

Review

Not peer-reviewed version

Assessing Asymmetry in Soccer: Implications for Muscular Power, Balance, and Injury Prevention

[Monoem Haddad](#) *

Posted Date: 7 October 2024

doi: 10.20944/preprints202410.0409.v1

Keywords: Lower extremity injuries; Sport-specific demands; Strength imbalance; Athlete assessment; Rehabilitation strategies

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Assessing Asymmetry in Football: Implications for Muscular Power, Balance, and Injury Prevention

Monoem Haddad

Coaching Sciences Department, College of Sport Sciences, Qatar University, Doha, Qatar;
mhaddad@qu.edu.qa

Abstract: This review explores the prevalence and impacts of muscular power and dynamic balance asymmetry among football players, emphasizing its impact on performance and injury risk. Asymmetry frequently occurs in football, largely due to the sport's specific demands, including the frequent use of one leg for kicking and passing. While some asymmetry may lead to functional specialization and does not always hinder performance, significant imbalances are often linked to an increased risk of injuries, particularly to the lower extremities. Dynamic balance asymmetry is also associated with a higher risk of non-contact injuries, underscoring the importance of joint stability in preventing such injuries. However, the direct impact of balance asymmetry on performance metrics like sprint speed and agility is less definitive, suggesting that compensatory mechanisms or training adaptations could mitigate potential negative effects. Technological advances in assessment, such as motion capture systems and wearable devices, have enhanced the precision of asymmetry evaluations, enabling more targeted interventions. Despite these technological advancements, further research is needed to understand the long-term effects of asymmetry across different player demographics, including youth and female athletes, and to evaluate the effectiveness of specific training interventions. This review recommends a multidisciplinary approach, integrating biomechanics, sports medicine, and coaching insights, to develop comprehensive strategies for managing asymmetry in football. Such strategies will be crucial for optimizing player performance, minimizing injury risk, and improving training and rehabilitation programs tailored to the diverse needs of football players.

Keywords: lower extremity injuries; sport-specific demands; strength imbalance; athlete assessment; rehabilitation strategies

1. Introduction

Asymmetry in muscular power and balance between the dominant and non-dominant legs is a critical area of research in football, a sport where bilateral coordination and strength are essential for optimal performance. Football players are often required to perform complex maneuvers, such as rapid changes in direction, high-intensity sprints, and precise ball control, which demand synchronized efforts from both legs [1]. However, due to the repetitive and specialized nature of football, where one leg is predominantly used for actions like kicking and passing, players often develop muscular power and balance asymmetries [2,3].

Research into leg asymmetry in football gained significant attention in the early 2000s as sports scientists and coaches sought to better understand the implications of these asymmetries for player performance and injury prevention [4]. Early studies highlighted the potential risks associated with strength imbalances between the legs, suggesting that players with significant asymmetries were more prone to injuries, particularly in the hamstrings [4,5]. These findings led to further investigation into the prevalence and effects of asymmetry in football players, resulting in the development of various assessment tools and methodologies, such as the Y-balance test and the countermovement jump, to quantify asymmetry and its impact on athletic performance [6,7]. Similar patterns of

imbalance and performance impacts have been observed in other high-intensity sports, such as Taekwondo, where heart rate and training load fluctuations during non-specific and sport-specific aerobic training provided significant insights into injury prevention and management strategies [8]. These findings highlight the importance of monitoring both general and sport-specific loads to mitigate the risk of injury in football players.

The study by Haddad et al. [9] provided a foundational analysis of leg asymmetry in football players, showing no significant differences between the dominant and non-dominant legs in a cohort of sub-elite football players. This study challenged the prevailing notion that leg asymmetry was inherently detrimental to performance and opened new avenues for research exploring the nuanced relationship between asymmetry, performance, and injury risk in football. Along with this study, other literature has examined various aspects of asymmetry in football players, focusing on the role of muscular power asymmetry in influencing sprint speed, agility, and jumping performance, as well as the implications of dynamic balance asymmetry for injury prevention [3,10]. For instance, Bishop et al. [3] conducted a systematic review of the effects of asymmetry on sports performance, finding that while some degree of asymmetry is common among football players, its impact on performance and injury risk is not as straightforward as previously thought. This review highlighted the need for a more nuanced understanding of how asymmetry affects different aspects of athletic performance and emphasized the importance of considering individual player characteristics and training contexts [3].

