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Abstract: Continuous and uncontrolled extraction of groundwater often creates tremendous pressure on 

groundwater levels. As a part of the sustainable planning and effective management of water resources, it is 

crucial to assess the existing as well as future groundwater level (GWL) condition. In the current study, an 

attempt was made to model and forecast GWL using artificial neural networks (ANN) and multivariate time 

series models. Autoregressive integrated moving average (ARIMA) and ARIMA incorporating exogenous 

variables (ARIMAX) were adopted as the time series models. Kushtia district in Bangladesh was selected as the 

case study area, and GWL data of five monitoring wells in the study are used to demonstrate the modeling 

exercise. Rainfall was taken as the exogeneous variable to explore whether its inclusion enhanced the 

performance of GWL forecasting using the developed models. The performance of each time series and ANN 

model was assessed based on various model evaluation criteria. It was evident from the results that the 

multivariate ARIMAX model (SSE of 15.361) performed better than the univariate ARIMA model with an SSE 

of 17.217 for GWL forecasting. This demonstrates the fact that the multivariate time series models generated 

enhanced forecasting of GWL compared to the univariate time series models. When comparing the time series 

and ANN models, it was found that the ANN-based model outperformed the time series models with the 

enhanced forecasting accuracy (SSE of 9.894). Results also exhibit a significant correlation coefficient value R of 

0.995 (ANN 6-8-1) for the existing and predicted data. The current study conclusively proves the superiority of 

ANN over the time series models for the enhanced forecasting of GWL in the study area. Thus, the ANN 

approach was not only carried out for model building and simulation but also to provide a valuable tool for 

managing water resources amidst changing environmental conditions. 

Keywords: groundwater level; exogenous variable; ANN; multivariate time series; ARIMAX 

 

1. Introduction 

Bangladesh is one of the most densely populated countries in the world. There is population 

growth and increasing urbanization in addition to climate change. For this reason, stress on 

groundwater (GW) is increasing rapidly. This earthly resource is important, particularly for 

developing countries that support agricultural necessity and crop production, drinking purposes, 

and ecosystems. For this reason, accurate and reliable forecasting of groundwater levels (GWL) is 

necessary. Furthermore, it is also necessary for sustainable management of water resources and to 

facilitate the consumptive use of. Additionally, it plays a crucial role in the earth's water cycle. Like 

many districts in Bangladesh, Kushtia relies heavily on agriculture as a large irrigation project named 

the Ganges-Kobadak (G-K Project, which covers an area of 197,500 ha) irrigation project serves the 
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region. In this project, pumps are used to supply water from the river Ganges to the irrigation areas. 

According to “Statistical Yearbook Bangladesh 2022” by the Bangladesh Bureau of Statistics (BBS), 

irrigation in Kushtia district is being carried out using different types of tube wells, including deep, 

shallow, and hand, as well as power pumps. The district’s approximately 68% area is covered by 

irrigation [1]. Forecasting of GW can help the farmers optimize water use and improve crop yields. 

Besides that, the area experiences a substantial variation of rainfall (a precipitation pattern that can 

impact GW recharge rates); GWL prediction will help in planning for dry periods to minimize the 

severe impacts of droughts and floods. At the time of drought, GW can play an important role when 

surface water is reduced by giving a buffer to help stabilize the water supply.  

Groundwater levels in Bangladesh usually fluctuate on a seasonal basis due to the monsoon 

rains and dry periods, resulting in a in a significant impact on water availability all over the year. 

Urbanization (growth of population) is also a matter of concern because the demand for groundwater 

is increasing. GWL forecasting can help to manage this demand. Irrigation in this country heavily 

relies on groundwater due to the sufficient surface water in the dry season, and future water demand 

will greatly depend on groundwater resources. Groundwater is also affected by pollution; for 

instance, chemical fertilizers and pesticides used in fields contribute tremendously to its quality. 

Over-extraction of GW and the levels of the sea can lead to salinity intrusion problems in coastal areas 

in Bangladesh. Deforestation is a big problem in this country nowadays; it can change the recharge 

process of GW, which may decrease GW recharge. GW over-extraction can be caused by inefficient 

irrigation practices because of the use of outdated or inadequate technology, which is widely 

recognized in the country; as a result, it can affect GW accessibility. The quality and availability of 

groundwater are decreasing gradually due to factors (man-made or natural) such as over-extraction, 

contamination (due to various reasons such as poor management of industrial or domestic 

wastewater), and climate change. The attenuation of underground water levels is also a matter of 

concern. The goals of this study are to model and predict groundwater levels using the artificial 

neural network (ANN), the statistical time series autoregressive integrated moving average model 

(ARIMA), and to incorporate endogenous variables to analyze its effects. It is widely accepted that 

ANN and ARIMA models are powerful tools for predicting various data. In recent times, time series 

analysis has gained significant popularity as a statistical method for creating forecast models, and its 

application has expanded worldwide [2]. 

