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Optimizing E-commerce with Multi-Objective
Recommendations Using Ensemble Learning

Jiaxin Lu

Trine University, Phoenix, USA; jasonlu@vip.126.com

Abstract: In the dynamic landscape of online shopping, predicting user behaviors such as clicks, cart additions,

and orders is crucial for optimizing sales strategies. Traditional recommendation systems often focus on a single

objective, limiting their effectiveness in a multifaceted e-commerce environment. This article proposes a multi-

objective recommendation system that leverages previous events in user sessions to forecast these key metrics,

addressing challenges such as imbalanced positive and negative samples, varying session lengths, and the need

for effective sampling techniques. Our approach integrates LightGBM, XgBoost, and Recbole GRU4Rec through

ensemble learning, combining the strengths of these models to enhance prediction performance. Extensive

evaluations demonstrate that our model outperforms existing methods, offering significant improvements in

accuracy and robustness. This work provides a comprehensive solution for online retailers to better predict user

behaviors and optimize their sales strategies, ultimately enhancing customer satisfaction and business outcomes.

Keywords: E-commerce; multi-objective recommendation system; user behavior prediction; ensemble learning;

sample imbalance

1. Introduction

The rapid evolution of e-commerce necessitates advanced recommendation systems to enhance
user experience and increase sales. Traditional systems focus on a single objective, such as click
prediction. However, real-world online shopping involves multiple actions, including clicks, cart
additions, and orders. Accurately predicting these actions is crucial for online retailers to optimize
their marketing strategies and sales funnels.

User behavior in online shopping is complex, influenced by factors like product attributes, user
preferences, and contextual information. Traditional single-objective systems often fail to capture this
complexity, leading to suboptimal performance. Our research introduces a multi-objective recommen-
dation system that predicts clicks, cart additions, and orders by leveraging the sequential nature of
user interactions.

E-commerce data presents significant challenges, particularly the imbalance between positive
and negative samples. Click events occur more frequently than order events, creating a skewed data
distribution that can bias model training. Additionally, many user sessions are short, complicating the
extraction of meaningful behavior patterns. Another challenge is the varying length of user sessions.
Training sessions in our dataset are, on average, four times longer than test sessions, with some sessions
extending up to 500 interactions. This discrepancy can lead to overfitting, where the model performs
well on training data but fails to generalize to shorter sessions.

To address these challenges, we propose a model integrating LightGBM, XgBoost, and Recbole
GRU4Rec through ensemble learning. LightGBM and XgBoost are gradient boosting frameworks
known for handling structured data and capturing complex non-linear relationships. These mod-
els manage class imbalances effectively with techniques like weighted loss functions and balanced
sampling. Recbole GRU4Rec, a recurrent neural network variant, excels at capturing temporal de-
pendencies in user interactions, making it suitable for modeling the sequential nature of e-commerce
sessions.

Our methodology includes extensive data preprocessing to address sample bias and sampling
issues, such as oversampling underrepresented events and undersampling overrepresented events.
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Feature selection identifies the most relevant features for predicting each type of user action, reducing
model complexity and improving performance.

Our model has demonstrated superior performance in evaluations, making it a valuable tool for
enhancing e-commerce sales strategies. By accurately predicting user behaviors such as clicks, cart ad-
ditions, and orders, online retailers can optimize their marketing efforts, personalize user experiences,
and ultimately increase sales. This research advances the field of e-commerce recommendation systems
by addressing the limitations of traditional single-objective models and presenting a comprehensive,
multi-objective approach that improves prediction performance and practical applicability.

2. Related Work

The development of recommendation systems has been a focal point in e-commerce research, with
various models proposed to enhance prediction accuracy and user satisfaction. Neural Collaborative
Filtering (NCF) employs neural networks to model latent features, improving recommendation perfor-
mance compared to traditional methods. He et al. [1] demonstrated that NCF could effectively capture
complex user-item interactions, resulting in more accurate and personalized recommendations.

