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Abstract: With the improvement of computer, artificial intelligence, information technology and other technical
levels, the relationship between man-machine environment systems is more complicated and diversified. The
optimization, iteration and development of the new generation of intelligent equipment system and human-
computer interaction interface put forward higher requirements for ensuring the safety of personnel,
improving the efficiency of human-computer interaction and improving the efficiency of the system. Such as
intelligent cabin adaptive cognitive decision aid system, how to adopt intelligent information display and
human-computer interaction, optimize information processing, strengthen situational awareness; How to
effectively present information and improve the efficiency of human-computer interaction, so that the system
has good security, applicability and maximize its effectiveness; How to deal with man-machine matching and
man-machine collaboration problems, so as to improve the efficiency of man-machine/unmanned collaborative
work. Human factors throughout the life cycle of equipment systems must be fully considered. The human
factor is considered in the system design, so that people, machines and the environment can work together and
adapt to each other, so as to achieve benign interaction and feedback between people and equipment and
interface and complete the full transmission and communication of human-machine intelligent interaction
information. The development of new aircraft human-computer interaction systems combined with new
technological methods has also gradually changed the role of pilots and staff. From the system operator
gradually into the monitor and decision maker, especially with the improvement of the degree of intelligent
flight, information technology, advanced complex airborne equipment is increasing, the amount of information
that operators need to deal with is also increasing, and the allowed time for judgment and decision is very
short, and the mental resources that pilots bear are gradually rising. As the mental load is a key factor affecting
the allocation of cognitive tasks, when encountering emergency situations, the mental load overload caused by
the increase of information processing tasks often occurs, which seriously affects the task performance of
operators, physical and psychological comfort and flight safety, and thus affects the efficiency and safety of the
entire aircraft man-machine system. This requires us to conduct real-time analysis of human-computer

interaction situational awareness, especially the individual cognitive state as an uncontrollable factor.

Keywords: artificial intelligence; physiological fatigue; pilots; flight safety

1. Introduction

In recent years, Artificial Intelligence (AI) technology has achieved rapid development. As an
important branch of computer science, artificial intelligence has been widely used in various fields
through advanced methods such as deep learning and big data analysis and has solved many
complex problems. In the modern war, the battlefield situation shows a three-dimensional and multi-
dimensional development direction, the main task of the pilot gradually shifts from flight control to
situation awareness, and the pressure of situation awareness increases sharply. The multi-
dimensional situation information and the accelerating rhythm of the battlefield make the mental
load of the pilot constantly increase and challenge the cognitive limit of the pilot. In this environment,
pilots are prone to cognitive overload, which leads to perception and decision-making errors,
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affecting the pilot's mission performance. The global promotion and application of this technology
marks its important position in modern science and technology.

In order to ensure the safe application of Al technology in aviation, the Federal Aviation
Administration (FAA) issued the Roadmap for Artificial Intelligence Safety Assurance in July 2024.
It's a 31-page document outlining the U.S. aviation safety regulator's approach to safely integrating
new artificial intelligence technologies (Al) in aviation. In addition to ensuring that Al is safe, the
FAA also seeks to identify ways that Al can make the industry safer, according to the policy
document. This article will provide an in-depth interpretation of the roadmap, exploring the
principles, objectives, action plans, and future prospects behind it. As a highly technology-
concentrated industry, aviation involves a large amount of data analysis and calculation, so it has
become an important field for the application of artificial intelligence technology. The improvement
of aviation safety and the optimization of flight efficiency need to be realized by the advanced
technology of artificial intelligence. This paper will introduce the basic concepts, technical advantages
and specific applications of artificial intelligence in the field of aviation and provide references for
researchers in related fields. The effective integration of human-machine intelligence depends on the
real-time monitoring and adjustment of the pilot's status, so a comprehensive understanding and
monitoring of the pilot's ability status is the basis for the realization of intelligent cockpit.

In this paper, the pilot fatigue state as the starting point, combined with theoretical analysis and
empirical research, flight fatigue monitoring technology and its relationship with situational
awareness. A multimode flight fatigue measurement method combining ECG and eye indexes is
proposed. Based on the analysis of the characteristics of cabin environment and physiological
measurement technology, the study of physiological index extraction and analysis methods,
combined with the simulation flight empirical experiment, the method improves the reliability of the
measurement process through multi-mode fusion, and can be used to achieve lightweight and non-
invasive flight fatigue detection. Through the analysis and testing of these technologies, the aim is to
provide scientific risk mitigation strategies for aviation safety and promote the technological progress
and application development in related fields.