Groundwater is sometimes the only dependable supply of fresh water in many developing 

nations since it is widely accessible, relatively inexpensive to collect, and typically of higher quality 

than surface water [3,4]. This dependence on groundwater is especially noticeable in areas with little 

or highly contaminated surface water [5]. Over 70% of all irrigated land in Bangladesh is sustained 

by groundwater resources. The nation's dense population, expanding agricultural needs, and quick 

industrialization are the main causes of this widespread reliance [6]. But this dependence also puts a 

lot of strain on groundwater supplies, raising questions about how sustainable they will be in the 

long run. There could be serious repercussions from this groundwater depletion, such as decreased 

water availability, declining water quality, land subsidence, and ecological harm. Lowering 

groundwater levels in agricultural areas might result in reduced crop yields because of limited water 

supplies, which exacerbates problems with food security [7,8]. Apart from the physical loss of 

groundwater, another major worry is its quality, especially in areas where contamination is common 

[9]. The variety of elements influencing groundwater systems makes it difficult to forecast GWL 

changes. These variables include both anthropogenic (such as land use changes, irrigation techniques, 

and industrial water usage) and natural (such as rainfall, temperature, and evapotranspiration) 

influences [10,11].   

Several researchers found that there are two main approaches used in GWL prediction, the data-

driven models and the numerical models. They also found that data-driven models are useful in 

assessing different aspects such as uncertainty, variability, and complexities in water resources and 

environmental problems [12]. The ANN model is inspired by the human brain, more specifically, its 

function as structure; for example, the neurons. There are several neurons in NN to process the 

information given. Additionally, ANN has shown strong potential to capture complex patterns in 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 October 2024 doi:10.20944/preprints202410.0144.v1

https://doi.org/10.20944/preprints202410.0144.v1


 3 

 

data and showed the ability to learn. Consequently, these characteristics make the ANN model a 

good choice for forecasting. “ In recent decades, artificial intelligence has been widely applied in 

studies related to water resources [12]. [13] used ANN for daily weather forecasting. To predict daily 

streamflow [14], researchers used both ANN and ARIMA models. However, this method (ANN) was 

not used widely until recently [15]. ARIMAX models are applied in predicting electricity usage [16], 

to forecast grain production [17], to forecast domestic water consumption [18], and to forecast 

drought [19]. Researchers used different kinds of ANN models, such as probabilistic neural networks 

(PNN), generalized RBF models (GRBF), globally recurrent neural networks (RNN), and input delay 

neural networks (IDNN), for GWL forecasting [20]. Because of the limited understanding of aquifer 

properties in Bangladesh, the conventional GWL prediction models’ applicability is limited; for this 

reason, soft computing tools are good alternatives that provide higher efficacy [21]. The ANN model 

has the capability to tell the connection between the historical data that cannot be seen, and this way, 

it helps to predict and forecast: authors [22] working on water quality forecasting. Many authors [23] 

used different types of ANN models, such as the threshold ANN (TANN), cluster-based ANN 

(CANN), and periodic ANN (PANN), to forecast streamflow. Depending on the existing data on 

hand, the main purpose of a time series study is to build models that can be used to predict the future, 

and it is often extremely hard to make good predictions [24]. “ARIMA models are well-known for 

their notable forecasting accuracy and flexibility in representing several different types of time series” 

[24]. The model has its key limitations; it assumes a linear system (a linear correlation structure, and 

this is not at all times acceptable in real cases), and for that reason, non-linear patterns cannot be 

implemented. The key benefit of ANN is the nonlinear capability of modeling [25]. The authors used 

the ARIMA technique to model various quality parameters of water and rainfall as hydrological 

variables [26]. Studies from authors [27] show that predicted river flow using automated ARIMA. To 

predict the discharge of rivers, some authors [28] tried to find a better predictor between ARIMA and 

ANN. The multiplicative ARIMA approach was attempted to forecast the standardized precipitation 

index (SPI) and standardized runoff index (SRI) [29]. 

Because of its ease of use and capacity to represent linear connections in time series data, ARIMA 

models are widely used [30,31]. Researchers have created hybrid models that include ARIMA with 

other modeling techniques, like artificial neural networks (ANNs), to overcome the shortcomings of 

conventional time series models. Artificial neural networks (ANNs) are data-driven models that do 

not require explicit mathematical representations of the underlying processes to capture complicated, 

nonlinear correlations in data [32,33]. Because the interactions between variables in groundwater 

systems are frequently complex and poorly understood, ANNs are therefore especially well-suited 

for simulating these systems. ANNs are superior to conventional models in many ways [34]. They are 

very adaptable and able to capture dynamic interactions because, among other things, they can learn 

from data and adjust to changes in the system. Second, ANNs are useful for anticipating GWL 

fluctuations in complex systems because they can accurately describe nonlinear relationships to any 

desired degree. Third, ANNs can be useful in situations where the system is poorly understood or 

data on the physical processes are unavailable because they do not require the underlying physics of 

