including fossils and rare plants. Furthermore, leaf 

structures are planar, making them easy to collect, store, and image. Because these aspects simplify 

the data collection process, leaf morphology is the most studied feature in plant identification [6,14]. 

Figure 1 shows the main leaf features and their descriptors proposed for the automatic classification 

of plant species. 

 

Figure 1. Main leaf features and their descriptors used for automatic classification [14]. 

Leaf characteristics can be divided into two main categories: general characteristics such as 

shape, color, and texture, and characteristic quantities specific to leaves such as veins and leaf 

margins. Of these properties, shape is the one that has been studied most extensively [14]. Research 

on automatic shape classification can be divided into two main categories: methods that quantify the 

outline of the leaf and methods that quantify the leaf region (area, axial length, etc.). While shape 

characteristics are simple and readily available and therefore easy to use as information, they often 

vary considerably even among leaves of the same species, making automatic classification by shape 

alone difficult. Therefore, shape features are usually used in combination with other features. 
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For color features, descriptors such as color moments (CM), color histograms (CH), color 

coherence spectra, and color correlograms have been proposed [15]. The main challenge in describing 

color characteristics is that there are considerable differences due to the intensity and angle of the 

light at the time of capture, as well as different color temperatures [14]. In addition, Yanikoglu et al 

[16] reported that color information does not contribute at all to classification accuracy when 

combined with shape and texture descriptors. For these reasons, there are few studies on color 

characteristics. 

For texture features, the main descriptors proposed are the Gabor filter (GF), fractal dimension 

(FD), and gray-level co-occurrence matrix (GLCM). GF has been widely employed to extract texture 

features from images, and Casanova et al [17] applied GF to textured images without leaf margin and 

reported higher accuracy than traditional texture analysis methods such as FD and GLCM. On the 

other hand, some literature claims that fractal analysis is the most suitable method for texture analysis 

because objects in nature [18], such as the surface of a leaf, have random and persistent patterns [19]. 

Jarbas et al [20] proposed a method that combines FD and lacunarity in a gravity model and found it 

to be superior to GF, FD, and GLCM. None of the texture analysis methods rely on complete leaf 

shape, as they can classify plants based on only one part of the leaf. Thus, it is very useful for the 

purpose of identifying plants that have been damaged by insect bites or other problems. 

The leaf veins and leaf margins are characteristic quantities that are unique to the leaf. Since 

hand vein patterns are used in ecological authentication [21], leaf vein features can be a powerful 

source of information in plant identification. Larese et al [22] calculated 52 measurements (total 

number of edges, total number of nodes, network length, vein length, etc.) from the veins and 

examined the measurements needed for automatic identification. Nam et al [23] reported applying a 

graph matching algorithm called Venation Matching (VM) to leaf veins and combining it with shape 

features to obtain high accuracy. Bruno et al [12] applied Minkowski's multiscale fractal dimension 

method (Multiscale Minkowski-Sausage) to images of leaf outlines and veins to attempt automatic 

recognition, and reported a high recognition rate when the two methods were combined. 

Bruno et al [12] proposed an automatic plant identification method based on multiscale fractal 

dimension. The resulting average misclassification rate of 2.5% is good, indicating that multi-scaling 

fractal analysis is a useful method for feature extraction in leaf veins. 

Bruno et al. extracted and analyzed only the central and lateral veins of the leaf veins and did 

not deal with information on the fine veins. In light of the aforementioned ecological authentication 

technology, it would be possible to improve accuracy by also analyzing veinlets. In fact, Wilf et al 

[13] obtained excellent results in family and order classification by machine learning of vein images 

and leaf shape images, including veinlets. 