Dynamic balance, a key component of athletic performance in football, has also been a focus of research in the context of asymmetry. Studies such as those by Plisky et al. [6] and Gonell et al. [11] have demonstrated that dynamic balance asymmetry can be indicative of injury risk, particularly in lower-extremity injuries. Additionally, external factors such as fatigue, stress, and muscle soreness, which influence perceived exertion, can exacerbate balance asymmetry and injury risk during submaximal effort tasks [12]. Monitoring these variables is crucial for developing effective training and rehabilitation programs tailored to individual players' needs. However, the relationship between dynamic balance asymmetry and performance remains complex, with some studies suggesting that asymmetry is not always a predictor of poor performance. Meylan et al. [10], for example, found that dynamic balance asymmetry did not significantly impact sprint performance in elite football players, indicating that the effects of asymmetry may vary depending on the specific demands of the sport and the individual player's biomechanical characteristics [10].

The debate over the significance of asymmetry in football players has led to diverse hypotheses and conflicting findings in the literature. While some researchers advocate for minimizing asymmetry to reduce injury risk and enhance performance [13,14], others argue that asymmetry is a natural consequence of sport-specific training and may even be advantageous in certain contexts. For example, Wong et al. [15] suggested that a certain level of asymmetry might allow players to specialize in specific tasks with each leg, such as using one leg predominantly for kicking while using the other for stabilizing during maneuvers. This perspective challenges the traditional view that symmetry is always beneficial and highlights the need for individualized assessments and training programs that consider each player's unique needs and characteristics [16,17].

Methodological advancements in recent years have further enriched the study of asymmetry in football players. The development of high-precision motion capture systems, force plates, and wearable technology has revolutionized the assessment of asymmetry, providing more accurate and reliable data on how differences in leg strength and balance affect performance and injury risk [7,18]. These technologies, coupled with methods such as session RPE, have improved the monitoring of training loads and the ecological validity of asymmetry assessments, particularly in high-performance settings [19]. Such combined approaches offer coaches and practitioners real-time feedback to adjust training loads and reduce asymmetry-related risks. The integration of inertial measurement units (IMUs), for example, allows for continuous monitoring of asymmetry during training and matches, offering real-time feedback to coaches and athletes [20,21]. These technological innovations have enabled researchers to explore the nuances of asymmetry in greater detail and have

contributed to a more comprehensive understanding of its implications for football performance [3,22].

Despite significant progress, there remain several gaps in the literature on asymmetry in football players. Most studies have focused on male athletes, with limited research on female players, youth athletes, and players in different positions [3,23]. Additionally, the long-term effects of asymmetry on performance and injury risk are not well understood, underscoring the need for longitudinal studies that track changes in asymmetry over time with different training regimens and playing styles [24,25]. Furthermore, there is a need for more research on the effects of specific training interventions designed to address or exploit asymmetry, which could provide valuable insights into optimizing performance and reducing injury risk [17,26].

In conclusion, the study of asymmetry in football players has evolved significantly over the past 20 years, driven by a growing recognition of its importance for performance optimization and injury prevention [27]. While some level of asymmetry is natural and may even be beneficial in certain contexts, understanding the balance between specialization and symmetry is crucial for developing effective training programs that enhance performance and minimize injury risk [28]. This review aims to provide a comprehensive overview of the current state of research on asymmetry in football players, highlighting key findings, controversies, and future directions for this dynamic and evolving field of sports science [4,29].

2. Methods

2.1. Literature Search Strategy

The method was designed to ensure a thorough and unbiased collection of relevant literature on asymmetry among football players, focusing on studies published over the last 20 years. A systematic search strategy was employed to identify all pertinent studies from multiple databases, ensuring coverage of both key seminal works and recent advancements in the field.