Session-based recommendations have advanced with recurrent neural networks (RNNs), which
capture sequential dependencies in user behavior. Hidasi et al. [2] introduced an RNN model for
session-based recommendations, showing significant improvements in handling user sessions and
predicting the next interaction. However, RNNs can struggle with long-term dependencies and require
substantial computational resources, making them challenging to deploy at scale.

Gradient boosting frameworks like Xgboost and LightGBM have proven effective in handling
structured data and capturing complex non-linear relationships. Chen and Guestrin [3] highlighted
Xgboost’s scalability and efficiency in large-scale data processing, while Ke et al. [4] demonstrated
LightGBM’s superior performance in terms of speed and memory usage. These models are particularly
effective in managing class imbalances and handling missing values, but they may not effectively
capture sequential data dependencies.

Deep learning techniques have further enhanced recommendation systems. Covington et al. [5]
developed deep neural networks for YouTube recommendations, showcasing the power of deep learn-
ing in handling large-scale recommendation tasks. This model significantly improved the relevance of
video recommendations by leveraging vast amounts of user interaction data. Similarly, Sun et al. [6]
proposed BERT4Rec, a model leveraging bidirectional transformers to capture sequential patterns in
user behavior, yielding state-of-the-art results in sequential recommendation tasks.

Content-based approaches, often integrated with collaborative filtering, have addressed some
limitations of each method. Zhang et al. [7] provided a comprehensive survey on deep learning-based
recommender systems, emphasizing the integration of user and item features through neural networks.
This method allows for a more nuanced understanding of user preferences and item characteris-
tics, improving recommendation accuracy. However, it requires extensive feature engineering and
computational resources, which can be a limitation in practice.

Hybrid models combining collaborative filtering and content-based approaches have shown
promise in leveraging the strengths of both methods. Koren and Bell [8] discussed advancements
in collaborative filtering, highlighting the benefits of incorporating user and item attributes. Hybrid
approaches can provide more accurate and personalized recommendations by utilizing a broader
range of data sources. Zhao et al. [9] explored the integration of social media data into e-commerce
recommendations, addressing the cold-start problem by leveraging microblogging information. This
approach enhances the system’s ability to recommend items to new users or recommend new items
more effectively.

Trust-based models have also been investigated to enhance recommendation accuracy. Guo et
al. [10] proposed TrustSVD, a model that incorporates both explicit and implicit user trust information
into the recommendation process, demonstrating improved performance over traditional collaborative
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filtering methods. Trust-based models can enhance recommendation accuracy by considering the
reliability of user interactions and ratings.

Graph-based approaches have gained traction for their ability to model complex relationships
in recommendation data. Wang et al. [11] introduced KGAT, a knowledge graph attention network
that enhances recommendations by leveraging relational data from knowledge graphs. This model
outperforms traditional approaches by capturing higher-order connectivity patterns, providing more
accurate and contextually relevant recommendations.

Sequential recommendation models continue to evolve, with Ma et al. [12] proposing hierarchical
gating networks that dynamically capture user preferences at multiple levels. This approach improves
the accuracy of sequential predictions by considering the hierarchical structure of user preferences.
Zheng et al. [13] combined user and item reviews using deep learning to jointly model user preferences
and item characteristics, achieving superior performance in personalized recommendations.

Visual information has also been integrated into recommendation systems. He and McAuley [14]
presented VBPR, a model that integrates visual features from product images into the recommendation
process, enhancing the accuracy of predictions based on implicit feedback. This approach is particularly
useful for e-commerce platforms where visual appeal is a critical factor in user decision-making.

Explainable recommendation systems have gained attention for their potential to increase user
trust and satisfaction. Zhang and Chen [15] conducted a comprehensive survey on explainable recom-
mendations, highlighting the importance of transparency in recommendation systems. Explainable
recommendations provide insights into why certain items are recommended, which can enhance user
engagement and trust.

In summary, significant progress has been made in recommendation systems, but challenges
like sample imbalance, varying session lengths, and dynamic user behavior remain. Our proposed
multi-objective recommendation system addresses these issues by combining state-of-the-art models
and ensemble learning, resulting in enhanced prediction performance and practical applicability for
online retailers.