However, Minkowski's multi-scaling fractal analysis used in this method uses the extrema of the 

resulting graph as features and does not interpret the features semantically. In contrast, in the other 

means of obtaining fractal dimension, called multifractal analysis, which extends the Hausdorff-

Besicovitch dimension, the features obtained are values related to shape, entropy, etc. Leaf features 

can be used not only for plant identification, but also as indicators for other basic research, such as 

the study of potential leaf diseases. In the future, if breeding attempts are made to create disease-

resistant plants based on these values, features that can be associated with shape and entropy could 

be more informative than features that have no semantic interpretation. Minkowski's multiscaling 

fractal analysis is also based on the assumption that objects in nature are unlikely to be 

mathematically perfect fractals, and multifractal analysis is based on the same assumption. Since 

multi-scaling fractal analysis is useful as a feature extraction method for leaf veins, we believe that 

multi-fractal analysis is also useful as a feature extraction method for leaf veins. 

For these reasons, we propose a method of applying multifractal analysis to images of leaf veins, 

including veinlets. 

2. Materials and Methods 

In this study, we propose a method to apply the capacity dimension, information dimension, 

and correlation dimension resulting from multifractal analysis to leaf veins. These values will be used 
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to allow quantitative evaluation of the characteristics of the leaf veins. A flowchart of the proposed 

method is shown in Figure 2. 

 

Figure 2. Procedures. 

2.1. Preparation of Leaf Vein Specimens 

The contrast of leaf veins captured with a normal camera is very low, as shown in Figure 3(a), 

and it is difficult to extract only the leaf veins from this image. Therefore, the leaves are first washed 

with chemicals to remove the leaf flesh, and only the leaf veins are extracted to prepare leaf vein 

specimens. The procedure for preparing leaf vein specimens is shown in Figure 3. 

 

Figure 3. Procedures for preparing leaf vein specimens. 

First, a 10% sodium hydroxide solution is prepared and brought to a boil, then the leaves to be 

used for analysis are added and heated for 10-15 minutes. The condition of the leaves after heating 

for 10-15 minutes is shown in Figure 3(b). The leaves are then neutralized by feeding them into acid, 

and the leaf flesh is removed in an ultrasonic cleaner to obtain leaf vein specimens. The specimens 
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obtained here are brown in color, but for the convenience of future photography and image 

processing, the leaf veins were removed by soaking in bleach for 30 minutes to 1 hour to remove the 

color of the veins to produce white to pale yellow specimens. The completed leaf vein specimen is 

shown in Figure 3(c). 

2.2. Photographing and Pretreatment of Specimens 

Next, the specimens prepared in 2.1 are photographed against a black background. The use of 

an electron microscope to capture images clearly shows veinlets. The captured image data is then 

preprocessed so that it can be analyzed for multifractal analysis. The pretreatment procedure is 

shown in Figure 4. First, the image is grayscaled, binarized, and morphologically transformed to 

create an image from which only the leaf veins are extracted. Multifractal analysis repeats the process 

of multiplying the width of the boxes that divide the image by 1/2, as shown in Figure 5, so the image 

size should be a power of 2. Therefore, trim the image to an appropriate size. 

 

Figure 4. Shooting and pre-processing procedures. 

 

Figure 5. Box split. 

2.3. Box Partitioning and Existence Probability Calculation 

The image is divided into boxes as shown in Figure 5, and the existence probability of each box, 

𝑃𝑖(𝜀), is obtained from Equation (1). 

𝑃𝑖(𝜀) =
𝑁𝑖

𝑁
 (1) 

where ε is the box size, i is the box number, N is the total number of white pixels in the entire image, 

and 𝑁𝑖  is the number of white pixels in the i-th box. The specified value of the box size ε was 

experimentally set as the value at which all leaves used in the experiment exhibit multifractality in 

dimensions 0, 1, and 2, with a maximum value of 2048 [pixels] and a minimum value of 8 [pixels]. 

Then repeat ε = ε x 1/2 until ε = 2048 to ε = 8. For each ε, we store the existence probability 𝑃𝑖(𝜀), 

which is the percentage of the total number of white pixels (= pixels with a luminance value of 255) 

in the i-th box. 