2.2. Databases Searched

The databases searched included PubMed, Scopus, Web of Science and Google Scholar. To maximize the retrieval of relevant articles, a variety of search terms and keywords was used. The search strategy included both specific terms related to football and general terms associated with asymmetry and athletic performance. The following keywords and Boolean operators were used in the search: "Soccer asymmetry", "Football asymmetry", "Leg dominance", "Muscular power", "Dynamic balance", "Injury prevention", "Biomechanics", "Performance in athletes", "Asymmetry in sports". The search terms were used in various combinations to ensure a comprehensive search. For example, searches were conducted using terms such as "football asymmetry AND leg dominance" and "muscular power AND dynamic balance AND injury prevention." This approach helped identify studies that specifically addressed the review's focus while capturing a wide range of related research.

2.3. Inclusion and Exclusion Criteria

To ensure the relevance and quality of the articles included in the review, specific inclusion and exclusion criteria were established:

Table 1. Inclusion and Exclusion Criteria for the Review of Asymmetry in Soccer Players.

Criteria Type	Description
Inclusion Criteria	<ul style="list-style-type: none"> - Studies published between 2004 and 2024 to focus on the most recent 20 years of research. - Peer-reviewed journal articles, review papers, and meta-analyses to ensure high-quality research.

	<ul style="list-style-type: none"> - Articles addressing asymmetry in football (soccer) players, including those focusing on muscular power, dynamic balance, injury prevention, and performance. - Studies employing quantitative, qualitative, or mixed-methods approaches to provide a comprehensive view of the research landscape.
Exclusion Criteria	<ul style="list-style-type: none"> - Studies not related to football (soccer) or not specifically addressing asymmetry in athletic performance. - Non-peer-reviewed articles, opinion pieces, editorials, or letters to the editor to maintain a focus on empirical research. - Articles published in languages other than English due to resource constraints and to ensure consistency in the review process.

2.4. Data Extraction and Management

After completing the literature search, a total of **150 articles** were identified across the databases (PubMed, Scopus, Web of Science, and Google Scholar). These articles were imported into reference management software (i.e., EndNote version 21.4) for efficient organization and management. After removing **30 duplicate articles**, **120 articles** remained for title and abstract screening.

The remaining articles were screened for relevance based on their titles and abstracts, using the established inclusion and exclusion criteria. Following this screening process, **75 articles** were excluded, primarily because they were unrelated to football/soccer or did not specifically address asymmetry in athletic performance. As a result, **45 articles** met the inclusion criteria and were subjected to full-text review.

For the articles that met the inclusion criteria, a full-text review was conducted. Data extraction was performed systematically using a pre-designed data extraction form, which included the following information: study title and authors, year of publication, journal name and volume/issue number, study design and methodology, sample size and characteristics (e.g., age, gender, playing level), key findings related to asymmetry in football players, conclusions, and implications for practice and future research. This structured approach to data extraction ensured both consistency and accuracy in capturing the relevant information from each study.

2.5. Quality Assessment

To evaluate the quality of the included studies, a standardized quality assessment tool was applied. The tool was selected based on its suitability for the types of studies (e.g., observational studies, randomized controlled trials, systematic reviews). Key criteria for quality assessment included:

- Study design and methodology (e.g., sample size, control groups, blinding)
- Data collection methods and tools (e.g., reliability and validity of measurement instruments)
- Statistical analysis and reporting of results (e.g., appropriateness of statistical tests, clarity of data presentation)
- Discussion and interpretation of findings (e.g., consideration of limitations, implications for practice)

2.6. Synthesis of Findings

The findings from the included studies were synthesized using a narrative approach. This method was chosen due to the heterogeneous nature of the studies, which varied in terms of design, sample characteristics, and measured outcomes. A narrative synthesis enabled a comprehensive exploration of the key themes and patterns that emerged from the literature, providing a detailed overview of the current state of research on asymmetry in football players.

The synthesis focused on several key areas, including:

- The prevalence and impact of muscular power asymmetry on performance and injury risk.
- The role of dynamic balance asymmetry in predicting injuries and its implications for training and rehabilitation.

- Methodological advancements in assessing asymmetry and their contribution to a more nuanced understanding of the topic.
- Gaps in the current literature and recommendations for future research.

3. Muscular Power Asymmetry

Muscular power asymmetry refers to the differences in strength and power output between the dominant and non-dominant legs of football players. This aspect of asymmetry has been extensively studied due to its potential implications for performance and injury risk. The existing literature suggests that while some degree of asymmetry is common among football players, its impact on performance varies depending on the level of asymmetry and the specific demands of the sport [13,14].

