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Abstract: Wind power has emerged as a crucial substitute for conventional fossil fuels. The
combination of advanced technologies such as the internet of things (IoT) and machine learning
(ML) has given rise to a new generation of energy systems that are intelligent, reliable, and efficient.
The wind energy sector utilizes IoT devices to gather vital data, subsequently converting them into
practical insights. The aforementioned information aids among others in the enhancement of wind
turbine efficiency, precise anticipation of energy production, optimization of maintenance
approaches, and detection of potential risks. In this context, the main goal of this work is to combine
the IoT with ML in the wind energy sector by processing weather data acquired from sensors to
forecast wind power generation. To this end, three different regression models are evaluated. The
models under comparison include Linear Regression, Random Forest, and Lasso Regression,
evaluated using metrics such as coefficient of determination (R?), adjusted R2 mean squared error
(MSE), root mean squared error (RMSE), and mean absolute error (MAE). After examining a dataset
from IoT devices that included weather data, the models provided substantial insights regarding
their capabilities and responses to preprocessing, as well as each model’s reaction in terms of
statistical performance deviation indicators. Ultimately, the preprocessing and the data analysis
show that Random Forest regression is more suitable for weather condition datasets than the other
two regression models. Both the advantages and shortcomings of the three regression models
indicate that their integration with IoT devices will facilitate successful energy forecasting.

Keywords: Internet of Things (IoT); Machine Learning (ML); data analysis; regression analysis

1. Introduction

Given the increasing environmental concerns and the need to shift to sustainable energy sources,
wind power has emerged as a significant and feasible alternative to conventional fossil fuels [1]. Wind
farms, comprised of a collection of wind turbines, have become essential structures in the worldwide
effort to provide environmentally friendly and sustainable energy [2]. The increasing interest in wind
energy coincides with a crucial phase in the energy sector, marked by the integration of advanced
technologies like the IoT and ML. These state-of-the-art technologies are not simply enhancing the
abilities of current energy systems; they are completely transforming them. They pledge to introduce
a new era marked by intelligent, reliable, and extremely efficient energy systems that not only
improve performance but also tackle urgent energy issues worldwide. The wind energy sector is
progressively utilizing IoT devices to collect vital data, playing a key role in this technological
transformation [3]. The features may encompass parameters like wind speed, wind direction,
temperature, humidity, air pressure, and metrics related to the health of the turbine. These variables
offer crucial insights into the elements that affect wind power output. Once gathered and examined,
these data act as a catalyst for enhancing the effectiveness of wind turbines, precisely predicting
energy generation, simplifying maintenance approaches, and identifying possible hazards.
Furthermore, the instantaneous transfer of sensor measurements to distant control centers enables
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uninterrupted surveillance, although it presents certain difficulties, particularly with real-time
control at the system and component levels. Currently, supervisory control and data acquisition
(SCADA) systems offer advanced services and capabilities for wind energy conversion system
(WECS) that go beyond basic monitoring and management of wind turbines, utilizing meteorological
observations and weather data to forecast wind power generation [1].

This article provides foundational insights into IoT applications in wind energy systems,
incorporating data analysis and ML through three different regression models. The preprocessing
phase encompasses outlier removal, data transformation, correlation analysis, cross-validation,
standardization and data splitting, all of which prepare the dataset for ML processing. To this end,
an innovative approach is presented that involves preprocessing followed by Linear, Random Forest,
and Lasso regression, yielding valuable results. The objective is to demonstrate how the utilization
of these technologies can significantly enhance the efficiency, reliability, and ecological sustainability
of wind energy systems, thereby facilitating the global transition towards a more sustainable and
environmentally conscious energy sector.

In recent years, numerous scientific works have dealt with the deployment of IoT in wind energy
and forecasting of energy output. The work in [3] examines the implementation of IoT in wind farms
and the broader energy sector. It asserts that the incorporation of IoT into wind farms enhances the
existing 743 GW worldwide wind power capacity to a sufficient level to provide 20% of the world’s
electricity by 2030. In the same context, the obstacles related to the implementation of IoT in wind
farms and the prospective role of blockchain technology and green IoT in energy systems are
discussed as well. In [4], an IoT-based communication architecture is proposed to ensure reliable
connection between wind turbines and the control center, utilizing repeat-accumulate coded
communication to improve reliability. The numerical findings indicate that the suggested technique
can accurately predict the condition of a wind turbine and greatly surpasses previous estimating
methods. In [5], a set of multiobjective predictive models was developed employing various
advanced ML algorithms, such as artificial neural networks (ANNSs), recurrent neural networks
(RNNs), convolutional neural networks (CNNs), and long short-term memory (LSTM) networks.
According to the outcomes of this work, the LSTM, RNN, CNN, and ANN algorithms were effective
in predicting wind power. The efficacy of these models was assessed by the integration of statistical
metrics for performance deviation. In conclusion, the LSTM model is more effective in predicting
wind power. In [6], long-term wind power forecasting was conducted utilizing daily wind speed data
through five machine learning algorithms: LASSO regression, k-nearest neighbors (kNN) regression,
xGBoost regression, random forest regression (RFR), and support vector regression (SVR).The
findings of this work indicated that ML algorithms are capable of predicting long-term wind power
values based on previous wind speed data and can be utilized in sites distinct from those used for
model training. Among these algorithms, RFR had improved performance compared to the other
approaches, while LASSO had the worst performance metrics due to its linear basis.

In all the aforementioned studies, the researchers concentrate their efforts either on IoT in wind
energy or in wind power forecasting. Therefore, a key novel point of this work is the integration of
IoT technology with wind energy systems and the comparison of fundamental ML algorithms to
extract valuable information. To this end, this work initially examines the design and architecture of
WESCS in wind energy, followed by an exploration of ML, particularly focusing on three regression
models and their capabilities.

The rest of this paper is organized as follows: In Section 2, the incorporation of IoT in the wind
energy sector is analyzed, and in particular the composition of WESC, the cyber-physical integration
of a wind turbine, the SCADA systems, and machine to machine (M2M) for internet of everything
(IoE)-enabled wind farms. Section 3 is focused on ML in wind energy forecasting. To this end, the
data and preprocess steps are described, with an emphasis on regression analysis. In the same
context, Linear, Random Forest, and Lasso models are then analyzed, with their basic characteristics
and results on various key performance indicators (KPIs), including cross-validation results. In
Section 4, KPIs" performance is presented on the test set and cross-validation, concluding with the
complexity and interpretability of the models. Finally, concluding remarks are outlined in Section 5.
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2. IoT and Wind Energy

The efficacy and magnitude of wind technologies are advancing at a rapid pace. The energy
specialists have ambitious goals for the future integration of wind energy into the industry. The
primary challenge in the advancement of wind energy lies in the inherent unpredictability of these
resources. Therefore, the real-time operation can make the necessary arrangements in the power
system to counteract fluctuations without experiencing sudden changes in power output.
Furthermore, the availability of real-time data sharing is essential for effective collaboration between
energy storage facilities and wind units [7]. Figure 1 illustrates [oT’s contribution to the wind energy
sector, using weather data as input and providing real-time, accurate information for energy
forecasting.