2.4. Calculation of Fractal Generalized Dimensions 
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Using the values of 𝑃𝑖(𝜀) calculated in Section 2.3, determine 𝐷𝑞 , f(α), and α(q). 𝐷𝑞  is obtained 

from equations (2) and (3), α(q) from equation (4), and f(α) from equation (5). The 𝜇𝑖(𝜀) used to 

calculate α(q) and f(α) is obtained in Equation (6). 

𝐷𝑞 =
1

𝑞 − 1
lim
𝜀→0

log ∑ 𝑃𝑖(𝜀)𝑞𝑁(𝜀)
𝑖=1

log 𝜀
 (𝑞 ≠ 1) (2) 

𝐷1 = lim
𝜀→0

∑ 𝑃𝑖(𝜀) log 𝑃𝑖(𝜀)𝑁(𝜀)
𝑖=1

log 𝜀
 (𝑞 = 1) (3) 

α(𝑞) = lim
𝜀→0

∑ 𝜇𝑖(𝜀) log 𝑃𝑖(𝜀)𝑁(𝜀)
𝑖=1

log 𝜀
 (4) 

𝑓(𝛼) = lim
𝜀→0

∑ 𝜇𝑖(𝜀) log 𝜇𝑖(𝜀)𝑁(𝜀)
𝑖=1

log 𝜀
 (5) 

𝜇𝑖(𝜀) =
𝑃𝑖(𝜀)𝑞

∑ 𝑃𝑖(𝜀)𝑞𝑁(𝜀)
𝑖=1

 (6) 

where q is the moment order. 

Equations (2)-(5) include the computation of limits in the equations. However, it is not possible 

to calculate the limits programmatically. Therefore, in this study, as shown in Figure 6, the values of 

the numerator and denominator of the equation were set to (x, y), and the slope obtained by linear 

regression was used as the result of the limit calculation. In this study, the least squares method was 

used for the linear regression technique. 

 

Figure 6. Calculate the extreme values of 𝐷𝑞 (the extreme values of f(α) and α(q) are obtained in the 

same way). 

The above process is performed over the specified q range to obtain 𝐷0, 𝐷1, and 𝐷2 from the 

𝐷𝑞  spectrum. 

3. Results and Discussion 

Two experiments were conducted to examine the usefulness of the method proposed in this 

study. 

The first is to check whether the number of dimensions varies with the degree of leaf growth. 

This is necessary to know in advance the effect of the degree of growth on the leaf veins of the plant 

in order to realize automatic identification in the future. 

The second is to check how the number of dimensions varies among the different taxonomic 

groups. With these results, it can be discussed whether automatic identification is possible with the 

proposed method in the future. 
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3.1. Experimant Environment 

Table 1 shows the camera used to obtain the leaf area, Table 2 shows the specifications of the 

computer used for the analysis, and Table 3 shows the specifications of the electron microscope used 

during the imaging. In all leaves, the camera used during leaf area measurements was used to take 

pictures with the zoom set to equal magnification, and the electron microscope was used to take 

pictures with a magnification of 30x and a resolution of 12M. 

Table 1. Camera used. 

Table 2. Computer specifications used. 

OS Windows 11 Home 

CPU Intel® Core™ i9-10900K / 3.70GHz 

RAM 32GB 

Table 3. Electron microscope specs used. 

Sensor 5-megapixel CMOS sensor 

Zoom magnification 
Optical Zoom 10 – 300 times 

Digital Zoom Up to 4 times 

Shooting resolution (still image) 12M, 9M, 5M, 3M, 1.3M, VGA 

Format (still image) JPEG 

3.2. Experiment 1: Verification Experiment of the Relationship between the Degree of Leaf Growth and the 

Number of Dimensions 

3.2.1. Experiment Summary 

In Experiment 1, we used four species of trees that are known to be easy to prepare vein 

specimens: (a) Japanese photinia, (b) red tip, (c) Japanese hawthorn, and (d) common camellia. An 

example of a sample of each of the four plant species used in Experiment 1 is shown in Figure 7. 

