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Tel.: +44 (0)1582 763133 

Abstract: Over the last few years there has been much effort put into the development and validation of 

stochastic models of the trajectories of swarming insects. These models typically assume that the positions and 

velocities of swarming insects can be represented by continuous jointly Markovian processes. These models 

are first-order autoregressive processes. In more sophisticated models, second-order autoregressive processes 

the positions, velocities and accelerations of swarming insects are collectively Markovian. Although it is 

mathematically conceivable that this hierarchy of stochastic models could be extended to higher orders, here I 

show that such a procedure would not be well-based biologically because some terms in these models represent 

processes that have the potential destabilize insect flight dynamics. This prediction is supported by an analysis 

of pre-existing data for laboratory swarms of the non-biting midge Chironomus riparius. I suggest that the 

Reynolds number is a finely tuned property of swarming, as swarms may disintegrate at both sufficiently low 

and sufficiently high Reynolds numbers. 
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1. Introduction 

Mating swarms of flying insects typically show a high degree of spatial cohesion and are a form 

of collective animal behaviour; albeit one different from flocks and schools as they do not display 

ordered collective movements [1–5]. Flying insects do not circulate around the centre of the swarm 

in an orderly fashion but instead have more complicated erratic flight patterns [1,2,6,7]. Over the last 

years there has been much effort put into the development and validation of stochastic models of the 

trajectories of swarming insects [8–12]. These models account for numerous observations including 

the emergence of dynamical scaling and correlations in perturbed swarms, the emergence of 

macroscopic mechanical properties like tensile and the ability of swarms to be driven through 

‘thermodynamic cycles’ by external perturbations [13–18]. These models typically assume that the 

positions and velocities of swarming insects can be represented by continuous jointly Markovian 

processes, or more rarely that the positions, velocities and accelerations of swarming insects are 

collectively Markovian. Mathematically these models can be seen to be the lowest levels in a 

hierarchy that could be extended to higher orders. Physically, the hierarchy corresponds to the 

inclusion of a timescale representative of the largest scales of motion at first order, and to the addition 

of a second time scale representative of smallest scales of motion at second order. This is directly 

analogous to stochastic models of the trajectories of tracer particles in high Reynolds number 

turbulence, wherein the Reynolds number, 𝑅 = (
𝑇

𝑡2
)

2

, which is determined by the ratio of a timescale 

representative of the energy-containing scales, T, and the Kolmogorov time scale, 𝑡2, representative 

of the dissipative scales of motions appears as a parameter at second order [19]. Although it is 

mathematically conceivable that this hierarchy of stochastic models could be extended to higher 

orders [20–22], in the case of high Reynolds number turbulence is it not apparent that such a 

procedure would be well-based physically since there is no obvious relevant timescale smaller than 

the Kolmogorov timescale [19]. Here in the case of swarming insects I show that the procedure is not 

well-based biologically. 
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2. Materials and Methods 

Third-order one-dimensional models for the positions, 𝑥, velocities, 𝑢, accelerations, 𝐴, and 

jerks, 𝐽, of swarming insects are given by 

𝑑𝐽 = 𝑎(𝐽, 𝐴, 𝑢, 𝑥)𝑑𝑡 + 𝑏𝑑𝑊(𝑡)  (1) 

𝑑𝐴 = 𝐽𝑑𝑡 

𝑑𝑢 = 𝐴𝑑𝑡 

𝑑𝑥 = 𝑢𝑑𝑡 
where 𝑎(𝐽, 𝐴, 𝑢, 𝑥) is features in the Fokker Planck equation 

𝜕𝑃3

𝜕𝑡
+ 𝑢

𝜕𝑃3

𝜕𝑥
+ 𝐴

𝜕𝑃3

𝜕𝑢
+ 𝐽

𝜕𝑃3

𝜕𝐴
= −

𝜕

𝜕𝐽
(𝑎𝑃3) +

𝑏2

2

𝜕2𝑃3

𝜕𝐽2 ,  (2) 