the process to be explicitly stated [35,36]. Groundwater levels can be significantly impacted by the 

fluctuation of rainfall, which is a key source of groundwater recharge [37]. It is generally 

acknowledged that one of the most important ways to increase the precision of GWL predictions is 

to incorporate rainfall data into both ANN and ARIMA models [38]. Because of Bangladesh's 

monsoon climate, the relationship between rainfall and GWL is especially significant there [39]. This 

study compares the ARIMAX and ANN models' performances to determine which modeling strategy 

is best for forecasting GWL variations in the area. In summary, groundwater is an essential resource 

that needs to be managed carefully to maintain its sustainability. A crucial aspect of groundwater 

management is the prediction of GWL changes, which offer important insights into groundwater 

availability in the future and assist in formulating policies for its sustainable use [40,41].  

GW is an almost worldwide source of superior freshwater [42]. The study will focus basically on 

modeling groundwater levels using ANN and ARIMA models and finding the best models based on 

their various performance evaluation criteria. Furthermore, a key focus of the research will be to find 
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the future GWL conditions beyond the available well data to understand the upcoming situations in 

Kushtia, Bangladesh. 

2. Study Area and Data Description 

In the current study, Kushtia district, covering an area of 1608.8 km2 in the Khulna division of 

Bangladesh, is selected. Figure 1 shows the location of the study area, which is positioned in 

southwest Bangladesh. Encompassing the coordinates of 23°42' to 24°12' north and 88°42' to 89°22' 

east. Located in this area, the Ganges-Kobadak irrigation project (or G-K project) is an extensive 

surface irrigation network that serves the southwestern districts of Kushtia, Chuadanga, Magura, and 

Jhenaidah. The district has six upazilas, of which Daulatpur is the largest, totaling a population of 

2,149,692 (according to the Population and Housing Census 2022). For modeling and prediction, five 

groundwater monitoring stations with a rainfall (RF) station are selected from each upazila 

(Bheramara, Daulatpur, Kushtia Sadar, Kumarkhali, and Mirpur). The GWL data collected was on a 

weekly basis. Accordingly, data consisting of 414 weekly groundwater level readings from 1999 to 

2006 were sourced from the Bangladesh Water Development Board (BWDB). The RF data obtained 

here is exogenous input and collected for the same periods. 

 

Figure 1. Kushtia district of Bangladesh showing the GWL and RF Stations. 

The area is characterized by several rivers such as the Ganges, Mathabhanga, Kaligonga, and 

Kumar that flow across the district. Additionally, the district has a flat, alluvial landscape, which is 

typical for the delta region. The area is flat terrain and has fertile soil that makes it favorable to 

agriculture, which is highly dependent on irrigation. Moreover, Kushtia relies on groundwater as the 

main water source for irrigation, especially during the dry season when there is limited surface water 

availability. The area experiences an average maximum temperature of 37.8°C and an average 

minimum of 9.2°C. The yearly rainfall averages 1,467 millimeters. 

Information on the selected groundwater level monitoring stations and rainfall stations with 

locations are provided is shown in Table 1. 

Table 1. GWL and RF station details. 

SL 

No 

Station 

ID 

Station 

Type 

Sub-District 

(Location) 

Latitude 

(°) 

Longitude 

(°) 

Data Point 

(Weeks) 

1 KG-1 GWL Bheramara 24.09 88.96 414 

2 KG-2 GWL Daulatpur 23.98 88.83 414 

3 KG-3 GWL Kushtia Sadar 23.83 89.10 414 
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4 KG-4 GWL Kumarkhali 23.84 89.20 414 

5 KG-5 GWL Mirpur 23.93 89.02 414 

6 KR-1 RF Mirpur 24.05 88.99 414 

3. Methodology 

The primary objective of this study is to model and forecast groundwater level changes using an 

artificial neural network (ANN) and statistical autoregressive integrated moving average with 

exogenous variables (ARIMAX) time series models. To study the connection between climate 

variation and GWL and to forecast GWL, time series modeling is considered one of the most robust 

statistical methods. [42]. Both univariate and multivariate models are studied to find the best 

predicting model. Univariate models rely solely on groundwater level data, whereas multivariate 

models include rainfall data as an additional external factor alongside groundwater level data. The 

main advantage of using ANN models over conventional techniques is that it does not require the 

underlying processes, which are complex in nature, to be explicitly defined in mathematical form 

[43]. Previous research by authors [44] employed ANN models to forecast groundwater level changes 

for future periods. 

Univariate and multivariate, both ANN models were constructed, and the top-performing 

model was identified. Results from other authors [14] showed that forecasting time series is more 

accurate in ANN models than in ARIMA-based models. Accepting all complex parameters as input, 

ANN models generate patterns during model training, and then they use the same patterns to 

generate the forecasts or predictions [13]. The strength of ANN models in prediction lies in their data-

driven nature, their ability to detect previously unseen patterns, and their efficiency with large 

datasets. [45]. In both cases, model development and evaluation have been carried out. After that, 100 

weeks of future prediction of the GWL data have been carried out based on the existing data and 

variables. 