Model name iPhone 13 Pro 

Camera used Ultra-wide-angle camera 
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Figure 7. An example of a sample used in the experiment. 

(a) was collected next to the smoking area in front of the old No. 10 building at the Setagaya 

Campus of Tokyo City University; (b) was collected from the hedge of the Denen Mansion Todoroki 

in Todoroki 2-chome, Setagaya-ku, Tokyo; (c) was collected at the entrance to the parking lot of 

Todoroki Valley in Setagaya-ku, Tokyo; and (d) was collected along the Kasai Water Oyasui 

(waterway) in Towa 2-chome, Adachi-ku, Tokyo. The position of the leaves to be collected was chosen 

so that they were evenly distributed from the base of the tree to the tip of the tree to avoid bias. 

Because only a portion of the leaf can be photographed at one time due to the convenience of using 

an electron microscope, six locations were photographed per sample: (1) upper left, (2) upper right, 

(3) left center, (4) center right, (5) lower left, and (6) lower right. The sample shooting positions are 

shown in Figure 8. 
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Figure 8. Sample shooting positions (1) to (6). 

Because of the disorderly spread of tree branches, it is difficult to estimate the degree of leaf 

growth from their position. Therefore, the leaf area A of each leaf was determined, and the higher the 

value of A, the more mature the leaf. Leaf area A is a value used by Caglayan et al [24] as one of the 

leaf shape features and is the number of leaf pixels in the leaf area. In this study, leaves were 

photographed under similar photographic conditions, and the value of A was obtained by counting 

the total number of pixels in the leaf area. To photograph the leaves, a 14.6 cm base was made and 

the iPhone 13 Pro was placed so that the camera protrudes from the base toward the surface on which 

the leaves were placed. The angle between the base and the surface on which the leaves were placed 

was confirmed to be 0° with the iPhone's standard built-in measuring device. A schematic diagram 

of leaf photography is shown in Figure 9 and an example of an actual photograph is shown in Figure 

10. After photographing, the images were pre-processed using CLIP STUDIO PAINT. The procedure 

is as follows 

1. binarization at threshold 200. 

2. gamut selection for white pixels. 

3. Expand the selection by 10px and contract by 8px using the expansion type with rounded 

corners. 

4. Fill in the selected area with white. 

5. Fill in any additional areas within the foliage that are left unpainted. 

6. Eliminate noise around leaves. 

7. Trim the selection to exclude the base of the leaf. 

8. Select the gamut where the pixels are white again, and perform trimming in the selected area. 

An example of an image processed by the above procedure is shown in Figure 11. The value of 

A was obtained by counting the total number of white pixels in Figure 11. 
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Figure 9. Schematic diagram of leaf photography. 

 

Figure 10. Examples of actual photo. 

 

Figure 11. Examples of processed image. 

3.2.2. Experimental Results 

Figures 12 through 15 show the relationship between leaf area and the trimmed mean excluding 

the maximum and minimum of 𝐷0, 𝐷1, and 𝐷2 for the 10 samples. The dashed lines in the figure 

indicate the linear approximation by linear regression, and the error bars indicate the standard 

deviation of each sample, i.e., the variation of the analysis results for the shooting positions (1) to (6). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 October 2024 doi:10.20944/preprints202410.0412.v1

https://doi.org/10.20944/preprints202410.0412.v1


 11 

 

 

Figure 12. (a) Relationship between leaf area and fractal dimension values. 

 

Figure 13. (b) Relationship between leaf area and fractal dimension values. 
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Figure 14. (c) Relationship between leaf area and fractal dimension values. 