3. Methodology

Our modeling strategy is a comprehensive approach to session-based recommendations using
graph-based models and gradient boosting methods. Session-based recommendation systems aim
to predict users’ next actions based on their current session data. We explores the implementation of
Graph-SAGE, LightGBM, and GRU4Rec models to enhance recommendation accuracy. We describe
the preprocessing techniques, model architectures, evaluation metrics, and experimental results in
detail. The whole model ensemble pipeline is shown in Figure 1
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Figure 1. Model Ensemble Pipeline.

3.1. LightGBM and Xgboost

LightGBM and XGBoost are powerful ensemble learning methods that leverage gradient boosting
algorithms. These models are particularly effective for structured data and have shown superior
performance in various machine learning tasks.

3.1.1. Gradient Boosting Framework

Both LightGBM and XGBoost build an ensemble of trees, where each tree is trained to correct the
errors of its predecessor. The objective function combines the loss function l and a regularization term
Ω to prevent overfitting:

L(Θ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (1)

where Θ represents the model parameters, yi are the true labels, ŷi are the predicted labels, and fk
represents the k-th tree in the ensemble.

3.1.2. Tree Structure

Each tree in the ensemble is constructed by optimizing the split points to maximize information
gain. The leaf nodes of the trees contain the final predictions, and the model’s prediction is the sum of
the predictions from all trees.

ŷi =
K

∑
k=1

fk(xi) (2)

3.1.3. Regularization

Both LightGBM and XGBoost incorporate regularization to control the complexity of the model.
The regularization term Ω penalizes large weights and complex tree structures:

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (3)

where T is the number of leaves in the tree, wj are the leaf weights, γ is the regularization parameter
for the number of leaves, and λ is the regularization parameter for the leaf weights.
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3.1.4. Optimization

The training process involves minimizing the objective function using gradient descent. For
LightGBM, a histogram-based algorithm is used to speed up the training process by approximating
the continuous feature values with discrete bins.

3.1.5. Feature Importance

Both models provide feature importance scores, which indicate the contribution of each feature to
the prediction. This is useful for feature selection and model interpretation.

3.1.6. Handling Missing Values

LightGBM and XGBoost can handle missing values by automatically learning the best way to split
the data even when some feature values are missing. By combining the strengths of these methods, we
can build robust and accurate models for session-based recommendations.

3.2. GRU4Rec

GRU4Rec leverages Gated Recurrent Units (GRUs) for sequence modeling. It captures temporal
dependencies in user behavior sequences. The GRU update equations are:

zt = σ(Wzxt + Uzht−1) (4)

rt = σ(Wrxt + Urht−1) (5)

h̃t = tanh(Wxt + U(rt ⊙ ht−1)) (6)

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (7)

3.3. Graph-SAGE

Graph-SAGE is a method for inductive node embedding. Unlike traditional methods that learn a
unique embedding for each node, Graph-SAGE generates embedding by sampling and aggregating
features from a node’s local neighborhood. This enables the model to generalize to unseen nodes,
making it scalable and versatile.

Figure 2. Graph-SAGE Pipeline.

3.3.1. Neighbor Sampling

For each node v, a fixed-size set of neighbors N (v) is sampled. This reduces the computational
complexity by considering a limited neighborhood size.

Nk(v) = {u1, u2, . . . , uk} (8)
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3.3.2. Feature Aggregation

The sampled neighbors’ features are aggregated to form the node’s embedding. The aggregation
function can vary, with common choices being mean, sum, or max pooling. The node embedding at
layer k, h(k)

v , is computed as follows:

h(k)
v = σ

(
W(k) · AGG(k)

({
h(k−1)

u , ∀u ∈ N (v)
}))

(9)

where W(k) is a trainable weight matrix, σ is a nonlinear activation function (e.g. ReLU), and
AGG is a function that combines the features of the neighbors.