3.1. ANN Model Development 

Many techniques exist for creating a neural network [20]. Different ANN models are developed, 

and several model architectures are analyzed by using a trial-and-error approach to find the most 

accurate prediction model. in the MATLAB platform using neural network toolbox. This toolbox 

offers proficiency in designing various neural network configurations with so many applications [20]. 

Creating an ANN model requires steps such as defining its type, structure, variable processing, 

training algorithm, and stopping criteria [23]. 

3.1.1. Dataset Processing, Model Architecture and Training 

At first, the datasets are taken and prepared as input in the model. For univariate models, only 

GWL data were taken. The GWL data and RF data are on a weekly basis with 414 data points (weeks). 

Then, the model inputs are specified. For univariate models, only GWL data is used. However, for 

multivariate models, both GWL and RF data were taken as inputs. Typically, data is allocated as 70% 

for training, 15% for validation, and 15% for testing. The multilayer perceptron (MLP) feed-forward 

ANN model is applied, as it is widely used in hydrological modeling [23]. Some authors [12] selected 

the hidden layer node count using a trial-and-error. For the current study, hidden layer size was 

specified based on the best model performance by this approach. The usual design of an ANN model 

consists of an input layer, a hidden layer, and an output layer. In this study, the sigmoid activation 

function is used in the hidden layer of the ANN model with the linear activation function in the 

output layer. The input and output variables are standardized between 0 and 1, to make them fall 

within a specified range following the ANN modeling framework. The function introduces non-

linearity into the network, enabling it to learn and model intricate patterns more effectively. The 

function works following Equation 1. A diagram is also provided in Figure 2. A typical ANN 

architecture is shown in Figure 3. 

xj
e1

1
)x(fy

−+
==  (1) 
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Figure 2. Sigmoid function. 

 

Figure 3. Typical ANN model architecture. 

3.2. ARIMA Model Development 

Besides ANN models, the study adopts time series models for predicting groundwater level 

changes: ARIMAX (autoregressive integrated moving average with exogenous input) and ARIMA 

(autoregressive integrated moving average). One of the most frequently used time series models for 

analyzing and forecasting hydrologic data is ARIMA, which combines autoregressive (AR) and 

moving average (MA) components. Since they are univariate, they cannot deal with exogenous 

variables.  

An ARIMAX time series model is an extension of the ARIMA model that includes one or more 

external variables. The ARIMA model contains three parts (p, d, and q), where p = order of auto-

regression, d = order of integration (differencing), and q = order of moving average, and it can be 

expressed by. ARIMAX models proved effective in predicting various extreme weather events, 

including heavy rainfall and droughts [46]. ARIMAX models demonstrated superiority over multiple 

regression models in both calibration and validation periods [2]. The general mathematical form or 

multiplicative equation of an ARIMAX (p, d, q) model with one exogenous variable is given by 

Equation 1. 

ϕ (L)(1−L)dYt = c+ βXt +θ (L)εt (1) 
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Where, C is the constant, εt is the error term. L = lag operator, ϕ(L) = (1 − ϕ1L − ϕ2L2 −… −ϕpLp), 

the autoregressive polynomial, θ(L) = (1 + θ1L + θ2L2 +… + θqLq), the moving average polynomial and 

β is the coefficients for the exogenous variables. 

For ARIMA and ARIMAX models, the procedure involves specifying the model structure, 

estimating parameters, conducting residual diagnostics, and ultimately forecasting the data series. In 

this study, future predictions are also carried out to determine the upcoming GWL conditions. The 

study is carried out using the econometric modeler toolbox in the MATLAB platform. The ARIMA 

process is shown in Figure 4. 

 

Figure 4. ARIMA Model Building Process. 

For ARIMA and ARIMAX models, the procedure involves specifying the model structure, 

estimating parameters, conducting residual diagnostics, and ultimately forecasting the data series. In 

this study, future predictions are also carried out to determine the upcoming GWL conditions. The 

study is carried out using the econometric modeler toolbox in the MATLAB platform. 

3.2.1. Model Identification 

For the ARIMA model, at first, the time series (GWL) is to be transformed to stationary by 

differencing (d = 1, 2, 3,…). The stationarity of a time series can be assessed using the Augmented 

Dickey-Fuller Test. The values for p (autoregressive order) and q (moving average order) are selected 

based on ACF and PACF plots. With no significant correlation beyond lag 3, p and q are both set to 

3. Once the model was identified, its parameters were estimated through the maximum likelihood 

approach. In order to obtain the best model possible, these p, d, q terms (AR1, AR2, AR3, d = 1, MA1, 

MA2, and MA3) should be applied using the ACF and PACF plots. After that, each possible 

combination is analyzed (ARIMA (0,0,0) to ARIMA (3,2,3)) and evaluated for accuracy (using AIC 

and BIC) to pick the best model. The ACF and PACF plots are shown in Figure 5(a,b), respectively 

(Station ID: KG-1). 