𝑃3(𝐽, 𝐴, 𝑢, 𝑥, 𝑡) is the joint distribution of 𝐽, 𝐴, 𝑢, 𝑥 and time, 𝑡, 𝑏 is the magnitude of the driving 

noise and 𝑑𝑊𝑖(𝑡) is an incremental Wiener process with correlation property 𝑑𝑊(𝑡)𝑑𝑊(𝑡 + 𝜏) =

𝛿(𝜏)𝑑𝑡 [20]. The prescription of  𝑎(𝐽, 𝐴, 𝑢, 𝑥) guarantees that statistical properties of the simulated 

trajectories are distributed according to 𝑃3(𝐽, 𝐴, 𝑢, 𝑥, 𝑡) which a model input. The deterministic term 

𝑎(𝐽, 𝐴, 𝑢, 𝑥) takes the form 

𝑎 =
𝑏2

2

𝜕

𝜕𝐽
𝑙𝑛𝐽 +

𝜙

𝑃3
  (3) 

where  

𝜕𝜙

𝜕𝐽
=

𝜕𝑃3

𝜕𝑡
+ 𝑢

𝜕𝑃3

𝜕𝑥
+ 𝐴

𝜕𝑃3

𝜕𝑢
+ 𝐽

𝜕𝑃3

𝜕𝐴
  (4) 

Integrating Equation (2) over all 𝐽 gives an equation for the average jerk strength 

0 =
𝜕𝑃2

𝜕𝑡
+ 𝑢

𝜕𝑃2

𝜕𝑥
+ 𝐴

𝜕𝑃2

𝜕𝑢
+ 〈𝐽〉

𝜕𝑃2

𝜕𝐴
  (5) 

where 𝑃2(𝐴, 𝑢, 𝑥, 𝑡) is the joint distribution of  𝐴, 𝑢, 𝑥 and time, 𝑡. 

Integrating Equation (6) over all 𝐽 gives an equation for the average acceleration 

0 =
𝜕𝑃1

𝜕𝑡
+ 𝑢

𝜕𝑃1

𝜕𝑥
+ 〈𝐴〉

𝜕𝑃1

𝜕𝑢
  (6) 

where 𝑃1(𝑢, 𝑥, 𝑡) is the joint distribution of   𝑢, 𝑥 and time, 𝑡.  

The least biased choice for 𝑃3(𝐽, 𝐴, 𝑢, 𝑥, 𝑡) and the one adopted here is a multivariant Gaussian. 

The resulting stochastic models for the simulation of swarming insects are minimally structured 

(maximum entropy) models. It follows from Equations (3)–(6), that for stationary swarms with 

Gaussian statistics that  

〈𝐴〉 = −
𝜎𝑢

2

𝜎𝑥
2 𝑥  (7a) 

〈𝐽〉 = − (
𝜎𝐴

2

𝜎𝑢
2 +

𝜎𝑢
2

𝜎𝑥
2) 𝑢  (7b) 

〈𝑆〉 ≡
𝜙

𝑃3
= − (

𝜎𝐽
2

𝜎𝐴
2 + 

𝜎𝐴
2

𝜎𝑢
2 +

𝜎𝑢
2

𝜎𝑥
2) 𝐴 −

𝜎𝐽
2

𝜎𝐴
2

𝜎𝑢
2

𝜎𝑥
2 𝑥  (7c) 

3. Results 

The predicted average acceleration towards the center keeps the swarm intact and is a defining 

feature of insect swarms [2]. As observed this effective force increases linearly as distance from the 

swarm center increases. Individuals in real and in simulated swarms therefore behave on the average 

as if they are trapped in elastic potential wells. Model predictions, Equation (7b), for the average 

strength of the jerks are in quantitative agreement with observations of asymptotically large swarms 

[Puckett and Ouellette 2014] containing on average 15 to 94 individuals [23]. This correspondence 

indicates that swarming insects are described by second- or higher-order models. 
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The average strength of the snaps, 〈𝑆〉, is seen to enter the model formulation at third order. One 

contribution to this quantity is aligned with acceleration vector which itself tends to be aligned with 

the position vector (Equation (7a)). The other contribution to 〈𝑆〉 is manifestly aligned with the 

position vector. This contrasts the average strength of the jerks which enter model at second order 

are aligned with the velocity vector, i.e., is aligned with the direction of travel and so aligned with 

the major axis of the insect. Such alignment minimizes the impact that jerks can have on flight 

dynamics. This is not the case with snaps that can momentarily be aligned with the minor axis of the 

insect, thereby maximizing their disruptive impact of flight dynamics. This suggests that swarming 

insects are at most described by second order models. 