2. Related Work

2.1. Artificial Intelligence AIDS the Aviation Industry

In recent years, the rapid development of Al technology has brought unprecedented innovation
potential to the aviation sector. From offline applications to process control to aircraft autonomous
flight, Al technology has shown strong application prospects. However, since Al systems often
achieve their performance through learning rather than traditional design methods, this makes them
a huge challenge in terms of security assurance. Traditional aviation safety assurance techniques are
based on the designer being able to fully explain every aspect of the system design, but this approach
does not apply to Al systems. Therefore, how to ensure the safety application of Al in aviation has
become an urgent problem to be solved. In developing the Al roadmap, the FAA consulted with
industry officials and other regulators, including the European Aviation Safety Agency (EASA),
which published its first Al roadmap in 2020. In May 2023, EASA published a revised and expanded
Al Roadmap 2.0, and this year the agency published a concept paper that provides new guidelines
for companies looking to certify Al systems. The FAA, in its version of the Al roadmap, lays out a set
of core principles that will guide its approach to developing Al safeguards.
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Figure 1. EASA published a revised and expanded Al Roadmap 2.0.

For example, it recommends that regulators leverage existing aviation safety requirements and
take a step-by-step, safety-focused approach to implementing Al, starting with risk-reduction
applications such as pilot assistance systems to reduce workload and crew numbers. The document
also identifies some of the key actions that must be taken to enable the safe use of Al and the use of
Al to enhance security. These actions include working with industry and government agencies to
educate and train FAA employees on Al technologies, as well as conducting ongoing research to
evaluate the effectiveness of its approach to safety assurance. The difference between EASA and FAA
in the roadmap is the ethical considerations. The FAA document states that "the ethical use of Al is
outside the scope of this roadmap,” while EASA writes in its version that "the responsible, ethical,
social, and social dimensions of Al should also be considered."
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Figure 2. Safety Agency (EASA) is pleased to announce the release of a 260-page report as part of his
research project MLEAP.

According to EASA (Figure 2), ethical guidelines are essential to ensure the credibility of Al and
to gain social acceptance for the aviation sector and Al in general. While the FAA's roadmap does not
directly provide any ethical guidance, the document refers to recent legislation addressing this issue,
including President Joe Biden's October 2023 Executive Order 14110 (" The Safe, Secure, and Trusted
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Development and Use of Artificial Intelligence "). "This roadmap has been developed within a
broader, evolving national framework to establish norms for the safe, secure, and trusted
development and use of Al including, where appropriate, the adoption and regulation of Al across
the federal government," the FAA document states. EASA's roadmap anticipates a timeline for the
various phases of Al adoption, starting with pilot assistance and human-machine collaboration this
decade and reaching the market for fully autonomous commercial airliners around 2050. However,
the FAA's roadmap does not speculate on the pace of Al adoption or the timing of any Al-related
milestones. Both the FAA and EASA consider their respective roadmaps to be "living documents"
that are regularly updated by the agencies as Al technology advances.

2.2. Traditional Pilot Fatigue Monitoring Technology

Flight fatigue is a physiological state that affects the cognitive function and operational
performance of pilots. Monitoring flight fatigue can detect the deterioration of pilots' abilities in time,
and take appropriate countermeasures to maintain pilots' mission performance and reduce the risk
of flight accidents. Domestic and foreign studies have proposed many effective flight fatigue
monitoring technologies, mainly based on EEG, electrocardiogram or eye tracking technology for
real-time evaluation of pilot fatigue state.