Data Input 
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Model Identification 
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Forecasting 
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(a) 

 

(b) 

Figure 5. For Station ID: KG-1 (a) ACF; PACF plots. 

3.3. Model Evaluation Criteria 

In any model, during forecasting, accuracy is the main concern and not the processing time, and 

it is observed that there aren’t any models that can forecast with full accuracy, but the errors can be 

reduced using various techniques [13]. There are different widely used model evaluation methods to 

assess the efficiency of the adopted techniques, including the mean squared error MSE (represented 

by Equation 2), root mean square error RMSE (represented by Equation 3), Nash-Sutcliffe efficiency 

NSE (represented by Equation 4), and sum of squared errors SSE (represented by Equation 5). 

N

)]q(Y)q(Y[

MSE

n

1q

2
estobs −

=
=

 
(2) 

MSERMSE =  (3) 

 −

 −

−=

=

=

n

1q

2
estobs

n

1q

2
estobs

)]q(Y)q(Y[

)]q(Y)q(Y[

1NSE  (4) 

 −=
n

i

2
estobs )]q(Y)q(Y[SSE  (5) 

3.3.1. ANN Model Performance Evaluation 

In the current study, RMSE, NSE, and SSE were used for ANN models to validate their 

performance. Generally, the model with the lowest error will have the highest efficiency, and that 

will be the best model. The equations are shown below. The residual sum of squares (RSS), sometimes 

called the sum of squared residuals (SSR) or the sum of squared errors, is the aggregate of squared 

differences between predicted values and actual data. It serves as an indicator of model error in 

statistics. 

3.3.2. ARIMAX Model Performance Evaluation 

In order to analyze the accuracy of ARIMAX models, in addition to MSE, SSE, and RMSE, the 

Akaike Information Criterion (AIC), presented as Equation 6, and Bayesian Information Criterion 
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(BIC), presented as Equation 7, were applied to evaluate the models. The model with the lowest error 

indicates the best model. The corresponding mathematical expressions are expressed as the following 

equations: 

numParam2+-2logL AIC =  (6) 

numParamlog(N)+-2logL=BIC   (7) 

Where: −2logL is the goodness of fit. The likelihood L reflects how well the model explains the 

data, and the logarithm of L is used to simplify the calculations and 2×numParam penalizes the model 

for having too many parameters. log(N)×numParam: this term penalizes the model for having too 

many parameters𝑌𝑜𝑏𝑠  is the observed data, 𝑌𝑒𝑠𝑡 is the estimated data, 𝑌̅𝑒𝑠𝑡  is the mean value of 

estimated data and N is the number of observations. 

4. Results and Discussion 

The current study focuses on analyzing ANN and multivariate time series ARIMAX models to 

predict groundwater levels in the Kushtia district in Bangladesh after developing, testing, and 

evaluating the models. In addition, an attempt has also been made to predict the future scenario of 

the groundwater levels. The results indicate that incorporating exogenous input (as RF data used in 

this study) provides better results. Also, the study showed that ANN models yield more accurate 

predictions compared to ARIMAX models. The modeling is performed considering both multivariate 

(GWL and RF data) and univariate (only GWL data) inputs. 

4.1. Performance of ANNs 

It was found from the results that the lowest sum of squared errors (SSE) for the station KG-1 

was found to be 9.894 for the ANN-based multivariate models; the model architecture was ANN 6-8-

1. On the other hand, for univariate models, the best-performing model was found for the same 

station (KG-1) with a value of 10.809 (SSE); the model architecture was ANN 3-7-1. It is clear that for 

GWL prediction in this study, the multivariate model performed better than the univariate model, 

which includes an exogenous input. Results of the best-performing models for each station are shown 

in Tables 2 and 3. 

Table 2. Best ANN (MV) model results. 

Station ID Model Architecture 
Model Performance 

RMSE NSE SSE 

KG-1 ANN 6-8-1 0.1546 0.988 9.8946 

KG-2 ANN 7-8-1 0.1688 0.979 11.799 

KG-3 ANN 10-4-1 0.2319 0.965 26.910 

KG-4 ANN 6-7-1 0.2550 0.986 22.273 

KG-5 ANN 8-9-1 0.1801 0.984 13.434 

Table 3. Best ANN (UV) model results. 

Station ID Model Architecture 
Model Performance 

RMSE NSE SSE 

KG-1 ANN 3-7-1 0.1616 0.987 10.809 

KG-2 ANN 2-3-1 0.1715 0.979 12.171 

KG-3 ANN 4-9-1 0.2588 0.957 26.802 

KG-4 ANN 2-4-1 0.2544 0.986 27.725 

KG-5 ANN 5-10-1 0.1812 0.9841 13.595 
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The model architecture was determined by a trial-and-error method for five GWL monitoring 

stations. Table 4 presents the thorough results for the KG-5 station for the models’ training, validation, 

and testing stages. 