Experimental support for this prediction hinges on the fact that the velocity spectra for 

swarming insects is compatible with predictions from second-order models. Free roaming trajectories 

are predicted by first- and second-order models to be characterized by velocity spectra that decrease 

respectively as 𝜔−2  and as 𝜔−4  at high frequencies, whereas spectra decreasing faster than 𝜔−4  

can only be captured by third- or higher-order models [19,20]. Confinement within a swarm does not 

change these scaling behaviours (Appendix A). Instead, the quantity 
𝜎𝑢

𝜎𝑥
 determines the position of 

the peak in the velocity spectra. The velocity spectra characterizing the trajectories of swarming non-

biting midge Chironomus riparius recorded in quiescent conditions in the laboratory decreases 

approximately as 𝜔−3 at the highest frequencies accessible (Figure 1). This scaling cannot arise in 

first order models but as illustrated, does arise at low frequencies in second order models when 

𝑅~𝑂(100). This scaling is obtained for 19 different containing on average 15 to 94 individuals. Third-

order processes are not evident. 

 

Figure 1. Velocity spectra obtained by analysis of pre-existing data for laboratory swarms of the non-

biting midge Chironomus riparius. Results are shown for the largest swarm in the dataset of Sinhuber 

et al. [24] which on average contains 94 individuals. Results are shown for the two horizontal 

components of velocity. The spectra are seen to decrease as 𝜔−3 at the highest frequencies accessible 

in the experiment. Recordings were made at a rate of 100 Hz. The same scaling behaviour was 

obtained for smaller swarms. Shown for comparison is the velocity spectra predicted by a 2nd-order 

model with  𝑇= 1, 𝑡2 = 0.1, 𝜎𝑥
2 = 1 and 𝜎𝑢

2 = 1 a.u. (Appendix A). 

4. Discussion 

Herein it was argued that the trajectories of swarming insects like the trajectories of tracer 

particles in turbulence are at most described by second order models in which the position, velocity 

and acceleration of an insect are collectively Markovian, since higher-order processes even if present 

are not significant. This strengthens previously identified correspondences between swarming 

insects and the Lagrangian properties of high Reynolds number turbulence [23]. Their acceleration 

statistics have similar conditionally dependencies on velocity. These conditional dependencies only 

become apparent for |𝑢| > 2𝜎𝑢  and their occurrences may be attributed to occasional energetic 

rotations. The small size of this Reynolds number,  𝑅~𝑂(100), may be consequence of the fact that 

the average strength of the jerks, Equation (7b), increases with increasing Reynolds number: Equation 

(7b) can be rewritten as 〈𝐽〉 = − (
𝑅1/2

𝑇2 +
𝜎𝑢

2

𝜎𝑥
2) 𝑢. At sufficiently high Reynolds numbers, jerks, like snaps, 
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may have the potential to destabilize flight dynamics thereby causing the swarm to disintegrate. 

Indeed, the smallness of the estimate for the Reynolds number may be indicative of the susceptibility 

to swarming midges are to the disruptive impact of jerks.  The swarm may also disintegrate at 

sufficiently low Reynolds numbers following a disordered-order phase transition [12], if the 

confining potential, a collective emergent property of disordered swarms [1,2], cannot emerge in 

ordered swarms or it may lose its collective properties if individuals remain in the vicinity of the 

swarm marker (a visually prominent marker over which swarm form). If this line of reasoning is 

correct, then the Reynolds number may be the result of fine tuning, as are other emergent properties 

of swarming [Reynolds 2024]. Jerks may also be particularly disruptive in swarms that are not 

asymptotically large (Appendix B).  