A large number of studies have found that EEG can achieve accurate flight fatigue monitoring.
Eeg signals are highly sensitive to people's alertness and cognitive state and are known as the "golden
indicator" of fatigue and alertness. Wu et al. combined four types of fatigue indicators extracted based
on EEG power spectrum features and a deep sparse shrinkage self-coding network capable of
learning more local fatigue features to realize automatic classification of flight fatigue states in
simulated flight environments. Through comparison, it was found that the classification performance
of its model was superior to some other common classification models. Sauvet et al. realized fatigue
automatic classification based on single EEG channel by combining the automatic classification
algorithm and the mean value characteristics of EEG alpha wave, beta wave and theta wave
components, aiming at the low alertness fatigue state generated during long-term flight. Liu et al.
(2024) investigate the use of machine learning techniques to predict dangerous flight weather
conditions. Their study emphasizes the integration of diverse machine learning models to enhance
the accuracy and reliability of weather forecasts essential for flight safety. The researchers utilize
historical weather data alongside real-time atmospheric measurements to train predictive models
capable of identifying hazardous weather patterns. By employing advanced algorithms, their
approach offers improved predictive capabilities compared to traditional meteorological methods.
This research highlights the potential of machine learning to provide more accurate and timely
weather predictions, thereby aiding pilots in making better-informed decisions and mitigating the
risks associated with adverse weather conditions during flights.

Qiu Xuyi et al. proposed a convolutional neural network model based on Gauss Newton online
variational method, which can achieve flight fatigue classification ability superior to other deep
learning models based on pilot brain power spectrum features. Luo Yingxue et al. built fatigue state
index and Gamma deep belief network based on EEG instantaneous frequency domain information
to achieve accurate identification of flight fatigue state.

Several studies have confirmed the feasibility of ECG based flight fatigue monitoring. Cheng et
al. conducted a sleep deprivation experiment on 137 trainee pilots for up to 40 hours, combined with
a number of physiological measurements including electrocardiogram, and found that the time
domain and frequency domain indexes of heart rate variability were significantly correlated with
pilots' subjective mental fatigue scores, providing direct evidence for the correlation between
electrocardiogram indexes and pilot fatigue. In addition, several other studies have found that ECG
indicators can reflect the workload and stress levels of pilots, providing indirect evidence for the
correlation between ECG and flight fatigue.

For example, Alaimo et al. studied the operational error index subjective workload index and
heart rate variability index of 23 professional pilots during takeoff and landing stages of simulated
flight, and found the complex nonlinear relationship between heart rate variability index and pilots'
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subjective workload, and proposed that heart rate variability is an ideal index for real-time
monitoring of pilots' workload. In their study, Liu et al. (2024) explore the application of Back
Propagation Neural Networks (BPNN) for predicting flight accidents. The authors develop a
predictive model that leverages historical accident data to identify patterns and factors contributing
to flight accidents. By analyzing various flight parameters and operational conditions, their BPNN-
based approach aims to enhance the predictive accuracy of potential accident scenarios. The study
demonstrates the effectiveness of neural networks in processing complex datasets to forecast risks
and improve safety measures. This research underscores the value of integrating neural network
techniques into aviation safety protocols, offering a data-driven approach to accident prediction and
risk management.

Mansikka et al. analyzed the ECG indicators and task performance of fighter pilots when they
performed simulation flight experiment tasks with different task requirements and found that heart
rate variability and heart rate indicators were sensitive to task demands and workload and could
detect changes in pilot workload before performance deteriorated significantly. By analyzing the
changes of heart rate variability when pilots perform different task difficulty simulated flight tasks
in flight simulators, it is found that both time domain and frequency domain indexes of heart rate
variability can reflect the task pressure of pilots, and pilots perform better when the pressure is light.

2.3. Fatigue Evaluation Method Based on Subjective Scale

Subjective fatigue or sleepiness is the main form of mental fatigue, so analyzing the operator's
subjective fatigue is an effective fatigue evaluation method. The quantification of subjective fatigue
feelings usually relies on the fatigue scale, which requires the operator to score the overall fatigue
level or the further subdivided fatigue related function level according to the evaluation mechanism
corresponding to the scale. The score can be further used in the analysis and evaluation of the fatigue
state of the operator. Because of the variety of fatigue scales

In this paper, the following four most representative scales are sorted out and selected for further
analysis. (1) The Stanford SleepinessScale (SSS) is a simple and easy to use subjective fatigue
evaluation scale, which focuses on evaluating the operator's mental state from two perspectives of
sleepiness and alertness. The scale includes 7 grades ranging from 1 to 7. The higher the score, the
stronger the subjective fatigue feeling. Each score corresponds to a paragraph describing the
corresponding fatigue representation. For example, the corresponding of a score of 1 is described as
"energetic and alert”, and the corresponding of a score of 7 is described as "about to fall asleep and
have a feeling of dreaming".