Table 4. Selected ANN (MV) model results for Station ID: KG-5. 

Model 
Training Validation Test 

MSE NSE MSE NSE MSE NSE 

ANN 8-2-1 0.030 0.984 0.066 0.964 0.046 0.978 

ANN 8-3-1 0.032 0.982 0.061 0.967 0.045 0.978 

ANN 8-4-1 0.046 0.975 0.069 0.963 0.076 0.963 

ANN 8-5-1 0.036 0.980 0.074 0.960 0.037 0.982 

ANN 8-6-1 0.031 0.983 0.078 0.958 0.042 0.980 

ANN 8-7-1 0.030 0.983 0.201 0.892 0.040 0.981 

ANN 8-8-1 0.035 0.981 0.079 0.958 0.042 0.980 

ANN 8-9-1 0.032 0.983 0.083 0.955 0.032 0.984 

ANN 8-10-1 0.027 0.985 0.071 0.962 0.039 0.981 

The scatterplot shown in Figure 6(a) depicts the model's actual versus predicted data at the station. 

The close alignment of the circular points indicates a high degree of similarity between the observed 

and predicted values. The correlation coefficient R measures the linear relationship's strength and 

direction, with values between -1.0 and +1.0. A coefficient close to +1 or -1 reflects a strong correlation, 

whereas a value near 0 implies little to no correlation. Here, the R values are found to be greater than 

0.90. So, they are considered very related. A graphical representation of the actual and predicted data 

plot for that station is shown in Figure 6(b) (with model architecture ANN 8-9-1). 

 

 (a)  

 
(b) 

Figure 6. For Station ID: KG-5 (ANN 8-9-1): (a) Scatterplots; (b) Actual and Predicted data plot. 

4.2. Performance of ARIMA-Based Models 

ARIMA-based multivariate models (ARIMAX) showed an SSE of 15.361 with the model 

architecture ARIMAX (3,0,3) for the station KG-1. However, the univariate models’ best performance 

was found in the same station (KG-1), model architecture ARIMA (2,0,1), and an SSE of 17.217. It is 
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noticeable from the SSE that multivariate models performed better than univariate models. Detailed 

results are provided in Tables 5 and 6. 

Table 5. Best ARIMAX model results. 

Station ID Model Architecture Model Performance 

(SSE) 

KG-1 ARIMAX (3,0,3) 15.361 

KG-2 ARIMAX (3,0,2) 18.721 

KG-3 ARIMAX (1,0,3) 25.449 

KG-4 ARIMAX (2,0,0) 63.680 

KG-5 ARIMAX (3,0,2) 15.143 

Table 6. Best ARIMA model results. 

Station ID Model Architecture Model Performance 

(SSE) 

KG-1 ARIMA (2,0,1) 17.217 

KG-2 ARIMA (2,0,1) 26.880 

KG-3 ARIMA (2,0,3) 28.207 

KG-4 ARIMA (3,0,1) 64.582 

KG-5 ARIMA (2,0,1) 16.585 

Several ARIMA-based models are built after the identification of the model, and selected ARIMA 

(p, d, q) models detailed results for Station KG-5 are provided in Table 7 with AIC and BIC. 

Table 7. Selected ARIMA (p, d, q) model results for Station ID: KG-5. 

Model SSE MSE RMSE AIC BIC 

ARIMA (0,2,1) 20.688 0.050 0.224 -59.599 -47.521 

ARIMA (1,2,2) 20.688 0.050 0.224 -55.600 -35.471 

ARIMA (1,2,3) 20.680 0.050 0.223 -53.750 -29.594 

ARIMA (2,0,0) 21.220 0.051 0.226 -47.077 -30.974 

ARIMA (2,0,1) 16.585 0.040 0.200 -147.100 -126.971 

ARIMA (2,0,2) 16.519 0.040 0.200 -146.764 -122.609 

ARIMA (3,0,1) 16.537 0.040 0.200 -146.317 -122.162 

ARIMA (3,2,1) 20.627 0.050 0.223 -54.820 -30.665 

ARIMA (3,2,2) 20.563 0.050 0.223 -54.092 -25.911 

ARIMA (3,2,3) 20.021 0.048 0.220 -63.151 -30.944 

Additionally, the model parameters (constant, AR{1}, AR{2}, MA{1}, variance) and their statistics 

for ARIMA(2,0,1) of that station (KG-5) are provided in Table 8.  

Table 8. Model Parameters for ARIMA (2,0,1) (Station ID: KG-5). 

Parameters Value Standard Error T Statistic P Value 

Constant 0.131533 0.009164 14.35275 1.02×10-46 

AR{1} 1.969639 0.008054 244.5408 0 

AR{2} -0.98431 0.007999 -123.057 0 
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MA{1} -0.93165 0.020288 -45.9215 0 

Variance 0.040065 0.002092 19.1474 1.02×-81 

For the ARIMA model analysis, a main observation was the decay pattern in the ACF plot. 