Funding: The work at Rothamsted forms part of the Smart Crop Protection (SCP) strategic programme 

(BBS/OS/CP/000001) funded through the Biotechnology and Biological Sciences Research Council’s Industrial 

Strategy Challenge Fund. 

Data Availability Statement: Data sharing not applicable to this article as no datasets were generated during 

the study. 

Conflicts of Interest: The author declares no conflicts of interest. 

Appendix A 

Power spectra for first- and second-order autoregressive models of swarming insects 

Here I show that the power spectra predicted by first- and second-order autoregressive models 

of the trajectories of swarming insects decrease respectively as 𝜔−2 and 𝜔−4 at high frequencies. 

That is, I show that confinement within a swarm does not upset the scaling behaviours obtained by 

Sawford [19] for freely roaming trajectories. 

First-order autoregressive models of swarming insects 

Okubo [1] classic one-dimensional model for the positions, 𝑥, and velocities, 𝑢, of swarming 

insects is given by 

𝑑𝑢 = −
𝑢

𝑇
𝑑𝑡 −

𝜎𝑢
2

𝜎𝑥
2 𝑥𝑑𝑡 + √2𝜎𝑢

2

𝑇
𝑑𝑊  (A1) 

𝑑𝑥 = 𝑢𝑑𝑡  
where T is a velocity correlation timescale, 𝜎𝑥

2 is the position variance, 𝜎𝑢
2 is the velocity variance 

and 𝑑𝑊𝑖(𝑡) is an incremental Wiener process with correlation property 𝑑𝑊(𝑡)𝑑𝑊(𝑡 + 𝜏) = 𝛿(𝜏)𝑑𝑡.  

Okubo [1] showed that according to this model the velocity autocorrelation function is given by  

𝑅(𝜏) = 𝑒−
𝑡

2𝜏 (𝑐𝑜𝑠𝜔1𝜏 −
1

2𝜔𝜏
𝑠𝑖𝑛𝜔1𝜏)  (A2) 

where 𝜔1 = (
𝜎𝑢

2

𝜎𝑥
2 −

1

4𝑇2)
1/2

. 

It follows that the velocity power spectra is given by 

𝑓(𝜔) = ∫ 𝑅(𝜏)𝑐𝑜𝑠𝜔𝜏𝑑𝜏 =
𝜔2/𝑇

(
1

4𝑇2+(𝜔1−𝜔)2)(
1

4𝑇2+(𝜔1+𝜔)2)

∞

0
  (A3) 

At sufficiently high frequencies 𝑓(𝜔) ∝ 𝜔−2. 

Second-order autoregressive models of swarming insects 

The simplest second-order one-dimensional model for the positions, 𝑥 , velocities, 𝑢 , and 

accelerations, 𝐴,  of swarming insects is given by 

𝑑𝐴 = − (
1

𝑇
+

1

𝑡2
) (𝐴 +

𝜎𝑢
2

𝜎𝑥
2 𝑥 ) 𝑑𝑡 − (

𝜎𝐴
2

𝜎𝑢 
2 +

𝜎𝑢
2

𝜎𝑥 
2 ) 𝑢𝑑𝑡 + √2𝜎𝐴 

2 (
1

𝑇
+

1

𝑡2
) 𝑑𝑊  (A4) 

𝑑𝑢 = 𝐴𝑑𝑡 
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𝑑𝑥 = 𝑢𝑑𝑡  
where 𝜎𝐴

2 = 𝜎𝑢
2/𝑇𝑡2 is the acceleration variance and 𝑡2 is a timescale representative of the smallest 

scales of motion [25]. 