Forecasting
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Figure 1. IoT in wind energy sector.

Furthermore, the use of IoT technology in conjunction with information and communications
technology (ICT) infrastructures enables wind farm operators to effectively implement precise
predictive maintenance schedules, thereby mitigating the risk of incurring substantial losses. A
timetable of this nature can be implemented through the utilization of ML and data mining
methodologies. Timely maintenance can lower the levelized cost of energy (LCoE) index for wind
assets [8]. The LCoE index quantifies the discounted value of the average cost of electricity over the
whole operational lifecycle of the turbines. The indispensability of IoT in harnessing wind energy lies
in the prompt collection and analysis of data pertaining to wind turbines and wind farms. Currently,
the challenges of data transfer latency for offshore wind farms and the restricted capacity to transmit
information to distant areas are two significant difficulties that need to be resolved. Hence, by
gathering and examining crucial data in real-time, the process of making decisions, such as the
prompt shutdown of a turbine to prevent further damages, can be expedited or even automated [4].
The integration of IoT technologies in the wind industry emphasizes the necessity for more holistic
approaches to develop economical, secure, and reliable frameworks for the planning, operation,
installation, and maintenance of wind farms and turbines.

Typically, wind farms are placed in distant areas, resulting in control centers being situated
many hours away from the wind farms. Utilizing an IoT network, remote data transmission
connectivity can enable control centers to effectively monitor the condition of a wind turbine and
exert control over its operation [4]. Wind turbines, being located in remote areas, necessitate the use
of wireless networks like cellular or satellite networks for IoT network access. Figure 2 illustrates a
combined system consisting of wind turbines and a wireless IoT network.
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Figure 2. Utilization of an IoT network to transfer data from turbines to the control center.

2.1. Composition of WECS

Physical Layer in WECS: The wind energy conversion system comprises the following physical
components: blades, rotor hub, nacelle, and tower foundations, as shown in Figure 3. The nacelle
consists of several components, including shafts, gearbox, generator, and other electrical and
mechanical systems. The various components are continuously monitored and regulated by a
multitude of sensors and actuators [9]. The wind turbine is fitted with sensors that quantify multiple
characteristics related to the functioning and state of each component. Simultaneously, the control
system governs and manages the functioning of the wind turbine through a sequence of actuators.
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Figure 3. Wind turbine components.

Cyber Layer in WECS: The cyber layer in WECS incorporates a variety of hardware and
software technologies that collaborate to accomplish shared goals [9]. The cyber layer typically
comprises networking, SCADA, and content management systems (CMS) as illustrated in Figure 4.
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Figure 4. Cyber layer implemented in a wind farm.

Networking: Reliable communication networks between subsystems within a wind turbine are
necessary for the successful deployment of WECS. Furthermore, it facilitates the connection of
sophisticated machinery and intricately integrated devices across a wind farm. Networking
essentially enables the efficient transmission of data and control signals among con-trollers, actuators,
sensors, supervisory centers, and data storage stations [10]. When developing communication
networks for wind farms, especially those located offshore, it is crucial to take into account many
factors such as data transmission rates and network resilience.

Various sensors are integrated inside a wind turbine to measure its numerous components, such
as the generated current, voltage, and rotor speed. Let ©,(f),i=12,..N be the measured state by

the i" sensor of the wind turbine. We define O,(t) by,
O.(t) = CX(t) +n, (1)
e O,(t): A vector of measurements with dimension x,, where p is the number of components

or parameters being measured by the i " sensor.

e (C.(t): A matrix that represents the measurement or sensing data from sensor i with dimensions
pxn where p is the number of measurements or components observed by the sensor and n
refers to the number of state variables of the system being observed by the sensors.

e  X(t): A vector contains the state variables that describe the system’s internal dynamics, such as
electrical power generation, rotor speed, or internal parameters that are being monitored or
controlled.

The matrix C,(f) represents the measurement or sensing data from sensor i, while Nmi

represents the observed noise during the measurement at sensor i. The measurement noise is
modeled as Gaussian noise with zero-mean and covariance R., similar to the process noise. The

measured state is transmitted at regular intervals to the control center for the implementation of the
necessary actions. As wind turbines are generally located in remote areas, there is frequently no direct
communication link between a wind turbine and the control center. Normally, the transmitter of a
wind turbine establishes a connection with a nearby base station, which subsequently transmits the
message to the control center. The communication link between the base station and control center is
assumed to be reliable, as it is part of a solid backbone network. However, the wireless
communication link between the wind turbine and the base station encounters challenges in ensuring
reliable data transmission [4]. Dependable communication is crucial for precise state estimates and

control applications. The observed state is denoted as O,(t)= [oil, [ in] , where 9, )

represents the measurement of the j” component of X obtained from the i** sensor. Every element

of O,(t) is transformed and discretized into K bits. The bit block that corresponds to the ;"
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component is represented by b, (t) , Where b, (t) €1{0,1}* . Next, a repeat-accumulate code is used on
b, (t) to produce a code word, where c refers to the encoded bits or codewords. The codewords are
organized in a sequential manner to create m, (t) = [c, (t),ci2 (t),..., ¢, ()] . Once the m(t) is
modulated onto the wireless carrier signal, the resulting carrier signal s,(t) is transmitted from the
wind turbine to the base station:
y(t) = hes(t) +n, HEEEEE ()

where n  represents the additive white gaussian noise (AWGN) with a mean of zero and a standard
deviation of ¢, and h is the fading component. After receiving y(t), the receiver carries out the

inverse procedure (such as demodulation, decoding, demapping, etc.) to create the observed state.
Figure 5 depicts the communication architecture for wind turbines based on IoT sensors.
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Figure 5. Communication architecture for a wind turbine equipped with multiple sensors.