Typically, the ACF shows a gradual decay. The PACF plot was used to determine the presence of 

significant partial autocorrelations. The initial inspection of the ACF and PACF plots provided 

information about the potential orders of the AR and MA components of the ARIMA model. For 

instance, if the ACF displays a significant spike at lag 1 and the PACF cuts off after lag 0, this suggests 

an ARIMA model with an AR(1) and MA(0) component might be suitable. The selection of AR and 

MA terms based on ACF and PACF helps in fitting the ARIMA model more accurately. Variations in 

the plots can impact the interpretation, and it requires careful consideration and validation of the 

ARIMA model chosen. 

A histogram displays the frequency of data points within specified intervals consisting of bars. 

It is particularly valuable for assessing the residuals, which are the differences between the actual and 

predicted values by the model. A well-specified ARIMA model should yield residuals that are 

approximately normally distributed. The symmetry of the histogram about zero indicates that the 

ARIMA model does not systematically overestimate or underestimate the data. Residuals centered 

around zero suggest that the model’s predictions are unbiased on average. This visual inspection is 

crucial for identifying potential model inadequacies before proceeding to more formal statistical tests. 

In a Q-Q plot, the quantiles of the residuals are plotted against the quantiles of the theoretical 

distribution. The points on the Q-Q plot will approximately lie on a straight line if the residuals are 

normally distributed. This plot of residuals provides valuable diagnostic information. ARIMA 

models typically assume that residuals are normally distributed, and the Q-Q plot helps verify this 

assumption by comparing the quantiles of the residuals to those of a normal distribution. A linear 

alignment of points along the reference line suggests that the residuals adhere to normality, and it 

indicates that the model adequately captures the underlying data patterns. This diagnostic tool 

provides a visual assessment of whether the residuals conform to the normality assumption and is 

crucial for the reliability of forecasts generated by the model. 

A residual plot displays the residuals (the differences between the observed values and the 

model's predictions) on the vertical axis and the predicted values or time on the horizontal axis. It 

helps evaluate the model's performance by showing various aspects of ARIMA models. Ideally, the 

residuals should be randomly scattered around zero. This randomness indicates that the ARIMA 

model has effectively captured the underlying patterns in the data. If the spread increases or 

decreases, it suggests that the model may need adjustments. 

Detailed graphical representation (ACF, PACF, QQ Plot, Histogram, Actual and model 

prediction, and Residual Plots) of the models is shown in Figure 7 (a–f). 
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(a) ACF (b) PACF 

  

(c) QQ plot (d) Histogram 
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(e) Actual and model prediction 

 

(f) Residual plots 

Figure 7. ARIMA (2,0,1) model plots for Station ID: KG-5 where (a) ACF; (b) PACF; (c) QQ plot; (d) 

Histogram; (e) Actual and model prediction; (f) Residual plots. 

4.3. Forecasting of GWL 

Finally, using the best-performing models, 100 weeks of future groundwater level data is 

predicted using the existing data. Future GWL values were forecasted using the ANN model. It was 

observed that the groundwater level (GWL) ranged from a maximum of 10.797 meters to a minimum 

of 5.875 meters. However, for the existing data, the highest and lowest values for the existing data 

were 12.61 m and 5.73 m, and besides that, the highest, lowest, and average future GWL values 

indicate differences in the predicted water levels compared to the observed raw data. The key 

findings are summarized in Table 9. The ANN models’ performances are due to the model's 

architecture or training parameters. The ARIMAX results could be attributed to its incorporation of 

exogenous regressors, which might better account for factors influencing water levels. Future work 

should also consider incorporating a wider range of models and hybrid approaches to balance the 
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strengths of each predictive technique. Moreover, additional validation against independent datasets 

will be crucial to confirm the robustness of the models and ensure their generalizability. 

The graphical representation of future (100 weeks beyond the current 414 weekly data points) 

GWL data is shown in Figure 8(a) for the ARIMAX (3,0,3) model and in Figure 8(b) for the ANN 6-8-

1 model.  

Table 9. Predicted highest, lowest, and average GWL values. 

Station ID Model/Data Highest 

(m.PWD) 

Lowest 

(m.PWD) 

Average 

(m.PWD) 

KG-1 Existing raw data 12.610 5.730 8.148 

KG-1 ANN 6-8-1 (MV) 10.797 5.875 7.742 

KG-1 ARIMAX (3,0,3) 11.526 6.270 8.375 

 

 

(a) 

 

(b) 

Figure 8. Existing GWL and predicted GWL (a) ARIMAX (3,0,3) (b) ANN 6-8-1. 

4.4. Relative Enhancement of the Models’ Performance  

Comparative performance metrics of different forecasting models for stations are presented in 

Table 10. It is provided as evaluated based on three key performance metrics: ΔPE (performance 

enhancement, which indicates an improvement in predictive performance), ΔPD (performance 

degradation, which indicates a decline in predictive performance), and BRM (baseline reference 

metric). 