It follows that for this model the velocity autocorrelation is a solution of the equation,  

𝑑3𝑅

𝑑𝑡3 + (
1

𝑇
+

1

𝑡2
)

𝑑2𝑅

𝑑𝑡2 + (
𝜎𝐴

2

𝜎𝑢 
2 +

𝜎𝑢
2

𝜎𝑥 
2 ) 

𝑑𝑅

𝑑𝑡
+ (

1

𝑇
+

1

𝑡2
)

𝜎𝑢
2

𝜎𝑥
2 𝑅 = 0  (A5) 

The simplest solutions are single exponentials   𝑒−𝜉𝜏  where the inverse timescales 𝜉    are 

solutions of the equation, 

𝜉3 − (
1

𝑇
+

1

𝑡2
) 𝜉2 + (

𝜎𝐴
2

𝜎𝑢 
2 +

𝜎𝑢
2

𝜎𝑥 
2 ) 𝜉 − (

1

𝑇
+

1

𝑡2
)

𝜎𝑢
2

𝜎𝑥
2 = 0  (A6) 

Typically, one solution, 𝜉1, is real whilst the other two, 𝜉2 ± 𝑖Ω, are a pair of complex conjugate 

pair. In this case the general solution to Equation (A5) therefore takes the form, 

𝑅(𝜏) = 𝐴 𝑒−𝜉1𝜏 + (1 − 𝐴) 𝑒−𝜉2𝜏(𝑐𝑜𝑠Ω𝜏 − 𝐵𝑠𝑖𝑛Ω𝜏)  (A7) 

where A and B are weighting factors. 

It follows that, 

𝑓(𝜔) = 𝐴
𝜉1

𝜉1
2+𝜔2 +

1

2
(1 − 𝐴) ((

𝜉2

𝜉2
2+(Ω−𝜔)2 +

𝜉2

𝜉2
2+(Ω+𝜔)2) + 𝐵 (

𝜉2−Ω

𝜉2
2+(Ω−𝜔)2 +

𝜉2+Ω

𝜉2
2+(Ω+𝜔)2))         (A8) 

At sufficiently high frequencies 

𝑓(𝜔) → 𝑐2𝜔−2 + 𝑐4𝜔−4 + 𝑂(𝜔−6)  

where 𝑐2 = 𝐴 𝜉1 + (1 − 𝐴)𝜉2 + (1 − 𝐴)𝐵Ω and 𝑐4 = (𝐴 − (1 − 𝐴)𝐵)(3𝜉2
2 − Ω3)  

Because the complexity of the general analytic expressions for 𝜉  in terms of the model 

parameters, 𝑇, 𝑡2, and 𝜎𝑢
2/𝜎𝑢

2  precludes their application, here I present illustrative examples.  

For 𝑇= 𝑡2 = 1, 
𝜎𝑢

2

𝜎𝑢
2 = 1, 𝜉1 ≈ 1.54, 𝜉2,3 ≈ 0.23 ± 1.12𝑖. The weighting factors A and B were found 

by minimizing the mean square difference between the predicted form of velocity autocorrelation, 

Equation (A7), and form obtained from simulation data obtained using Equation (A4) (Figure A1). 

This gave 𝐴 = −0.24  and 𝐵 = 0.065.  Consequently, 𝑐2 ≅ 0  and 𝑓(𝜔) ∝ 𝜔−4 . The same scaling 

was obtained for 𝑇= 𝑡2 = 1, 
𝜎𝑢

2

𝜎𝑢
2 = 1/2 and for 𝑇= 𝑡2 = 1, 

𝜎𝑢
2

𝜎𝑢
2 = 2. 

  

Figure A1. Predicted form the velocity autocorrelation, Equation (A7), matches that obtained in 

numerical simulations. The trajectories of 10000 swarming insects were simulated by numerically 

integrating Equation (A4). Results are shown for  𝑇= 𝑡2 = 1, 
𝜎𝑢

2

𝜎𝑥
2 = 1 a.u. 