SCADA and CMS: Currently, SCADA systems offer advanced services and capabilities for
WECS that go beyond basic monitoring and management of wind turbines. CMSs are essential
systems that are seamlessly connected with SCADA systems. CMSs utilize a variety of methods to
detect defects in wind turbines at an early stage. The incorporation of CMS has shown significant
improvements in the functioning and upkeep of wind turbines. CMS systems commonly employ a
greater number of sensors with higher sample frequencies, as opposed to SCADA systems [9]. CMSs
provide significant advantages in data communication, calculation, and storage, in addition to
increasing overall costs. Consequently, numerous proposals are put forward to utilize SCADA data
for condition monitoring in order to decrease the expenses of wind energy conversion systems [11].
Nevertheless, a thorough examination of specialized CMS in comparison to SCADA-based
configuration management (CM) reveals that CMS are considerably more expensive but possess
more diagnostic capabilities due to their higher frequency of information.

2.2. Cyber Physical Integration of a Wind Turbine

Upon conducting a thorough analysis of the many components of WECS, it is evident that they
can be classified as intricate technologies that incorporate embedded systems. The cooperation
between WECS layers, as depicted in Figure 6 exhibits a significant degree of diversity and constitutes
a characteristic cyber-physical system (CPS) [9]. Viewing WECS as CPS introduces additional levels
of technology adaption and amplifies the capabilities of WECS to be seamlessly included into
intelligent power grids and the IoE.
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Figure 6. CP integration of WECS.

The advancement of CPS necessitates the creation of novel models and design approaches. The
primary objective of these new models and methodologies is to strike a harmonious equilibrium
between intricacy and practicality. Integrating all diverse components of the cyber and physical levels
to model wind turbine systems poses a significant challenge. Various elements of characteristics must
be taken into account when creating CPS compositional models, including functional, non-functional,
physical, component interfaces, and interface coordination. Thus, the intricate and diverse nature of
components in contemporary wind turbines necessitates the application of similar concerns to be
extended to WECS. It is necessary to use comprehensive analysis and verification methods to
guarantee the precise operation of control systems for different electrical and mechanical components.
Moreover, it is important to furnish comprehensive models of wind resources and electrical loads
that influence the operational conditions. In the same context, it is imperative to establish a
framework to guarantee the continuous viability, protection, defense, and adaptability of WECS [11].

Verification techniques are necessary to assess the physical requirements, such as size, power,
dynamics, and memory, of various computing and networking components used in wind turbines
within the context of CPS. Additionally, there is a requirement for tools to verify the compatibility of
various interfaces of SCADA, CMS, sensor nodes, and power electronics with control circuits [4].
Future WECS necessitate the implementation of unified techniques to enhance their extensibility,
facilitate interaction with smart grids, and improve human-machine interfaces [7]. WECS models are
expected to incorporate both continuous physical dynamics and discrete occurrences. There needs to
be a consistent understanding of time across sensor nodes, network, and computing platforms. In
addition, contemporary wind turbine technology incorporates computing systems that operate at
varying speeds [12]. SCADA systems in wind facilities function at a low frequency to record
performance data, whereas CMS operate at a high frequency to monitor components effectively.
Moreover, it is imperative to depict the tangible movements of mechanical structures, the study of
airflow around objects, the behavior of electrical parts, and the control of electrical power using
descriptive programming abstractions. Therefore, it is becoming more and more necessary to


https://doi.org/10.20944/preprints202409.2351.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2024 d0i:10.20944/preprints202409.2351.v1

combine conceptual computational and information flow models from sensor networks with physical
mechanical and electrical models in wind turbines. Alternatively, black box approaches can be used,
relying on system identification using real data obtained from wind facilities.

2.3. SCADA Systems and M2M for IoE-Enabled Wind Farms

Due to the harsh, expansive, and isolated nature of wind farm sites, SCADA systems must
possess the ability to efficiently monitor and control operations. Furthermore, the intricate nature of
a wind turbine necessitates the perception of wind farms as a collection of interconnected systems.
Hence, it is imperative to enhance the existing SCADA systems employed for monitoring and
controlling grids and power plants, including wind turbines, by including advanced multilayered
interactive sensing, communication, and control functionalities. It is imperative to fulfill the
requirements of upcoming industrial and energy needs [12]. Presently, energy providers are
requiring the incorporation of wind farms SCADA systems into their asset management software,
such as enterprise resource planning (ERP) and customer resource management (CRM). Figure 7
presents a concise overview of the responsibilities and objectives that upcoming SCADA systems for
wind energy will encompass.

‘MZMCommunications ‘

Internet & open
cormmunication
standards

Unified SCADA
interfaces

Figure 7. The objectives of upcoming SCADA systems for WECS.

In the future, wind farms will require the use of CP SCADA systems that are implemented using
IoT technology for their operation and management. The notion of the IoT is exemplified by the
implementation of a wireless sensor network (WSN) for an industrial process, which allows for
remote monitoring via the internet [11,13]. A customizable SCADA system with decentralized
intelligence and decision-making capabilities is provided based on a CP model of a power system.
The system comprises three primary elements: Intelligent machines, analytics, and operators. This
concept is employed in a wind control platform to oversee the synchronization of wind turbines in a
farm. The SCADA system is anticipated to leverage current advancements in computing and
networking to offer monitoring and control services via the internet, aligning with the fundamental
essence of the IoT. Efficiently processing large amounts of raw data requires the use of self-organizing
CPS networks. Hence, CP wind farms necessitate the implementation of novel network standards,
protocols, and infrastructures. M2M communications is an increasingly important component of the
IoT [14]. M2M connections enable the transmission of information between intelligent equipment,
business applications, and data servers. Anticipated developments in M2M technology will broaden
the scope of connections beyond individualized interactions to a model where producers and
consumers are interconnected. A planned infrastructure for M2M communications aims to enable
smart wind farms to efficiently communicate measured data and enhance their intelligence among
wind turbines. A proposed cloud based M2M telemetry system aims to efficiently handle and visually
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represent data for suppliers of renewable energy [15]. Furthermore, content management systems are
getting more intelligent using M2M technology.

3. ML for Wind Energy Forecasting

This section delineates the procedures for data collecting, data pre-processing, and the
implementation of machine learning algorithms.

Wind energy forecasting analysis jobs involve the processing and interpretation of large
quantities of weather-related data to generate accurate estimates of future energy generation. These
tasks employ a diverse range of analytical methodologies and tactics to enhance the precision of
forecasts. The meteorological data, consisting of wind speed, wind direction, temperature, humidity,
wind gusts, and dewpoint, is now accessible and can be utilized for power generation predictions, as
Figure 8 shows [15]. Significant statistical connections can be identified between different
meteorological factors and energy production. These correlations can be used to construct models
that accurately represent the influence of certain weather conditions on the efficiency of wind
turbines. The selection of features for forecasting models is determined by this examination. Selecting
suitable machine learning techniques, like regression models, for predictive modeling depends on
the unique demands of the forecasting issue and the features of the data.