Several studies have investigated the prevalence of muscular power asymmetry in football players. For instance, Menzel et al. [14] found that lower limb asymmetries, as measured by isokinetic and vertical jump tests, were present in professional football players, with asymmetry levels ranging between 10% and 15% for most athletes. Similarly, Lockie et al. [13] reported that unilateral jumping ability and asymmetry significantly affected multidirectional speed, which is crucial for football performance.

However, the relationship between muscular power asymmetry and injury risk is complex, and not fully understood. While some research suggests that higher levels of asymmetry may increase the risk of injury, particularly to the lower extremities [4], other studies have found no significant correlation between asymmetry and injury rates [3]. For example, DeLang et al. [2] conducted a systematic review and meta-analysis and found that although the dominant leg was more likely to get injured, the extent of muscular power asymmetry was not a consistent predictor of injury across all studies.

Interestingly, some studies suggest that a certain level of asymmetry might be beneficial for performance. Wong et al. [15] demonstrated that football players often use their dominant leg for kicking and other precision tasks while relying on their non-dominant leg for balance and support. This specialization might explain why some degree of asymmetry does not necessarily impair performance and may, in some cases, enhance it. Moreover, Bishop et al. [3] suggested that the context in which asymmetry is present—such as the player's position, style of play, and specific physical demands—could significantly influence whether asymmetry is advantageous or detrimental.

4. Dynamic Balance Asymmetry

Dynamic balance is another critical component of football performance, affecting a player's ability to maintain stability while performing movements involving rapid changes in direction or speed [6,11]. The Y-balance test is a commonly used assessment tool to measure dynamic balance and has been widely employed in studies examining asymmetry in football players [6,7].

Research indicates that dynamic balance asymmetry can be an important predictor of injury, particularly in the lower extremities. Gonell et al. [11] found that football players with significant asymmetries in dynamic balance were at a higher risk of sustaining non-contact injuries, such as sprains and strains. This finding aligns with the broader literature, suggesting that balance impairments can compromise joint stability and increase the likelihood of injury during dynamic activities [7].

However, the impact of dynamic balance asymmetry on performance is less clear. Meylan et al. [10] investigated the relationship between dynamic balance asymmetry and sprint performance in elite football players and found no significant impact. This suggests that while dynamic balance asymmetry may contribute to injury risk, its effect on performance may be less pronounced. Factors such as compensatory strategies used by players, their overall athleticism, and specific training interventions may mitigate the negative effects of asymmetry on performance [9].

Furthermore, the degree of acceptable asymmetry in dynamic balance may vary depending on the player's position and role within the team. For example, defenders and goalkeepers, who

frequently engage in lateral movements and directional changes, may be more affected by balance asymmetries than midfielders or forwards, who rely more on speed and agility. This position-specific consideration is crucial for developing tailored training programs that address the unique needs of each player [23].

5. Impact on Performance and Injury Prevention

The impact of asymmetry on performance and injury prevention in football is a subject of ongoing debate. While some researchers argue that minimizing asymmetry is essential for optimizing performance and reducing injury risk, others contend that a certain level of asymmetry is natural and may even be beneficial [3,13].

Performance metrics in football, such as sprint speed, agility, and jump performance, have been studied extensively in the context of asymmetry. For example, Lockie et al. [13] found that players with lower asymmetry in jumping ability exhibited better multidirectional speed, a key performance indicator in football. Similarly, Menzel et al. [14] reported that asymmetries in isokinetic strength were associated with reduced performance in explosive activities, such as jumping and sprinting.

On the other hand, some studies suggest that asymmetry might not always negatively impact performance. For instance, Bini and Hume [16] examined pedal force asymmetry in cyclists and found that a moderate level of asymmetry did not impair time trial performance. While this study was conducted in a different sport, it highlights the possibility that some asymmetry may be acceptable, particularly if it aligns with the athlete's specific movement patterns and biomechanical demands.