Compared to the ANN model with architecture 6-8-1 (MV), the results of other models indicate 

a notable drop; specifically, the ANN (MV) outperforms the ANN UV, ARIMAX, and ARIMA models 

with reductions of -8.45%, -35.58%, and -42.53%, respectively. In contrast to the ANN model with 

architecture 3-7-1 (UV), ANN (MV) showed an enhancement of the performance with an increase of 

9.24%, while ARIMAX and ARIMA experienced performance declines of -29.63% and -37.21%, 

respectively. It indicates that, although ANN (UV) delivers enhanced predictive accuracy, it also 

exhibits substantial prediction deviations. 

For the ARIMAX (3,0,3) configuration, both ANN (MV) and ANN (UV) show significant 

performance improvements, with increases of 55.24% and 42.11%, respectively. However, the ARIMA 

model underperforms, demonstrating a performance decline of -10.78%. With the ARIMA (2,0,1) 

architecture, all models demonstrate a marked performance enhancement: ANN (MV) achieves a 

74.00% improvement, ANN (UV) improves by 59.28%, and ARIMAX shows a 12.08% enhancement.  

Table 10. Evaluation Metrics and Comparative Performance Improvement of the Predictive models. 

   Improvement in Performance   
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(ΔPE, ΔPD or BRM)  

Station 

ID 

Results 

(SSE) 

Model 

Architecture 

ANN 

(MV) 

(%) 

ANN 

(UV) 

(%) 

ARIMAX 

 

(%) 

ARIMA 

 

(%) 

Comment 

KG-1 9.89 
ANN 6-8-1 

(MV) 

0 

(BRM) 

-8.45 

(∆PD) 

-35.58  

(∆PD) 

-42.53 

(∆PD) 

In contrast to 

ANN(MV) 

ΔPE: -, 

∆PD: ANN (UV), 

ARIMAX, 

ARIMA;  

KG-1 10.80 
ANN 3-7-1 

(UV) 

9.24 

(∆PE) 

0 

(BRM) 

-29.63  

(∆PD) 

-37.21 

(∆PD) 

In contrast to 

ANN (UV) 

ΔPE: ANN (MV), 

∆PD: ARIMAX, 

ARIMA;  

KG-1 15.36 
ARIMAX 

(3,0,3) 

55.24 

(∆PE) 

42.11 

(∆PE) 

0  

(BRM) 

-10.78 

(∆PD) 

In contrast to 

ARIMAX 

ΔPE: ANN (MV), 

ANN (UV), 

∆PD: ARIMA;  

KG-1 17.21 
ARIMA 

(2,0,1) 

74.00 

(∆PE) 

59.28 

(∆PE) 

12.08  

(∆PE) 

0  

(BRM) 

In contrast to 

ARIMA 

ΔPE: ANN (MV), 

ANN (UV), 

ARIMAX 

∆PD: -;  

5. Conclusions 

The current study focuses on the modeling and prediction of GWL in Kushtia, a district of 

Bangladesh. For modeling and prediction, mainly two types of models (with two sub-categories each) 

were used, named ANN (UV, MV) and ARIMA and ARIMAX. Modeling was carried out in five 

separate sub-districts in Kushtia using GWL monitoring well data. The best model predicted that the 

future GWL will experience a change of approximately 0.5 m on average. Specially, it is worth noting 

that there is a large irrigation project named the Ganges-Kabodakh project in the district serving the 

water and food necessities in the area. ANNs achieved higher accuracy in forecasts. The correlation 

coefficient value (0.993) R is very significant and satisfactory for the actual and predicted GWL data 

for the selected model, ANN 8-9-1. In this study, climatic rainfall data was used as an endogenous 

variable with GWL data as it heavily influences groundwater. It was found that models incorporating 

exogenous variables generated the enhanced prediction in both types of techniques. It was also found 

that time series ARIMA-based models predicted with less accuracy than artificial intelligence-based 

ANN models. The addition of rainfall data leads to superior results, and it might help future works 

on other similar aquifers in the country, as GW is heavily affected by it. Apart from that, other 

endogenous variables can be studied other than rainfall, which is used in this study. The effects of 

other climate variables might produce better results. Only five GWL monitoring wells were 

considered in the current investigation. Other monitoring wells from the various parts of the country 

can be studied based on the framework developed in the current research. Further work can also be 

done in the coastal areas of the country where salinity intrusion is a crucial problem. Alongside that, 
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highly GW-contaminated areas should also be focused. Moreover, in these data-driven methods, 

long-term climatic data can also be collected for model development and prediction. Based on the 

findings of the current study, it is emphasized that other data-driven models, such as advanced 

statistical techniques and/or artificial intelligence-based models, including genetic programming 

(GP), gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS), and 

support vector machine (SVM), can also be tested to come up with a better modeling framework for 

the enhanced forecasting of GWL in the study area of Bangladesh or similar areas around the world. 
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