Preprocessing & Preparation
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Figure 8. Employing meteorological data to predict electric energy levels.

3.1. Dataset and Preprocessing

The Wind Power Generation Data - Forecasting dataset was acquired from Kaggle
(https://www kaggle.com/datasets/mubashirrahim/wind-power-generation-data-forecasting/data)
and uploaded to the Kaggle platform by MUBASHIR RAHIM. The meteorological equipment — IoT
devices deployed at the site was used to meticulously gather the data. The meteorological apparatus
measured temperature, humidity, dew point, and wind properties at predetermined elevations of 2
meters, 10 meters, and 100 meters. Concurrently, sensors were installed on wind turbines to monitor
their efficiency and electricity production. The datasets consist of a detailed hourly log obtained from
four distinct sites, spanning from January 2, 2017, 00:00:00, to December 31, 2021, 23:00:00. The data
underwent rigorous quality checks to detect and rectify any anomalies or inconsistencies, ensuring a
high level of data reliability. Regular equipment maintenance has consistently ensured the quality of
data over time.

The following are the columns and weather parameters in the data:

e  Time: The moment in the day when the measurements were made.

e temperature_2m: The temperature in degrees Fahrenheit at two meters above the surface.

e relativehumidity_2m: The proportion of relative humidity at two meters above the surface.

e dewpoint_2m: Dew point, measured in degrees Fahrenheit at two meters above the surface.

e windspeed_10m: The wind speed, expressed in meters per second, at 10 meters above the
surface.


https://doi.org/10.20944/preprints202409.2351.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2024 d0i:10.20944/preprints202409.2351.v1

10

e  windspeed_100m: The speed of the wind at 100 meters above sea level, expressed in meters per
second.
e winddirection_10m: The wind direction at 10 meters above the surface is represented in degrees.

(0-360).

e  winddirection_100m: The direction of the wind at 100 meters above the surface, expressed in

degrees (0-360).

e windgusts_10m: A wind gust is an abrupt, transient increase in wind speed at 10 meters.
e  Power: The normalized turbine output, expressed as a percentage of the turbine’s maximum

potential output, and set between 0 and 1.

The normal or Gaussian distribution that is indicated in Figure 9 represents the famous bell-
shaped curve, which is characterized by the arithmetic mean p and the standard deviation o. The
normal distribution is the most frequently employed probability and statistics distribution.
Contemporary techniques like as linear regression, analysis of variance (ANOVA), and t-tests heavily
depend on the assumption that the data follows a normal distribution. Because the dataset contains
outliers, which indicate the accuracy of the sensors’ measurements, the curves do not have a well-
defined shape [16].

Figure 9. Gaussian distribution including outliers.

Libraries: Python’s libraries for data analysis, visualization, and scientific computing are
extensively utilized. They provide a comprehensive range of tools and features that make it easier to
explore data and generate insights [17]. The libraries to be utilized in the preprocessing stage are as
follows:

e Pandas is a robust Python package utilized for the manipulation and analysis of data. The
software provides data structures such as DataFrames and Series, which facilitate the
manipulation and analysis of organized data.

e NumPy is an essential library for scientific computation in Python, commonly referred to as
“Numerical Python.” The software provides support for large, complex arrays and matrices,
together with a collection of mathematical algorithms to effectively handle these arrays.
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e  Matplotlib is a flexible toolbox that enables the generation of static, interactive, and animated
visualizations in the Python computer language. The pyplot module offers a MATLAB-like
interface for producing plots and visualizations, simplifying the process of generating charts,
histograms, scatter plots, and other graphical representations.

e  Seabornis a data visualization package that enhances the capabilities of matplotlib and provides
a more sophisticated interface for creating visually appealing and meaningful statistical graphics.
It streamlines the procedure of generating intricate visualizations and provides pre-installed
themes and color palettes to increase the visual appeal of plots.

Dataset: There are four data frames, namely locl, loc2, loc3, and loc4, that are all of equal size.

All data in the datasets originates from the utilization of IoT devices to measure meteorological

conditions with consistent precision. The number of rows in each data frame is 43800, and the number

of columns is 10. This study centers on the examination carried out utilizing the locl dataset. The
columns consist of the following variables: time, temperature, relative humidity, dewpoint, wind
direction, wind speed, and wind gusts at 2, 10, and 100 meters, as shown in the first 5 rows of Figure

10. There are six variables of float64 data type, three variables of int64 data type, and one variable of

object data type.

Time temperature_2m _am _2m d_10m d_100m winddirection _10m tion_100m _10m Power

2017-

01-02 285 85 245 144 1.26 146 162 14 0.1835
00:00:00

2017-

01-02 284 86 247 206 199 151 158 44 D424
01:00:00

207-

01-02 268 9 245 130 278 148 150 32 01294
020000

2017-

01-02 274 88 243 130 269 58 105 16 01003
03:00:00

2017-

01-02 273 ] 41 247 443 58 84 40 00793
04.00:00

Figure 10. The first 5 rows in Dataset of location1.

Since time is an object, it will be transformed to datetime before being used for analysis. The
conversion is performed using the function (pd.to_datetime) from the Pandas package [17]. The
subsequent tables and figures originate from the exploratory data analysis conducted at locl. Based
on the corresponding time values, in Table 1, organize the power-generating data into separate
columns for year, month, and day.

Table 1. Data columns from location 1.

Columns Null values

Time 43800 non-null datetime64
temperature_2m 43800 non-null float64
relativehumidity_2m 43800 non-null int64
dewpoint_2m 43800 non-null float64
windspeed_10m 43800 non-null float64
windspeed_100m 43800 non-null float64
winddirection_10m 43800 non-null int64
winddirection_100m 43800 non-null int64
windgusts_10m 43800 non-null float64
Power 43800 non-null float64
Year 43800 non-null int32
Month 43800 non-null int32
Day 43800 non-null object

Null values: A non-null value refers to any numerical, textual, or other type of value that is not
null [18]. The data frame has 43,800 non-null values in each column, corresponding to the index range
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of 0-43799. By utilizing Python’s function .null().sum(), can determine the number of null values for
each variable. Datasets do not contain any null values as described in Table 2. Determining influential
and anomalous data points is essential as it will aid in future data collection and the proper utilization
of existing knowledge.

Table 2. Null values in the Dataset.

Columns Null values

temperature_2m
relativehumidity_2m
dewpoint_2m
windspeed_10m
windspeed_100m
winddirection_10m
winddirection_100m
windgusts_10m
Power

Year

Month

O O O O OO o o o oo

Outliers: The degree to which a data point deviates from the mean in terms of standard
deviations is measured statistically by the z-score [18]. The z-score can be calculated using the
following formula:

z = (x — mean) | stdlEEk 3)

In this context, x represents a specific data point, mean represents the average value of the
dataset, and std represents the standard deviation of the dataset.