Appendix B 

Jerks may destabilize small swarms 

Reynolds [26] showed that the positions of the non-biting midge Chironomus riparius in 

laboratory swarms are maximally anticorrelated.  In this case the average strength of the jerk 

experienced by the ith midge is given by  
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〈𝐽𝑖〉 = − (
𝜎𝐴

2

𝜎𝑢
2 𝛿𝑖𝑗 +

𝜎𝑢
2

𝜎𝑥
2 Λ𝑖𝑗) 𝑢𝑗  (A9) 

where Λ𝑖𝑗 are elements of the inverse of the normalized position covariance matrix, the subscripts 

denote different individuals, and where there is summation of over repeated indices. The average 

strength of the jerk experienced by the ith midge therefore depends on the velocities of all individuals 

in the swarm, and so is unlikely to be aligned with the direction of travel (the major axis of the insect). 

If it were aligned, then the impact that jerks can have on flight dynamics would be minimized (see 

main text). This misalignment is, however, small in asymptotically large swarms which on average 

contain 10 or more individuals [5]. This is because 〈|𝑢|〉 = √
2

𝜋
𝜎𝑢𝑁1/2 and because Λ𝑖𝑗 = 1 when 𝑖 =

𝑗 and Λ𝑖𝑗 = 1/𝑁 when 𝑖 ≠ 𝑗. Consequently,   

〈𝐽𝑖〉 = − (
𝜎𝐴

2

𝜎𝑢
2 +

𝜎𝑢
2

𝜎𝑥
2) 𝑢𝑖 −

𝜎𝑢
3

𝜎𝑥
2 𝑂 (𝑁−

1

2)  (A10) 

Despite their disruptive influence in small swarms, the maximal positional anticorrelations 

appear to dictate the approach to the asymptotic state (Appendix C).  

Appendix C  

Maximal anticorrelated positions and the asymptotic regime 

Puckett and Ouellette [27] reported that once swarms contain order 10 individuals, all statistics 

saturate, and that the swarms enter an asymptotic regime. Puckett and Ouellette [27] also reported 

that the influence of the swarm marker (a visually prominent feature over which swarms nucleate) 

on the swarm morphology decays on a similar scale. Their results provide a strong constraint on how 

rapidly swarm models must produce collective states. Here I show that the observations of Puckett 

and Ouellette [27] together with the occurrence of maximal anticorrelated positions [26] are consistent 

with each individual in the swarm being on average located at a position that is mirror opposite to 

the average position of all other individuals, so that the average position of the ith individual in a 

swarm containing N individuals is given by  〈𝑥𝑖〉 = −
1

𝑁−1
∑ 𝑥𝑗

𝑁
𝑗=1
𝑗≠𝑖

. With this specification the least 

biased (maximum entropy) choice for the distribution of positions is the multivariant Gaussian 

𝑝(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) = (2𝜋𝜎𝑐
2)−𝑁/2𝑒𝑥𝑝 (−

1

2𝜎𝑐
2 ∑ (𝑥𝑖 − 〈𝑥𝑖〉)(𝑥𝑖 − 〈𝑥𝑖〉)𝑁

𝑖=1 )  (A11) 

where 𝜎𝑐
2 is a measure of the mean square size of the swarm. This can be rewritten as 

𝑝(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) = (2𝜋𝜎𝑐
2)−𝑁/2𝑒𝑥𝑝 (−

1

2𝜎𝑐
2

𝑥𝑖Λ𝑖𝑗𝑥𝑗) (A12) 

where Λ𝑖𝑗 =
𝑁

𝑁−1
 if 𝑖 = 𝑗  and Λ𝑖𝑗 =

3𝑁−4

(𝑁−1)2  if 𝑖 ≠ 𝑗 , and where there is summation of repeated 

subscripts. The distribution, Equation (A11), is realizable (Λ𝑖𝑗  is positive definite) when 𝑁 ≥ 3. 

Normalized positional covariances are, to good approximation, given by σ𝑖𝑗 = 1 if 

𝑖 = 𝑗 and σ𝑖𝑗 = −1/𝑁 if 𝑖 ≠ 𝑗, which is indicative of maximal anticorrelated positions.  