3.3.3. Multi-Layer Structure

Graph-SAGE employs multiple layers to capture higher-order dependencies. The embedding
of a node at the final layer K is influenced by its K-hop neighborhood. For instance, a two-layer
Graph-SAGE model would capture information from a node’s neighbors and the neighbors of those
neighbors.

h(K)
v = AGG(K)

(
h(K−1)

v ,
{

h(K−1)
u , ∀u ∈ N (v)

})
(10)

3.3.4. Unsupervised Learning

For unsupervised node representation learning, Graph-SAGE uses a loss function that maximizes
the similarity between the embedding of adjacent nodes while minimizing the similarity between the
embedding of randomly sampled nodes. The loss function is defined as:

L = − ∑
(v,u)∈E

log σ(hv · hu)− Q ·Eun∼Pn(v) log σ(−hv · hun) (11)

where E is the set of edges, Q is the number of negative samples, and Pn(v) is a negative sampling
distribution.

3.4. Model Embedding

To further enhance the prediction accuracy, we employed an ensemble strategy combining the
outputs of GraphSAGE, LightGBM, and XGBoost. The ensemble method leverages the strengths of
each model, providing a more robust and generalized solution.

3.4.1. Model Integration

The outputs from each model are integrated using a weighted averaging approach. The ensemble
prediction ŷ is given by:

ŷ = αŷGraphSAGE + βŷLightGBM + γŷXGBoost (12)

where α, β, and γ are the weights assigned to each model’s prediction. These weights are determined
through cross-validation to optimize the overall performance.

3.4.2. Optimization of Weights

The weights are fine-tuned using the Optuna library, which performs hyperparameter opti-
mization. The objective is to minimize the ensemble’s validation error, thereby selecting the best
combination of model predictions.

4. Experiments and Results

In the experiment, we focus on the training loss index and the AUC index. The integrated model
achieves stable training effect after 350 epochs of training in Figures 3 and 4
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Figure 3. Loss, learning rate and accuracy over epoch.

Figure 4. AUC over epoch.
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4.1. Evaluation Metrics

To evaluate the performance of our models, we used several metrics that capture different aspects
of recommendation quality.

4.1.1. NDCG

NDCG measures the ranking quality by considering the position of relevant items. It is defined
as:

NDCG =
1

IDCG

p

∑
i=1

2reli − 1
log2(i + 1)

(13)

where reli is the relevance score of the item at position i, and IDCG is the ideal DCG, which is the
maximum possible DCG for the given set of items.

4.1.2. Area Under the Curve

AUC measures the model’s ability to distinguish between positive and negative samples. It is
defined as the probability that a randomly chosen positive sample ranks higher than a randomly
chosen negative sample. Mathematically, AUC is given by:

AUC =
1

N+N−

N+

∑
i=1

N−

∑
j=1

1(si > sj) (14)

where N+ and N− are the number of positive and negative samples, respectively, and 1(si > sj) is an
indicator function that is 1 if the score of the positive sample si is greater than the score of the negative
sample sj, and 0 otherwise.

4.1.3. Accuracy

Accuracy measures the proportion of correct predictions among the total number of predictions.
It is defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(15)

The models were evaluated on a public and private test set, with performance measured by the
metric we mentioned before. The results are summarizedin Table 1:

Table 1. Performance Metrics.

Model AUC F1-score NDCG
LightGBM 0.728 0.671 0.5123

XgBoost 0.734 0.682 0.5015
Recbole GRU4Rec 0.751 0.694 0.5191

Graph Neural Network GraphSAGE+LR 0.802 0.741 0.5789
LightGBM+XgBoost+GRU4Rec+Ensemble 0.844 0.772 0.6192

5. Conclusion

In conclusion, Our research shows that combining graph-based models with gradient boosting
and sequence modeling techniques can significantly enhance session-based recommendation systems.
Sampling LightGBM + XgBoost for feature selection and preprocessing, and GRU4Rec for processing
sequence features, the proposed preprocessing method and model architecture can effectively capture
complex user interactions, thereby improving recommendation accuracy.
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