 

Figure 15. (d) Relationship between leaf area and fractal dimension values. 
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The coefficient of determination 𝑅2 for the linear approximation in (a) was 0.0499 for 𝐷0, 0.039 

for 𝐷1 , and 0.0268 for 𝐷2 . The slopes of the approximate curves were −4.0 × 10−9  for 𝐷0 , 

−4.0 × 10−9 for 𝐷1, and −3.0 × 10−9 for 𝐷2. 

The coefficient of determination 𝑅2 for the linear approximation in (b) was 0.0076 for 𝐷0, 0.0016 

for 𝐷1 , and 0.0093 for 𝐷2 . The slopes of the approximate curves were −3.0 × 10−9  for 𝐷0 , 

−1.0 × 10−9 for 𝐷1, and −3.0 × 10−9 for 𝐷2. 

The coefficient of determination 𝑅2 for the linear approximation in (c) was 0.0321 for 𝐷0, 0.0332 

for 𝐷1 , and 0.0353 for 𝐷2 . The slopes of the approximate curves were −8.0 × 10−9  for 𝐷0 , 

−8.0 × 10−9 for 𝐷1, and −9.0 × 10−9 for 𝐷2. 

The coefficient of determination 𝑅2 for the linear approximation in (d) was 0.0004 for 𝐷0, 0.0068 

for 𝐷1 , and 0.0082 for 𝐷2 . The slopes of the approximate curves were −2.0 × 10−9  for 𝐷0 , 

−8.0 × 10−9 for 𝐷1, and −8.0 × 10−9 for 𝐷2. 

3.2.3. Consideration 

Based on the slope of the linear approximation and the value of the coefficient of determination, 

the values of the slope of the straight line in (a)-(d) are very small, and the value of the coefficient of 

determination is also very small, suggesting that the standard deviation of each sample is more 

influential than the effect of the degree of leaf growth on the veins. 

These results indicate that the degree of leaf growth has little effect on the dimensionality of the 

veins, and that the error due to the location of the shot within the same sample is larger than the 

change due to the degree of growth. 

3.3. Experiment 2: Experiments to Verify the Relationship between Taxonomy Group and Number of 

Dimensions 

3.3.1. Experiment Summary 

In Experiment 2, we used exactly the same image data as used in Experiment 1. The plant taxa 

used in Experiment 2 are listed in Table 4. 

Table 4. Classification of plants used in Experiment 2. 

Species Technical name Family Genus 

(a) Japanese photinia Photinia glabra Rosaceae Photinia 

(b) red tip 
Photinia × fraseri 

‘Red Robin’ 
Rosaceae Photinia 

(c) Japanese 

bowthorn 

Rhaphiolepis 

umbellate 
Rosaceae Rhaphiolepis 

(d) common camellia Camellia japonica Theaceae Camellia 

The purpose of Experiment 2 is to test the relationship between taxonomy group and number of 

dimensions. Therefore, we decided to verify the following four conditions. 

(I) Verification of whether there is a difference in results between members of the same family 

and genus that differ only in species. 

 (Comparison of (a) and (b), which are in the same family, Rosaceae, genus Photinia) 

(II) Verification of whether there is a difference in results between different genera in the same 

family. 

 (Comparison of the genera (a,b) Photinia and (c) Rhaphiolepis, which are in the same family, 

Rosaceae) 

(III) Verification of whether there is a difference in results between different families. 

 (Compare (a,b,c) Rosaceae and (d) Camellia, which are also in the same family) 

(IV) Verification of whether there is a difference in results between different species. 

 ((a)-(d)) Comparison of each) 
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In this case, comparisons between two samples were verified using Welch's t-test as in 

Experiment 2, and comparisons between three or more samples were verified using Tukey's multiple 

comparisons. 

3.3.2. Experimental Results (I) Comparison among Those Differing Only in Species 

The null hypothesis is that fractal dimension classification is not possible for species that differ 

only in species, while the alternative hypothesis is that fractal dimension classification is possible for 

species that differ only in species. The results of Welch's t-test (significance level α=.05) are shown in 

Table 5. 

Table 5. Welch’s t-test results. 