(2) the karolinska sleepiness scale (KarolinskaSleepinessScale, KSS) dimension and Stanford
sleep scale are similar, are focused mainly on alertness and drowsiness feel [8]. The difference with
the Stanford sleepiness Scale is that the scale is more finely graded, divided into 9 scales ranging from
1 to 9. For example, a score of 1 corresponds to "extremely alert” and a score of 10 corresponds to
"extremely sleepy and unable to stay awake."

Get in Touch

Figure 3. Driver sleepiness monitoring framework.
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(3) Sam-Perellifatiguescale (SPF) is a subjective scale consisting of 7 evaluation scales ranging
from 1 to 7 points. It was created by two researchers, Sam and Perrelli. At the beginning of its creation,
it was designed to evaluate the fatigue feelings of aircraft crew members under different work and
rest conditions. The main difference between this scale and the above two sleepiness scales is that the
text description of different fatigue score levels in this scale is more oriented to the overall fatigue
feeling of the operator, rather than only for alertness and sleepiness.

(4) The visual analog scale (VAS) is usually presented in the form of a long line, only the first
and last ends are marked with the corresponding fatigue state of the text description, respectively,
representing the weakest and strongest fatigue feeling, operators need to mark their current fatigue
degree based on their own feelings in the appropriate position on the line 40]. For example, one end
of the line is marked 0, indicating no fatigue at all, the other end is 10, indicating extreme fatigue, and
the middle part indicates different degrees of fatigue. The advantage of visual analog scale is that its
implementation process is very convenient and it has high internal validity.

The evaluation mechanism and applicable scope of different scales are different. The Karolinska
sleepiness Scale and the Stanford Sleep Scale are suitable for evaluating the sleepiness oriented
fatigue state, while the Sam Perrelli fatigue scale and the Visual Analog Scale are more suitable for
evaluating the tiredness oriented fatigue induced by work tasks, which is more consistent with the
fatigue state concerned in this study. However, it is not feasible to rely on subjective scales for real-
time monitoring of flight fatigue, because all subjective scales can only be implemented with the
participation of subjects themselves, which will cause certain interference to the task at hand.
Moreover, the subjective measurement can not be carried out in real time, which may cause the
fatigue monitoring is not timely. Therefore, this study will use the subjective measurement results as
the evaluation basis to test other fatigue monitoring techniques that are more available.

2.4. Fatigue Evaluation Method Based on Physiological Measurement

Physiological measurement refers to the evaluation of the fatigue state of the operator based on
the physiological data of the human body and its mapping relationship with the fatigue level. The
advantage of physiological measurement over subjective or performance evaluation is that it is not
only sensitive to fatigue, but also that its implementation can be performed automatically by the
system without operator involvement. For example, the DDREM safety system that has been put into
use by Hyundai Motor Company monitors the fatigue state of drivers based on eye data. At present,
the commonly wused fatigue physiological measurement techniques mainly include
electroencephalogram, electrocardiogram and eye tracking.

(1) Electroencephalography (EEG) is widely regarded as the "gold standard" for evaluating
driver and pilot fatigue. The application of EEG technology in the field of human factors originated
from a 1930 study by Berger et al. [44], who reported significant differences in EEG signals during
mental activities and resting states. Subsequent studies further confirmed the high correlation
between EEG and mental states such as mental activity, alertness and emotion, and frequently
appeared in fatigue monitoring studies in flight, driving and other operational fields. Eeg technology
mainly records the voltage changes generated by the ionic current of neurons during brain activity
through a physiological electrode attached to the surface of the scalp, via Delta waves

Sita wave, alpha wave and beta wave are the characteristics of the brain wave segment to analyze
the state of human mental activity. (2) Electrocardiography (ECG) is a very important fatigue
evaluation technology, which generally detects physiological voltage changes caused by heartbeat
activity through physiological electrodes placed on the skin surface. Ecg technology originated in the
19th century as a standard measurement tool for assessing a patient's condition. As time goes by,
more and more studies begin to pay attention to the correlation between ECG and mental states such
as workload and mental fatigue [45], and a large number of mathematical methods have been
introduced to analyze the dynamic rule of heartbeat activity. At present, a large number of research
reports in the field of neurophysiology have demonstrated the sensitivity of ECG indicators,
including heart rate and heart rate variability, to mental fatigue of workers! . In addition, ECG
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measurement has attracted more and more attention because of its advantages of convenience and
high efficiency.