If the volume of the swarm, 𝜎𝑐
3, is proportional to the population size, N, of the swarm then the 

volume per individual is predicted to saturate when swarms contain order 10 individuals, as 

observed by Puckett and Ouellette [27]. Puckett and Ouellette [27] found that the approach to the 

asymptotic state can be accurately represented by a decaying exponential function of the form 𝑉𝑖𝑛𝑑 =

𝐴𝑒𝑥𝑝 (−
𝑁

𝑁0
) + 𝐵 where the characteristic scale 𝑁0 = 3.1 ± 0.8 quantifies the rate of approach with 

increasing swarm size. Like the observations, model predictions are found to be accurately 

represented by the decaying exponential function albeit with 𝑁0 ≈ 1.But in the presence of a swarm 

marker of size 𝜎𝑠 = 1  (a.u.), the modelling predicts that 𝑁0 ≈ 5  (Figure A2). In such cases the 

distribution of positions becomes 

𝑝(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁) = (2𝜋𝜎𝑐𝜎𝑠)−𝑁𝑒𝑥𝑝 (−
1

2𝜎𝑐
2 𝑥𝑖Λ𝑖𝑗𝑥𝑗) 𝑒𝑥𝑝 (−

1

2𝜎𝑠
2 𝑥𝑖

2)  (A13) 
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Puckett and Ouellette [27] also reported on a related though distinct measure of how the midges 

arrange themselves in space, namely the average distance from an individual to its nearest neighbour. 

Puckett and Ouellette [27] found that like the volume per individual, the nearest-neighbour distance 

falls off rapidly with swarm size for small swarms, but eventually saturates. This behaviour is 

predicted by stochastic models of the 3-dimensional trajectories of swarming insects which by 

construction are exactly consistent with the multivariant distributions of positions, Equation (11). As 

observed [27] the characteristic scale, 𝑁0 ≈ 2, is larger than for the volume per individual but is less 

than the observed characteristic scale, 𝑁0 = 8.6 ± 2.0. But in the presence of a swarm marker of size 

𝜎𝑠 = 1 (a.u.) the modelling predicts that 𝑁0 ≈ 6 (Figure A2). 

Finally, the stochastic modelling predicts that the anticorrelation of spatial positions results in 

correlated accelerations, as evidenced in an analysis of pre-existing data (Figure A3). Such 

correlations have until now gone unnoticed, despite numerous attempts to uncover order in the 

dynamics of swarming insects [2,3,15,28,29]. 

This analysis leaves open the question as to how the velocity statistics approach the asymptotic 

regime. 

 

Figure A2. a) Predicted volume per individual as a function of the number of individuals in the swarm. 

The solid line is an exponential fit, 𝑉𝑖𝑛𝑑 = 𝐴𝑒𝑥𝑝 (−
𝑁

𝑁0
) + 𝐵  with 𝑁0 ≈ 5.  Puckett and Ouellette [27] 

reported that 𝑁0 = 3.1 ± 0.8 . b) Predicted average distance from a given individual to its nearest 

neighbour as a function of the number of individuals in the swarm. The solid line is an exponential fit, 

𝑑𝑛𝑛 = 𝐴𝑒𝑥𝑝 (−
𝑁

𝑁0
) + 𝐵 with 𝑁0 ≈ 6.  Puckett and Ouellette [27] reported that 𝑁0 = 8.6 ± 2.0. 

 

Figure A3. a) Predicted and b) observed net polarizations of acceleration as a function of the number 

individuals in the swarm (●). The polarization 𝑝 = 〈|∑
𝐴𝑖

|𝐴𝑖|
𝑁
𝑖=1 |〉 /𝑁 where 𝐴𝑖 is the acceleration of the 

ith individual and where the angular brackets denote a time average. Predictions were obtained using 

the stochastic model of Reynolds [26]. The experimental data is taken from Sinhuber et al. [24]. The 

solid lines are exponential fits, 𝑝 = 𝐴𝑒𝑥𝑝 (−
𝑁

𝑁0
) + 𝐵 with a) 𝑁0 ≈ 8 and b) 𝑁0 ≈ 14. The average 

polarizations are significantly larger than the average polarizations that are predicted to arise 

sporadically in swarms of individuals with uncorrelated positions (o). 
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