It appears that the dataset contains some outliers, as illustrated in Figure 11 Consequently, Table
3 shows the results of removing outliers to achieve improved outcomes.
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Columns Removed Outliers
temperature_2m 5
relativehumidity_2m 11
dewpoint_2m 0
windspeed_10m 318
windspeed_100m 199
winddirection_10m 0
winddirection_100m 0
windgusts_10m 337

Power Not included
Year Not included
Month Not included

The distribution of wind gusts in Figure 12 may show significant skewness due to extreme
values, which can obscure the true underlying patterns. After outlier removal, the distribution
typically becomes more normal, allowing for clearer insights and more accurate analyses.

Original Distribution of windgusts_10m Distribution of windgusts_10m After Outlier Removal

1600 1 1600 -
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600 600
400 400 1

200 200

T T T T T N T
0.0 2.5 5.0 75 10.0 125 15.0 175
windgusts_10m

windgusts_10m
(a) (b)

Figure 12. Distribution of wind gusts (a) before and (b) after removal of outliers.

Correlation: The dataset is currently accessible and prepared for utilization in deriving
significant insights. Correlation study between measurements such as temperature, relative humidity,
and wind speed will assist in selecting parameters for prediction [19]. These highly correlated metrics
aid in forecasting the power generated by wind turbines. A correlation heatmap is a visual
representation that presents the correlation between many variables in the form of a matrix, utilizing
color codes. By utilizing the Python programming language and the seaborn library, it is possible to
generate a helpful heatmap that displays the association between variables. The correlation
coefficients for various variables are displayed in a correlation table.

Conventional clustering and correlation analysis face difficulties when dealing with the vast
amount and low density of valuable information in big data. To improve energy forecasting, it is
recommended to use big data-driven correlation analysis with clustering. Conducting correlation
analysis among several measures such as temperature, dew point, relative humidity, wind direction,
wind gusts, and wind speed will aid in the selection of forecast parameters. These strongly connected
parameters contribute to the accurate prediction of the electricity produced by wind turbines.

The heatmap in Figure 13 displays the relationships between every conceivable combination of
values. It is a potent tool for detecting and visualizing patterns in data, as well as condensing large
amounts of data. A Python program, utilizing the Seaborn module, may generate a heatmap that
visually represents the association between variables [16].
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Feature Correlation Matrix
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Figure 13. Heatmap — Correlation Matrix.

When preparing a dataset for ML models, preprocessing stages include data standardization
and splitting. Consequently, all three regression models (linear regression, random forest regression,
and lasso regression) follow this preprocessing phase.

Standardization: This procedure guarantees that the dataset’s features (or variables) have a
mean of 0 and a standard deviation of 1 [20,21]. This phase is essential as numerous ML algorithms
exhibit enhanced performance when the data is normalized or standardized. The StandardScaler is a
prevalent technique that subtracts the mean and normalizes data to unit variance.

The standardization formula for each feature x is as follows:

z:(x—,u) / o s (4)
e 4 isthe mean of the feature.

e o isthe standard deviation of the feature.

Splitting the data: This pertains to partitioning the dataset into training and testing (and
occasionally validation) subsets [21]. The training set is utilized to develop the model, whereas the
testing set is employed to assess its performance on novel data. The validation set is also employed
to optimize the model without affecting the test set, particularly during hyperparameter optimization.
This mitigates overfitting and guarantees the model generalizes effectively to novel inputs. The data
is typically divided between 70% and 80% for training and 20% and 30% for assessment. The precise
ratio is contingent upon the task at hand and the extent of the dataset. After completing the data
purification procedure, the dataset (locl) is now available and ready to be used for extracting
meaningful insights.

3.2. Machine Learning and Wind Energy Forecast

ML algorithms have the capability to identify alterations in the surroundings and adjust their
actions accordingly. Regression analysis refers to this specific subset of categorization [22,23]. The
objective of this part is to structure the forecasting in the wind energy domain. Following the
technique or data analysis, ML is employed to predict the power energy output. This extensive
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dataset provides valuable insights on the correlations between various weather patterns and the
generation of wind energy. By using predictive models and analyzing meteorological data, it's
feasible to forecast power output.

Regression models are utilized to determine the correlation between alterations in one or more
explanatory variables and alterations in the dependent variable. To determine the regression model
that exhibits the greatest efficiency and the lowest mean square error (MSE), three regression models
will be used and compared [24]. The comparison of linear regression, random forest regression, and
lasso regression will yield valuable results and provide an opportunity to gain a more comprehensive
comprehension of each regression model and the capabilities of each other.

Regression is extensively used in the field of big data to build predictive models. These models
are designed to forecast certain outcomes for incoming data, rather than interpreting existing data.
Regression analysis is a reliable method for identifying the variables that have an impact on a specific
topic of interest [23]. Regression analysis allows for the accurate identification of the key aspects, the
ones that may be ignored, and the correlations between these elements.

e Dependent Variable: The dependent variable is the primary factor that one seeks to anticipate
or comprehend.

e Independent Variables: These variables are postulated to exert an influence on the dependent
variable.

The metrics included in the regression models are R?, Adjusted R?, MSE, RMSE, and MAE.

o R2(Coefficient of Determination): Assesses the model’s efficacy in elucidating the variance of the

target variable. Varies from 0 to 1, with proximity to 1 indicating a superior fit [24].

e  Adjusted R Analogous to R?, although modified to account for the quantity of predictors in the
model. Addresses overfitting; increases solely if additional predictors enhance the model.

e  MSE: The mean of the squared deviations between expected and actual values. Imposes more
penalties on larger faults compared to lesser ones.

e  RMSE: The square root of the MSE. Denotes the mean error in the identical units as the target
variable.

e  MAE: The mean of the absolute discrepancies between expected and actual values. More robust
to outliers than MSE or RMSE.

Overfitting in ML occurs when models are selected and hyperparameters are adjusted based on
test loss, which challenges the assumption that the model’s performance is independent of the test
set [25]. The ultimate classifier may exhibit high performance only on a certain sample of examples
within the test set, especially when method designers evaluate numerous models on the identical test
set [26]. K-fold cross-validation is used to assess the performance of predictive models. The dataset
is partitioned into k folds, each of which is a subset. As shown in Figure 14, for each of the k training
and assessment cycles, the model uses a distinct fold as the validation set. The model’s generalization
performance is measured by calculating the average of the performance metrics obtained from each
fold.