(3) EyeTracking (ET) studies changes in central nervous system function by measuring changes
in eye and visual system function, and then reflects changes in individual alertness and cognitive
status. There are a variety of measurement methods, mainly based on the method of machine vision
through the camera to collect eye images, and the application of image recognition algorithm to
extract eye dynamic indicators. Eye tracking indexes commonly used in fatigue evaluation include
blinking, eyelid closure, pupil diameter, saccade and fixation. Due to the excellent detection validity
and non-invasive features of eye tracking technology, a number of eye tracking systems have been
developed to monitor the operator's functional status, such as the Co-Pilot system for eyelid closure
monitoring and the Optalert system based on blink characteristics monitoring.

3. Al Based Fatigue Monitoring Systems for Fighter Pilots

The fatigue level of fighter pilots seated in aircraft cockpits is a very critical factor for combat
missions. Timely response can negate unpleasant G-LOC incidents. The Al based aircrew fatigue
monitoring could help aircrew to circumvent the situation towards achieving flight safety. This
cognitive system can be designed as a cockpit-centric one or a ground based autonomous system
supported by distributed databases and edge computing. Even medical specialists and airworthiness
certification engineers can be kept in the loop along with the operational commander in controlling
the aircraft mission. Safe recovery of the aircraft can be done in an autonomous mode if the pilot
experience a G-LOC. Such overrides could keep the aircrew safe and help the safe recovery of aircraft.

3.1. Wearable Biometric Sensors and Smart Flight Gear

Today, wearable mission suits with integrated sensors are very common. By wearing biosensor
devices, the crew's heart rate, blood pressure, oxygen levels and body temperature will be monitored
in real time. By using algorithms, we can analyze biometric data patterns and detect anomalies or
signs of stress, fatigue or dehydration during flight. This will help aircrews and ground controllers
aid decision-making during combat missions and under extreme stress conditions. We can
implement Al-driven analytics to assess the physical condition of fighter pilots during flight,
considering gravity and other factors that trigger stress. Every crew member's health is different, so
the (machine learning) ML and algorithms relevant to each crew member may be unique.

3.2. Cockpit Environmental Condition Sensor

In addition to biometric sensors, the environmental conditions in the cockpit are equally
important, as they can affect the health of the crew. Environmental sensors installed in the cockpit
measure cabin pressure, temperature and humidity for comprehensive analysis. Ai can correlate
environmental data with pilot health metrics to give a comprehensive read on a pilot's health in real
time.

3.3. Cognitive Performance Monitoring

The alertness and response of the crew to various situations needs to be measured and
monitored simultaneously. Ai can assess real-time cognitive performance by analyzing neural signals
or monitoring eye movements and reaction times. We can implement machine learning models to
detect changes in the crew's cognitive response that could indicate fatigue or stress. A similar analysis
can also be performed before a crew member enters the cockpit for medical treatment. A computer
vision system that tracks eye movements and blinking patterns would certainly be helpful in
understanding the alertness level of the flight crew.

3.4. Flight Crew Voice/Sound Analysis

The language of the crew can also be analyzed to find out the level of fatigue. By applying natural
language processing (NLP), a pilot's speech patterns and voice can be analyzed to identify signs of
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stress or fatigue, and the system can give early warnings of health conditions. Artificial intelligence
systems that can provide real-time feedback or alerts based on changes in voice features and patterns.
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Figure 4. Fatigue state based on voice/voice analysis of flight crew.

3.5. Predictive Health Analysis

Every possible disaster can be predicted by teaching the AI system the history of past
events/events. We can easily implement predictive modeling using Al to predict potential health
issues or fatigue-related issues before upgrading. Taking into account factors such as sleep patterns,
previous flight data, pre-flight food or drink, family/personal issues, and the overall health history of
the crew, an accurate prediction can certainly be made. Integrating the Al system with the crew
scheduling system and taking into account factors such as circadian rhythms, sleep patterns and
workload distribution will make the system more robust.