Regarding injury prevention, there is evidence to suggest that addressing asymmetry can reduce the risk of injury in football players. Croisier et al. [4] demonstrated that targeted training interventions to correct strength imbalances significantly reduced hamstring injury rates among professional football players. This finding underscores the importance of identifying and addressing asymmetries through individualized training programs to enhance performance and minimize injury risk.

However, the effectiveness of these interventions may depend on the nature and extent of the asymmetry. For example, Fousekis et al. [30] found that intrinsic risk factors, such as flexibility and strength imbalances, were significant predictors of non-contact muscle injuries in professional football players. These findings suggest that a comprehensive approach to injury prevention, which considers multiple factors beyond just asymmetry, is essential for optimizing player health and performance.

6. Controversies and Divergent Hypotheses

The concept of asymmetry in football players is subject to numerous controversies and conflicting hypotheses. Some researchers advocate for minimizing asymmetry to reduce injury risk and improve performance, while others argue that asymmetry is a natural consequence of sport-specific training and may even be advantageous in certain contexts [15,17].

For example, Bishop [3] argued that reducing asymmetry is crucial for injury prevention and performance enhancement, particularly in high-intensity sports like football. Their systematic review suggested that excessive asymmetry could lead to compensatory movement patterns, increasing the risk of overuse injuries and impairing performance. This perspective aligns with the findings of Croisier et al. [4], who emphasized the importance of balanced strength and power in preventing injuries and enhancing athletic performance.

Conversely, some studies challenge the notion that symmetry is always beneficial. Wong et al. [15] proposed that a certain level of asymmetry might allow players to specialize in specific tasks, such as using one leg predominantly for kicking while using the other for stabilizing during maneuvers. This specialization could enhance performance by allowing players to develop more precise control and power in their dominant leg while maintaining balance and stability with their non-dominant leg.

Moreover, Hoffman et al. [17] found that bilateral power deficits did not necessarily impair performance in direction-specific movements, suggesting that some asymmetry might be an adaptive response to the unique demands of football. This finding supports the idea that asymmetry is not inherently detrimental and may, in some cases, be a natural consequence of sport-specific training and competition.

7. Methodological Advances and Future Directions

Methodological advancements in recent years have significantly enriched the study of asymmetry in football players. The development of high-precision motion capture systems, force plates, and wearable technology has revolutionized the assessment of asymmetry, providing more accurate and reliable data on how differences in leg strength and balance affect performance and injury risk [7,18].

For example, the integration of inertial measurement units (IMUs) has enabled continuous monitoring of asymmetry during training and matches, offering real-time feedback to coaches and athletes [20,21]. These technological innovations have allowed researchers to explore the nuances of asymmetry in greater detail, contributing to a more comprehensive understanding of its implications for football performance.

Despite significant progress, several gaps remain in the literature on asymmetry in football players. Most studies have focused on male athletes, with limited research on female players, youth athletes, and players in different positions [3,23]. Additionally, the long-term effects of asymmetry on performance and injury risk are not well understood, underscoring the need for longitudinal studies that track changes in asymmetry over time with different training regimens and playing styles [24,30].

Furthermore, more research is needed on the effects of specific training interventions designed to address or exploit asymmetry, which could provide valuable insights into optimizing performance and reducing injury risk [17,26]. Developing a deeper understanding of the role of asymmetry in football will require a multidisciplinary approach, incorporating insights from biomechanics, sports medicine, and coaching to create tailored training programs that address the unique needs of each player.

8. Conclusion

The present review of asymmetry in football players underscores the complexity of its impact on performance and injury risk. Muscular power asymmetry, often resulting from the sport's specific demands, is prevalent among football players. While some degree of asymmetry may allow for functional specialization, significant imbalances are frequently associated with an increased risk of injuries, particularly to the lower extremities. This relationship highlights the necessity of individualized assessments and interventions tailored to each player's unique physical characteristics and playing roles.

Dynamic balance asymmetry is similarly linked to a higher risk of non-contact injuries due to compromised joint stability, although its direct effect on performance metrics such as sprint speed and agility is less definitive. This suggests that while balance asymmetry may contribute to injury risk, its impact on performance could be mitigated through compensatory strategies or training adaptations.