1 | 2 | 3 4 5 6 | 7 | e |kl Kk
|

1|23 4 |5 6 |7 | - |kl|k
000
< Training >
1| 2 (3 |4 |5 |6 |7 | |ki|lk

Figure 14. Diagram of K-Fold forward Cross-Validation.
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3.2.1. Linear Regression

Linear regression, sometimes known as LR, is a prevalent and extensively utilized modeling
technique in the fields of statistics and machine learning. The objective outcome is to establish a linear
relationship between the input and target variables. The model postulates a linear amalgamation of
the input features to predict the continuous output variable. In order to calculate the coefficients of
these input variables, several optimization approaches, such as least squares, are utilized [27]. LR is
an excellent option when there are linear relationships between variables due to its simplicity and
ease of comprehension. Multiple linear regression (MLR) is an appropriate form of linear regression
for this particular situation. MLR produces equations that establish a connection between several
input variables ( x, ) and a target variable ().

i (5)

Here, n represents the total number of input variables, W, denotes the coefficient for Xx,, and

y=w,+ wx, + 22?2+ w x, [

W, refers to the intercept. Regularization approaches, such as the inclusion of a penalty term on the

model’s input variables, can restrict the freedom of the input variables during the learning process,
hence improving the accuracy of predictions on data that was not used for training.

MLR is a statistical technique that estimates the value of a dependent variable based on multiple
independent variables. The objective of MLR is to construct a precise mathematical model that
accurately depicts the linear relationship between the independent variables ( x ) and the dependent
variable (y) being studied [28]. The primary MLR model is described as:

y=p+B8x++p x +& (6)

e vy isthe dependent variable.

e f3, istheintercept.

o The coefficients f,,.., B, represent the values assigned to the independent variables
Xy X,
The intercept, often known as the “constant,” in a regression model signifies the average value

of the response variable when all predictor variables in the model are set to zero. The intercept,
denoted as f,, is the estimated value of y when all xi values are equal to zero. The baseline level of

y (dependent variable) is established when the explanatory variables have no influence. The

coefficients represent the weights of each independent variable, indicating the extent to which each

variable contributed to the prediction.

The implementation of the linear regression technique, along with cross-validation results,

yielded the aforementioned metrics [24]:

e  R?(0.6199): This means that about 61.99% of the variance in the target variable can be explained
by the model’s features. This indicates a moderately strong fit, but there is still 38% of variability
in the target that the model does not explain.

o  Adjusted R? (0.6194): The Adjusted R? is slightly lower than the R? (0.6194 vs. 0.6199), which
accounts for the number of predictors. It’s close to R?, suggesting that the added features are
useful, but not overfitting.

e  MSE (0.0312): The low value of 0.0312 of MSE indicates that the model’s predictions are generally
close to the actual values, though it’s harder to interpret MSE without comparing it to the scale
of the data.

e  RMSE (0.1767): An RMSE of 0.1767 means that, on average, the model’s predictions are off by
around 0.18 units from the actual values.

e MAE (0.1389): An MAE of 0.1389 means that, on average, the model is off by 0.14 units, which
is slightly lower than the RMSE. This suggests the model is performing well with relatively small
errors.

Cross-Validation Results (Mean + Std): These results give insight into how the model performs
across multiple data splits during cross-validation. They help confirm the robustness of the model.
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e R2(0.6299 = 0.0082): The average R? across cross-validation is 62.99%, slightly higher than the
original R2. The standard deviation (+0.0082) indicates stable performance across different data
splits.

e  Adjusted R? (0.6290 + 0.0082): The adjusted R? is 62.90% with minimal variability, confirming
that the model generalizes well without overfitting.

e  MSE (0.0303 + 0.0007): The average error across cross-validation sets is 0.0303 with a small
standard deviation (+0.0007), showing that the model is consistent.

e RMSE (0.1741 £ 0.0021): The average RMSE is 0.1741, meaning the average prediction error is
about 0.174 units, with slight variability (+0.0021).

e MAE (0.1376 = 0.0015): The average MAE is 0.1376, indicating that, on average, the model is
0.1376 units off. The small standard deviation (+0.0015) shows good consistency.

The cross-validation results validate the model’s stability, as the metrics consistently align across
several data splits. Figure 15 displays the actual and predicted values, with residuals representing
the differences between the actual and predicted values in a model.

Actual vs. Predicted values Residuals vs. Predicted Values
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Figure 15. (a) Actual vs. Predicted values, (b) Residual vs. Predicted values.

3.2.2. Random Forest Regression

Leo Breiman [29] and Cutler Adele [30] proposed the Random Forest Regression (RFR)
algorithm in 2001 as an ML method for both regression and classification tasks. Categorical regression
tree (CART) techniques can be classified into two categories depending on the nature of the output
variables: regression decision trees and categorical decision trees. It is a flexible ML technique
employed for forecasting numerical values. In order to reduce overfitting and improve accuracy, it
uses the predictions of many decision trees [31]. Python’s machine-learning modules facilitate the
efficient optimization and implementation of this method.

Random forest regression involves adjustable parameters, similar to other ML techniques. Some
of the factors that influence a regression tree include the minimum number of observations at each
terminal node, the fraction of data to sample in each regression tree, the number of trees, and the
number of predictor variables randomly picked at each node [32]. Cross-validation is employed to
optimize these independent parameters. It is often recommended to set the number of decision trees
to a high value in order to achieve a steady minimum for the prediction error, rather than making

adjustments.
The equation for the generalization error and margin function in random forest is given as
follows:
PE" =P, (mg(X,Y)<0) (7)
where

mg(X,Y)=av I(h (X)=Y)- n]_iayx av I(h (X)=7) (8)
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The equation’s relevant term, av,, specifies the weighting of each tree’s vote to determine the

final classification or regression output.

Let X and Y represent random vectors. The margin function, mg, determines the average
votes for the correct output compared to other outputs. The function I(.) is an indicator function, and
h,_ represents the classifiers.

In Random Forest regression, RandomizedSearchCV is employed to optimize the model’s
hyperparameters by exploring a spectrum of potential parameter values [33]. The get_param_grid
method produces a dictionary of hyperparameters and their associated values for tuning in the
Random Forest model. Each key in the dictionary signifies a hyperparameter (n_estimators: the
number of trees in the forest, max_depth: the maximum depth of every tree in the forest,
min_samples_split: the minimum number of samples required to split an internal node,
min_samples_leaf: the minimum number of samples required to be at a leaf node) and the
corresponding list comprises various values that RandomizedSearchCV will investigate.