3.6. Emergency Response System

If the Al-based crew health monitoring system is integrated into the onboard external
communication system, the system can automatically trigger an emergency response to crew health
and initiate communication with ground control. We can also implement features such as ground
reporting of abnormal health parameters and other health emergencies. And through HMI, well-
designed HMI will promote intuitive and user-friendly interfaces that enable pilots to easily access
and interpret their health data. Use Al to provide personalized advice to maintain optimal health and
supplement data as needed to the various command formations and aircrews stationed at the base.
A well-designed user interface will help the crew make logical decisions at critical moments. A
similar user interface can be replicated to a ground control center to act in an emergency.

3.7. Integration with Flight Navigation Systems

Integrating the health/fatigue monitoring system with the avionics of the fighter aircraft in real
time will be a challenging task. Upgrading the fatigue monitoring system to a decision support
system and then to a control system to navigate the aircraft safely to recovery/landing in autonomous
mode in the event of a medical emergency is one of the most popular features. The use case is
currently available for many autonomous military UAVs. During flight, maintaining the stability of
the aircraft and fail-safe within the flight envelope becomes the responsibility of the system.
Combined with pilot privacy concerns, there is a need to establish the security of Al systems by
providing the necessary encryption for data exchanged between ground stations and aircraft in the
electromagnetic spectrum. Sensitive health data collected from pilots is sometimes kept secret. We
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can implement robust encryption standards and data protection regulations at the development stage
to ensure flight safety.

3.8. Artificial Intelligence Unit Feedback Integration

Reinforcement learning (ML) is recommended for many military applications to continuously
improve established Al systems. We need to collect feedback from the crew on a regular basis to
improve and refine the existing Al algorithms. User experience and input are valuable for improving
the effectiveness of the system. Due to existing flight safety regulations, obtaining permission to
operate an Al-integrated system will be challenging. The extent to which the DGCA/CEMILAC
(supervisory body) can approve the transfer of decision-making power from humans to machines is
yet to be ascertained. Ai-based fatigue monitoring systems need to ensure compliance with all
aviation regulations and standards.

4. Conclusions

In combination with technologies such as artificial intelligence and machine learning,
implementing a crew fatigue monitoring system will not only improve the accuracy and efficiency of
monitoring, but also bring a range of far-reaching benefits. Artificial intelligence and machine
learning techniques were able to process and analyze large amounts of physiological and behavioral
data from the flight crew in real time. These data include heart rate, brain waves, behavior patterns,
and more, and through sophisticated algorithmic models, the system can recognize small signs of
fatigue and give an early warning before the problem becomes serious. For example, machine
learning models can learn early signals of fatigue from historical data and use real-time data to make
dynamic predictions, effectively reducing safety hazards caused by fatigue. In addition, Al
technology enables personalized fatigue management based on individual differences of the flight
crew. By analyzing the physiological characteristics and work habits of different crew members, the
system can develop targeted fatigue prevention measures and work arrangements. This personalized
management strategy can significantly improve the practical application effect of fatigue monitoring
system, and better meet the needs of different personnel.

Machine learning technology enables the fatigue monitoring system to have the ability of
adaptive optimization. As the amount of data increases and technology advances, the system is able
to continuously learn and update its algorithms, gradually improving the accuracy of predictions
and the reliability of monitoring. This self-optimizing capability not only improves the long-term
performance of the system, but also ensures its adaptability in a constantly changing work
environment. Making this happen requires close collaboration between aviation experts, data
scientists, and technology developers. Aviation experts provide domain expertise to ensure systems
are designed to meet flight safety requirements; Data scientists are responsible for the collection and
analysis of data and the development of effective algorithmic models; The technical developer
implements the technical development and deployment of the system. Only through this
multidisciplinary cooperation can we ensure the comprehensiveness and efficiency of the system.

In the long term, the integration of Al and ML technologies will not only improve flight safety,
but also drive technological advances across the aviation industry. The successful application of these
systems will provide valuable experience for security management in other fields, while promoting
the further development and application of related technologies.

In summary, the application of artificial intelligence and machine learning technology to crew
fatigue monitoring not only provides an unprecedented guarantee for flight safety, but also promotes
the progress of technology and the expansion of application fields. Through continuous optimization
and upgrading, these technologies will become an important pillar to improve aviation safety.
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