Advancements in assessment technologies have significantly enhanced our understanding of asymmetry in football, allowing for more precise and targeted interventions. Despite these advancements, further research is needed to explore the long-term effects of asymmetry across different player demographics, including youth and female athletes, and to evaluate the effectiveness of specific training interventions.

Future research should adopt a multidisciplinary approach, integrating insights from biomechanics, sports medicine, and coaching, to develop comprehensive strategies for managing asymmetry in football. Addressing these gaps will be crucial for optimizing player performance,

reducing injury risk, and enhancing training and rehabilitation programs tailored to the diverse needs of football players.

Funding: the publication is supported by Qatar University Internal Grant (QUCG-CED-24/25-495).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments: The authors gratefully acknowledge the assistance of ChatGPT-4, an artificial intelligence language model developed by OpenAI, for its support in refining the language and structure of this manuscript. All content generated by the AI was carefully reviewed, edited, and validated by the authors, who take full responsibility for the final content and conclusions presented in this publication.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. *Int J Sports Med* **2014**, *35*, 1095-1100, doi:10.1055/s-0034-1375695.
2. DeLang, M.D.; Salamh, P.A.; Farooq, A.; Tabben, M.; Whiteley, R.; van Dyk, N.; Chamari, K. The dominant leg is more likely to get injured in football players: systematic review and meta-analysis. *Biol Sport* **2021**, *38*, 397-435, doi:10.5114/biolsport.2021.100265.
3. Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. *Journal of sports sciences* **2018**, *36*, 1135-1144.
4. Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional football players: a prospective study. *American Journal of Sports Medicine* **2008**, *36*, 1469-1475, doi:0363546508316764 [pii]
5. 10.1177/0363546508316764.
6. Impellizzeri, F.M.; Marcra, S.M.; Coutts, A.J. Internal and external training load: 15 years on. *Int J Sports Physiol Perform* **2019**, *14*, 270-273.
7. Plisky, P.J.; Gorman, P.P.; Butler, R.J.; Kiesel, K.B.; Underwood, F.B.; Elkins, B. The reliability of an instrumented device for measuring components of the star excursion balance test. *N Am J Sports Phys Ther* **2009**, *4*, 92-99.
8. Gribble, P.A.; Kelly, S.E.; Refshauge, K.M.; Hiller, C.E. Interrater reliability of the star excursion balance test. *J Athl Train* **2013**, *48*, 621-626, doi:10.4085/1062-6050-48.3.03.
9. Haddad, M.; Chaouachi, A.; Wong, D.P.; Castagna, C.; Chamari, K. Heart rate responses and training load during nonspecific and specific aerobic training in adolescent taekwondo athletes. *Journal of Human Kinetics* **2011**, *29*, 59-66.
10. Haddad, M.; Abbes, Z.; Zarrouk, N.; Aganovic, Z.; Hulweh, A.; Moussa-Chamari, I.; Behm, D.G. Difference asymmetry between preferred dominant and non-dominant legs in muscular power and balance among sub-elite football players in Qatar. *Symmetry* **2023**, *15*, 625.
11. Meylan, C.M.; Nosaka, K.; Green, J.; Cronin, J.B. Temporal and kinetic analysis of unilateral jumping in the vertical, horizontal, and lateral directions. *J Sports Sci* **2010**, *28*, 545-554, doi:10.1080/02640411003628048.
12. Gonell, A.C.; Romero, J.A.; Soler, L.M. Relationship between the Y Balance Test Scores and Soft Tissue Injury Incidence in a Football Team. *Int J Sports Phys Ther* **2015**, *10*, 955-966.
13. Haddad, M.; Chaouachi, A.; Wong del, P.; Castagna, C.; Hambli, M.; Hue, O.; Chamari, K. Influence of fatigue, stress, muscle soreness and sleep on perceived exertion during submaximal effort. *Physiol Behav* **2013**, *119*, 185-189, doi:10.1016/j.physbeh.2013.06.016.
14. Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. *J Strength Cond Res* **2014**, *28*, 3557-3566, doi:10.1519/JSC.0000000000000588.
15. Menzel, H.J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.; de Andrade, A.G.; de Jesus-Moraleida, F.R. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in football players. *J Strength Cond Res* **2013**, *27*, 1370-1377, doi:10.1519/JSC.0b013e318265a3c8.
16. Wong, P.-l.; Chamari, K.; Chaouachi, A.; Wisloff, U.; Hong, Y. Difference in plantar pressure between the preferred and non-preferred feet in four football-related movements. *British journal of sports medicine* **2007**, *41*, 84-92.
17. Bini, R.R.; Hume, P.A. Relationship between pedal force asymmetry and performance in cycling time trial. *J Sports Med Phys Fitness* **2015**, *55*, 892-898.
18. Hoffman, J.R.; Ratamess, N.A.; Klatt, M.; Faigenbaum, A.D.; Kang, J. Do bilateral power deficits influence direction-specific movement patterns? *Res Sports Med* **2007**, *15*, 125-132, doi:10.1080/15438620701405313.