The implementation of the RFR technique, along with cross-validation results, yielded the
aforementioned metrics [34]:

e R?(0.76087): An R? of 0.76087 signifies that the model accounts for approximately 76.09% of the
variance in the target variable, which is commendable. The model effectively catches most
patterns within the data.

e  Adjusted R? (0.76060): Adjusted R? is closely aligned with the R? indicating that the model is
appropriately fitted without superfluous complexity.

e  MSE (0.01976): The MSE is notably low, signifying that the model’s prediction errors are minimal.

e  RMSE (0.14057): An RMSE of 0.14057 implies that, on average, the model’s predictions diverge
from the actual values by approximately 0.14 units, reflecting commendable performance,
particularly relative to the data’s scale.

e MAE (0.10439): An MAE of 0.10439 indicates that, on average, the model’s predictions deviate
by around 0.10 units. Given that MAE exhibits less sensitivity to outliers compared to MSE, it
indicates that the model is continuously producing relatively minor mistakes.

Mean Cross-Validation Results: Better knowledge of how the model spans several subsets of the
data comes from cross-valuation results. Often used against the single assessment on the test set, the
“Mean” values show the average across several folds (splits) of the dataset.

e  Mean Cross-Validation R? (0.64517): With an average R? value of 0.64517 —lower than the test
set R2—0.76087 —over the cross-valuation folds. This implies that, on average, during cross-
valuation, the model explains roughly 64.5% of the variation, whereas on the test set it explains
about 76% of the variance. Although this difference suggests some variation in model
performance over several data subsets, overall, the finding is still really strong.

¢  Mean Cross-Validation Adjusted R? (0.64509): Considered as lower than the Adjusted R? on the
test set (0.76060), the average Adjusted R? across cross-valuation is 0.64509. Like the R? score,
this indicates that although the model may be slightly overfitting the test data relative to its
performance on several validation sets, it generalizes somewhat reasonably.

¢  Mean Cross-Validation MSE (0.02943): Higher than the test set MSE (0.01976), the average MSE
among several cross-valuation folds is 0.02943. This implies that, on the test data, the model did
rather better than on the average validation folds. Still, the variation is not significant, suggesting
a rather steady performance.

¢  Mean Cross-Validation RMSE (0.17155): Higher than the test RMSE (0.14057), the average RMSE
for the validation sets is 0.17155. This suggests that, although still within a reasonable range, the
model’s mistakes during cross-valuation are rather greater than on the test set on average.

e  Mean Cross-Validation MAE (0.13200): Higher than the test MAE, 0.10439, the average MAE
during cross-valuation is 0.13200. Consequently, the model performs really well over several
data splits but makes somewhat more mistakes on the cross-valuation folds.

Cross-validation results reveal that, when tested on several subsets of the data, the model’s
performance is consistent but rather less. Although the lower cross-valuation R? (0.64517) points to
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some variation in the generalizing capacity of the model, the test and cross-valuation metrics differ
only in minor degree.

Currently, the evaluation of the model utilizing the most associated features, namely
‘windspeed_10m’, ‘windspeed_100m’, and ‘windgusts_10m’, yields the following results:
e  R2Score: 0.67234
e  Adjusted R? Score: 0.67223
e  MSE: 0.02707
e  RMSE: 0.16453
e MAE: 0.12603

By picking solely the most correlated features, the model may forfeit significant interactions or
information offered by less correlated variables. The optimal parameters chosen yielded a less
intricate model (fewer trees, reduced depth), which may not adequately depict the previous degree
of intricacy. A strong correlation may not necessarily reflect a feature’s complete impact on a model’s
performance, particularly in non-linear models such as Random Forests.

3.2.3. Lasso Regression

LASSO regression, also known as Least Absolute Shrinkage and Selection Operator regression,
is a commonly employed method for reducing the size of coefficients and choosing variables in
regression models. The computationally demanding nature of statistical software is no longer
concerning due to developments in processing power and integration. The objective of LASSO
regression is to identify the variables and corresponding regression coefficients that minimize the
prediction error of the model [35]. A constraint is imposed on the model parameters to ensure that
the total of the absolute values of the regression coefficients is smaller than a predetermined value
(A), hence causing the regression coefficients to be “shrunk” towards zero.

LASSO conducts regression analysis using the below equation, where N represents the sample

size of aand f, j denotes the parameter coefficients, arepresents the prediction.

N

~ (1 ’
(alﬂ):argmln(ﬁ;(yi_a_zj1xi,j><Bj) ] 9)

The provided formula can be compacted and represented in Lagrangian form, as illustrated in
the equation [36]. The equation below demonstrates that L1 regularization is the preferred method in
LASSO. L1 regularization incorporates the absolute value of feature coefficients as a penalty term to
regulate the impact of the features.

(&,,B’):argmin(%l ly—XB1E +A11A] |1j (10)

The implementation of the Lasso regression, along with cross-validation results, yielded the

aforementioned metrics [37]:

e R2(0.6110): This means that 61.10% of the variance in the target variable (y) is explained by the
Lasso regression model. It's a moderate grade, demonstrating that the model captures a good
percentage of the variability, however there is potential for improvement.

e  Adjusted R? (0.6108): The Adjusted R? value is quite close to the R? score (0.6108 vs. 0.6110). This
shows that the model’s performance does not diminish when accounting for the amount of
predictors used. Since the model isn’t overfitting with irrelevant variables, the adjusted R? stays
virtually the same as the regular R2.

e  MSE (0.0319): A lower MSE (0.0319) shows the model’s predictions are pretty close to the actual
values, while there are some inaccuracies.

e RMSE (0.1787): RMSE is 0.1787, suggesting on average, the predictions are wrong by around
0.1787 units of the target variable, which is a substantial amount of inaccuracy.

e  MAE (0.1410): With a MAE of 0.1410, the predictions average from the actual values by roughly
0.1410 units. This implies somewhat minimal error, although RMSE (which penalizes more
significant errors) indicates somewhat more fluctuation in the errors.

Cross-Validation Results for Lasso Regression:


https://doi.org/10.20944/preprints202409.2351.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2024 d0i:10.20944/preprints202409.2351.v1

21

e  Mean R? (0.6132 + 0.0533): With an average R? score of 0.6132—rather close to the test set R? of
0.6110—the 10 cross-valuation folds Although the performance of the model fluctuates
somewhat throughout the few cross-valuation folds, the standard deviation (+0.0533) indicates
minimal fluctuation that suggests consistency.

e  Adjusted R? (0.6108 + 0.0533): With a mean of 0.6108, the modified R? is also rather consistent; it
indicates that the model can generalize effectively over several folds and is not overfitting.

e Mean MSE (0.0313 + 0.0052): With a tiny standard deviation (+0.0052), the average MSE over the
cross-valuation folds is 0.0313, somewhat near to the test set MSE of 0.0319. This indicates that
the model is not unduly sensitive to several subsets of the data and is rather steady in
performance.

e  Mean RMSE (0.1769 +0.0722): Again, revealing a comparable average prediction error, the RMSE
from cross-validation (0.1769) is once more near to the test set RMSE of 0.1787. Though it’s still
reasonable, the standard deviation (x0.0722) indicates far more fluctuation in mistakes between
folds than in MSE.

e  Mean MAE (0.1399 + 0.0105): With cross-validation, the average MAE (0.1399) is rather close to
the test set MAE (0.1410). Furthermore, showing consistency in the prediction accuracy across
several subsets is the low standard deviation (+0.0105).