 𝑫𝟎 𝑫𝟏 𝑫𝟐 

 (a) (b) (a) (b) (a) (b) 

Average 1.858 1.882 1.813 1.839 1.797 1.823 

Decentralization 
2.01
∗ 10−5 

5.68
∗ 10−5 

2.4 ∗ 10−5 
7.27
∗ 10−5 

2.65
∗ 10−5 

8.01
∗ 10−5 

Number of 

observations 
10 10 10 10 10 10 

Degree of freedom 15  14  14  

t -8.463  -8.157  -7.965  

P(T<=t) both sides 
4.27
∗ 10−7 

 
1.09
∗ 10−6 

 
1.44
∗ 10−6 

 

t Boundary value Both 

sides 
2.131  2.145  2.145  

3.3.3. Considerations (I) Comparison among Those Differing Only in Species 

Welch's t-test results showed significant differences between conditions (a) and (b) for all values 

of 𝐷0, 𝐷1, and 𝐷2. As a result, the null hypothesis is rejected, and we can infer that the results of 𝐷0, 

𝐷1, and 𝐷2 are fractal dimension classification is possible for species that differ only in species. 

3.3.4. Experimental Results (II) Comparison between Different Genera in the Same Family 

The null hypothesis is that fractal dimension classification is not possible for species that same 

family, differ genus, while the alternative hypothesis is that fractal dimension classification is 

possible for species that same family, differ genus. The results of Welch's t-test (significance level 

α=.05) are shown in Table 6. 

Table 6. Welch’s t-test results. 

3.3.5. Considerations (II) Comparison between Different Genera in the Same Family 

 𝑫𝟎 𝑫𝟏 𝑫𝟐 

 (a, b) (c) (a, b) (c) (a, b) (c) 

Average 1.870 1.813 1.826 1.767 1.810 1.750 

Decentralization 
1.81
∗ 10−4 

1.78
∗ 10−4 

2.15
∗ 10−4 

1.94
∗ 10−4 

2.29
∗ 10−4 

1.96
∗ 10−4 

Number of 

observations 
20 10 20 10 20 10 

Degree of freedom 18  19  19  

t 10.90  10.75  10.71  

P(T<=t) both sides 
2.35
∗ 10−9 

 
1.63
∗ 10−9 

 
1.74
∗ 10−9 

 

t Boundary value Both 

sides 
2.101  2.093  2.093  
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Welch's t-test results showed significant differences between conditions (a, b) and (b) for all 

values of 𝐷0, 𝐷1, and 𝐷2. As a result, the null hypothesis is rejected, and we can infer that the results 

of 𝐷0, 𝐷1, and 𝐷2 are fractal dimension classification is possible for species that same family, differ 

genus. 

3.3.6. Experimental Results (III) Comparison between Different Families 

The null hypothesis is that fractal dimension classification is not possible for species that differ 

family, while the alternative hypothesis is that fractal dimension classification is possible for species 

that differ family. The results of Welch's t-test (significance level α=.05) are shown in Table 7. 

Table 7. Welch’s t-test results. 

 𝑫𝟎 𝑫𝟏 𝑫𝟐 

 (a, b, c) (d) (a, b, c) (d) (a, b, c) (d) 

Average 1.851 1.732 1.806 1.689 1.790 1.675 

Decentralization 
9.08
∗ 10−4 

2.41
∗ 10−4 

1.00
∗ 10−3 

2.23
∗ 10−4 

1.03
∗ 10−3 

2.14
∗ 10−4 

Number of 

observations 
30 10 30 10 30 10 

Degree of freedom 31  33  34  

t 16.22  15.76  15.30  

P(T<=t) both sides 
1.07
∗ 10−16 

 
6.37
∗ 10−17 

 
8.19
∗ 10−17 

 

t Boundary value Both 

sides 
2.040  2.035  2.032  

3.3.7. Considerations (III) Comparison between Different Families 

Welch's t-test results showed significant differences between conditions (a, b) and (b) for all 

values of 𝐷0, 𝐷1, and 𝐷2. As a result, the null hypothesis is rejected, and we can infer that the results 

of 𝐷0, 𝐷1, and 𝐷2 are fractal dimension classification is possible for species that same family, differ 

genus. 