19. Linek, P.; Sikora, D.; Wolny, T.; Saulicz, E. Reliability and number of trials of Y Balance Test in adolescent athletes. *Musculoskelet Sci Pract* **2017**, *31*, 72-75, doi:10.1016/j.msksp.2017.03.011.
20. Haddad, M.; Stylianides, G.; Djaoui, L.; Dellal, A.; Chamari, K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. *Frontiers in Neuroscience* **2017**, *11*, 612.
21. Chamari, K.; Hachana, Y.; Ahmed, Y.B.; Galy, O.; Sghaier, F.; Chatard, J.C.; Hue, O.; Wisloff, U. Field and laboratory testing in young elite football players. *British Journal of Sports Medicine* **2004**, *38*, 191-196.
22. Stiffler, M.R.; Sanfilippo, J.L.; Brooks, M.A.; Heiderscheit, B.C. Star Excursion Balance Test Performance Varies by Sport in Healthy Division I Collegiate Athletes. *J Orthop Sports Phys Ther* **2015**, *45*, 772-780, doi:10.2519/jospt.2015.5777.
23. Mujika, I.; Padilla, S. Scientific bases for precompetition tapering strategies. *Med Sci Sports Exerc* **2003**, *35*, 1182-1187, doi:10.1249/01.MSS.0000074448.73931.11.
24. Castagna, C.; Castellini, E. Vertical jump performance in Italian male and female national team football players. *J Strength Cond Res* **2013**, *27*, 1156-1161, doi:10.1519/JSC.0b013e3182610999.
25. Reilly, T.; Atkinson, G.; Edwards, B.; Waterhouse, J.; Farrelly, K.; Fairhurst, E. Diurnal variation in temperature, mental and physical performance, and tasks specifically related to football (football). *Chronobiol Int* **2007**, *24*, 507-519, doi:10.1080/07420520701420709.
26. Fousekis, K.; Tsepis, E.; Poulmedis, P.; Athanasopoulos, S.; Vagenas, G. Intrinsic risk factors of non-contact quadriceps and hamstring strains in football: a prospective study of 100 professional players. *Br J Sports Med* **2011**, *45*, 709-714, doi:10.1136/bjsm.2010.077560.
27. Teixeira, L.A. Categories of manual asymmetry and their variation with advancing age. *Cortex* **2008**, *44*, 707-716, doi:10.1016/j.cortex.2006.10.002.
28. Li, P.; Ensink, E.; Lang, S.; Marshall, L.; Schilthuis, M.; Lamp, J.; Vega, I.; Labrie, V. Hemispheric asymmetry in the human brain and in Parkinson's disease is linked to divergent epigenetic patterns in neurons. *Genome Biol* **2020**, *21*, 61, doi:10.1186/s13059-020-01960-1.
29. Augustsson, J.; Thomeé, R.; Karlsson, J. Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. *Knee Surgery, Sports Traumatology, Arthroscopy* **2004**, *12*, 350-356.
30. Sawyer, D.T.; Ostarecko, J.Z.; Suess, E.A.; Dempsey, M. Relationship between football playing ability and selected performance measures. *J Strength Cond Res* **2002**, *16*, 611-616.
31. Fousekis, K.; Tsepis, E.; Vagenas, G. Multivariate isokinetic strength asymmetries of the knee and ankle in professional football players. *J Sports Med Phys Fitness* **2010**, *50*, 465-474.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.