The cross-validation outcomes closely align with the test set findings, indicating that the model
generalizes effectively and is not overfitting the data. The minimal standard deviations for all
measures indicate the model’s stability across various data splits.

4. Results and Discussion

This comparison analysis assesses the efficacy of three regression models: Linear Regression,
Lasso Regression and RFR, utilized for wind power forecasting data. The performance of each model
is evaluated using standard statistical metrics, such as R? Adjusted R?, MSE, RMSE, and MAE.
Furthermore, cross-validation was conducted to assess the models’ stability and generalizability. The
following is a comprehensive comparison of the three regression techniques based on the data
acquired. Initially, the Random Forest Regression and Linear Regression attain exceptionally high R?
and Adjusted R? values, ranging from 0.98 to 0.99. Subsequent to preprocessing, it was observed that
ML algorithms exhibit overfitting issues. In conclusion, preprocessing reduces the risk of overfitting,
ensuring accurate predictions on both training and new data. The final results are presented in Table

4.
Table 4. Comparison of metrics of three regression models.
Models R? Adjusted Rz MSE RMSE MAE
Linear Regression 0.6199 0.6194 0.0303 0.1741 0.1376
Random Forest Regression ~0.7608 0.7606 0.0294 0.1715 0.1320
Lasso Regression 0.6110 0.6108 0.0313 0.1769 0.1399

4.1. Performance Metrics on Test Set

e R? and Adjusted R* Random Forest exhibits enhanced predictive capability, evidenced by
significantly elevated R? and Adjusted R? values relative to Linear and Lasso models. Both Linear
and Lasso regressions exhibit comparable performance; however, Lasso slightly underperforms
Linear Regression due to the effects of regularization. On Figure 16, the blue bar represents the
RFR, the orange bar represents the LASSO regression, and the green bar represents Linear
regression.
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Comparison of Regression Models by R? and Adjusted R?
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B Random Forest
mmm Lasso Regression
B Linear Regression
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Figure 16. Comparison of Regression Models by metrics (R? and Adjusted R?).

e  MSE, RMSE, and MAE: The Random Forest model exhibits significantly lower MSE, RMSE, and
MAE, underscoring its enhanced accuracy and diminished prediction errors. Linear Regression
and Lasso have similar performance, while Lasso demonstrates somewhat inferior outcomes
due to its penalization of certain characteristics. The differences are minimal, as evidenced by
the proximity of each bar’s heights in Figure 17, but they have a significant impact.

Comparison of Regression Models by Metrics

I Random Forest
[ Lasso Regression
I Linear Regression

0.175

0.150
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Figure 17. Comparison of Regression Models by metrics (RMSE, MAE, MSE).

4.1. Cross-Validation Results

e R?and Adjusted Rz The Random Forest algorithm has improved performance on average over
cross-validation folds, however it displays significantly greater variability than on the test set.
Linear Regression exhibits marginally superior performance compared to Lasso in cross-
validation, although the disparity is negligible.

e  MSE, RMSE, and MAE: Random Forest consistently surpasses both linear and Lasso regressions
in terms of MSE, RMSE, and MAE throughout cross-validation folds, exhibiting a narrower error
range. Linear Regression exhibits marginally superior cross-validation performance compared
to Lasso; yet, both models demonstrate considerable stability with minimal discrepancies in
error.
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4.1. Model Complexity and Interpretability

e  Linear Regression: Linear regression is the most elementary of the three models, yielding highly
interpretable outcomes with direct coefficients that represent the correlation between features
and the target variable. Nonetheless, it may encounter difficulties in capturing intricate, non-
linear interactions.

e Random Forest Regression: Random Forest is an advanced, non-linear model that identifies
relationships among variables and accommodates intricate patterns within the data.
Nonetheless, it compromises interpretability for enhanced efficiency, as the aggregation of
decision trees complicates the understanding of each feature’s individual impact.

e Lasso Regression: Employs regularization to penalize insignificant characteristics, hence
potentially streamlining the model by removing unimportant variables. This enhances
interpretability and mitigates overfitting. Nonetheless, it fails to account for non-linearity in the
data.

5. Conclusions

Amidst the worldwide transition to sustainable energy sources, wind power has become a
crucial alternative to conventional fossil fuels. Wind farms, consisting of multiple turbines, play a key
part in the production of sustainable energy. This article has conducted an in-depth investigation into
the possibilities for transformation by combining IoT technology and machine learning in the wind
energy industry. The research has demonstrated the capacity to gather crucial data from wind
turbines by employing IoT devices in the wind energy industry, which is then converted into practical
insights. The successful incorporation of weather data obtained from the IoT into the prediction of
wind power generation has effectively connected meteorological observations with data on wind
energy production. Moreover, the utilization of diverse machine learning methodologies can
facilitate accurate prediction of energy generation. The comparison of Linear, Random Forest and
Lasso Regression models provides insight into their distinctions, enhancing the understanding of
their respective applications and identifying the strengths, weaknesses and suitability of each model.
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Abbreviations

The following abbreviations are used in this manuscript:
Adjusted R? Adjusted Coefficient of Determination
ANOVA Analysis of Variance

ANNs Artificial Neural Networks
AWGN Additive White Gaussian Noise
CART Categorical Regression Tree

CM Configuration Management
CMS Content Management Systems
CNNs Convolutional Neural Networks
CPs Cyber-Physical System

CRM Customer Resource Management
ERP Enterprise Resource Planning
IoE Internet of Everything

IoT Internet of Things

kNN k-Nearest Neighbors

KPI Key Performance Indicator
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LCoE Levelized Cost of Energy
LR Linear Regression
LST™M Long Short-Term Memory
MAE Mean Absolute Error
M2M Machine to Machine
ML Machine Learning
MLR Multilinear Regression
MSE Mean Squared Error
R2 Coefficient of Determination
RFR Random Forest Regression
RMSE Root Mean Squared Error
RNNs Recurrent Neural Networks
SCADA Supervisory Control and Data Acquisition
WECS Wind Energy Conversion System
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