3.3.8. Experimental Results (IV) Comparison between Different Species 

Since we wanted to test whether there were differences in the data among the four samples for 

comparisons between different species, we used analysis of variance rather than t-tests to make the 

comparisons. One-way ANOVA (significance level α=.05) was used for factors (a)-(d), since only one 

of the species information was available. Tables 8 through 10 show the results of one-way ANOVA 

for 𝐷0 , 𝐷1 , and 𝐷2 , respectively. As a result, significant differences between data groups were 

obtained for all 𝐷0, 𝐷1, and 𝐷2. Therefore, we compared the differences between data groups by 

performing multiple comparisons. Tukey's multiple comparisons were used for multiple 

comparisons. The results of multiple comparisons (with a confidence interval of .95) for 𝐷0, 𝐷1, and 

𝐷2, respectively, are shown in Figures 16–18. The results of multiple comparisons are shown as pairs 

of data on the vertical axis and confidence intervals on the horizontal axis. 

Table 8. Results of one-way ANOVE (𝐷0). 

Variable cause Square sum 
Degree of 

freedom 

Average 

square 
F p 

Column 

average 
0.1313 3 0.0438 353.0 9.698 ∗ 10−27 

Measurement 

error 
0.0045 36 0.0001   

Total 0.1358 39    
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Table 9. Results of one-way ANOVE (𝐷1). 

Variable cause Square sum 
Degree of 

freedom 

Average 

square 
F p 

Column 

average 
0.1302 3 0.0434 337.9 2.066 ∗ 10−26 

Measurement 

error 
0.0046 36 0.0001   

Total 0.1348 39    

Table 10. Results of one-way ANOVE (𝐷2). 

Variable cause Square sum 
Degree of 

freedom 

Average 

square 
F p 

Column 

average 
0.1249 3 0.0416 322.2 4.728 ∗ 10−26 

Measurement 

error 
0.0047 36 0.0001   

Total 0.1296 39    

 

Figure 16. Results of Tukey’s multiple comparisons in 𝐷0. 
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Figure 17. Results of Tukey’s multiple comparisons in 𝐷1. 

 

Figure 18. Results of Tukey’s multiple comparisons in 𝐷2. 

3.3.9. Considerations (IV) Comparison between Different Species 

From Figures 16 to 18, we can confirm that there are significant differences in all pairs for both 

𝐷0, 𝐷1, and 𝐷2. In other words, all data can be considered unrelated data. 

Based on these results, it could be inferred that all combinations of different species could be 

classified when compared to each other. Therefore, the proposed method can extract features of leaf 

veins, suggesting the possibility of classifying plants into taxonomic groups from the results obtained 

by the proposed method. 

4. Conclusions 

In this study, we proposed a method for automatic plant identification by applying multifractal 

analysis to leaf vein images that include veinlets. Two experiments were conducted to verify the 

effectiveness of the proposed method. 
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In the first experiment, we checked whether the fractal dimensionality varied with the degree of 

leaf growth. The results showed that the degree of leaf growth had little effect on the fractal 

dimension number of the leaf veins. 

The second experiment was conducted to see how the fractal dimensionality varied among the 

different classification groups, and the results suggested that classification was possible for all of 

same family and genus, differing only in species, same family, differing genus, differing family, and 

differing species. 

The experimental results suggest that multifractal analysis can be applied to images of leaf veins, 

including veinlets, to enable automatic plant identification. However, we would like to collect more 

data in the future, because the magnitude of the effect of errors caused by the shooting position in 

the sample is unclear, and we have only been able to conduct experiments on four types of trees. 
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