

Concept Paper

Not peer-reviewed version

Degrade to Upgrade: Harnessing Programmed Degradation for Sustainable, Evolving Interactive Devices

Qiuyu Lu *

Posted Date: 26 September 2024

doi: 10.20944/preprints202409.2136.v1

Keywords: Sustainability; Degradation; Unmaking; Device

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

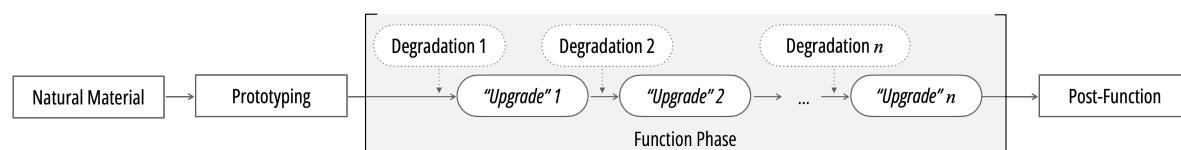
Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Concept Paper

Degradate to Upgrade: Harnessing Programmed Degradation for Sustainable, Evolving Interactive Devices

Qiuyu Lu

University of California, Berkeley, Berkeley, CA 94720, USA; qiuyulu@berkeley.edu


Abstract: Interactive device design traditionally prioritizes delaying or preventing degradation during the functional phase, as it is generally perceived as a disadvantage. However, the concept of intentionally designing controlled material breakdown can unlock new properties and functions that enhance both the system and its environment. This approach, termed "*Degradate to Upgrade*", challenges the conventional view of degradation as merely an end-of-life process. Instead, it encourages Human-Computer Interaction (HCI) researchers and designers to see it as an active phase, one that can be leveraged for innovative device design.

Keywords: sustainability; degradation; unmaking

1. The Vision

Sustainable design has gained increasing prominence in HCI, influencing material exploration, interface design, and device fabrication. Various strategies have emerged to address resource-related challenges, with the degradability of materials at their end-of-life stage being a promising approach to sustainable waste management. While material degradation is typically viewed as detrimental to system operation and only desirable once a system reaches end-of-life [4], there are instances where breakage serves a valuable function. For instance, electrical fuses protect sensitive circuits by breaking during overloads [2], and in nature, the seed capsules of the squirting cucumber burst to release seeds [3]. Such principles have inspired novel design strategies within HCI. For example, "Degradate to Function" explores the development of eco-friendly, self-contained morphing devices that rely on environmentally-triggered degradation to operate [6]. Similarly, "Functional Destruction" proposes that material destruction can be strategically employed in transient electronics to achieve specific objectives [1]. Song et al. introduced a new vocabulary of unmaking operations within standard 3D modeling tools [7], while Vasquez et al. investigated how intentionally dissolving biofoam yarns could enhance the design of fashion wearables [5].

Building on these precedents and with the goal of advancing this emerging design strategy, I introduce the concept of "*Degradate to Upgrade*" (*DtU*, Figure 1), where degradation processes lead to the acquisition of new properties and functions, potentially improving or enhancing a system. This concept invites HCI researchers and designers to view degradation not merely as an end-of-life stage but as an active phase that can be leveraged for innovative device design.

Figure 1. The Degrade to Upgrade concept overview. "Upgrade" refers to functions or interactions executed in response to programmed degradation, potentially improving or enhancing a system.

Although interest in degradable materials and devices within HCI is clearly growing, *DtU* reveals significant work still needed in rethinking degradation processes, expanding material libraries, and developing prototyping strategies, among other challenges. This vision aims to encourage the HCI community to collaboratively explore and define the research possibilities that *DtU* presents. The

ultimate goal is to establish *DtU* as a viable strategy for designing sustainable, evolving interactive devices that function through programmed degradation.

Looking ahead, *DtU* has the potential to reshape the future of interactive systems by enabling devices to dynamically adapt and evolve through degradation, offering new possibilities in fields like environmental sustainability, adaptive technology, and post-consumer systems. This shift could lead to a new class of interactive devices that not only extend their usefulness by transforming in response to environmental factors but also contribute positively to their surroundings. In a future where technology is designed to coexist harmoniously with nature, *DtU* could serve as a guiding principle for creating systems that improve as they degrade, reducing waste while enhancing functionality. Such innovations hold the promise of transforming how we think about product life cycles and resource utilization, driving a new wave of sustainable, adaptive technology solutions.

Acknowledgments: Thank you to Lining Yao, Semina Yi, and Katherine Song, whose insightful discussions have been instrumental in refining this vision after its initial proposal. Special thanks to Semina Yi for her assistance in creating the figure.

References

1. Tingyu Cheng, Taylor Tabb, Jung Wook Park, Eric M Gallo, Aditi Maheshwari, Gregory D. Abowd, Hyunjoo Oh, and Andreea Danilescu. 2023. Functional Destruction: Utilizing Sustainable Materials' Physical Transiency for Electronics Applications. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23)*. Association for Computing Machinery, New York, NY, USA, 1–16. <https://doi.org/10.1145/3544548.3580811>.
2. THOMAS ALVA EDISON. 1890. FUSE-BLOCK
3. Anahit Galstyan and Angela Hay. 2018. Snap, crack and pop of explosive fruit. *Current Opinion in Genetics & Development* 51 (Aug. 2018), 31–36. <https://doi.org/10.1016/j.gde.2018.04.007>
4. Florian Hartmann, Melanie Baumgartner, and Martin Kaltenbrunner. 2021. Becoming Sustainable, The New Frontier in Soft Robotics. *Advanced Materials* 33, 19 (2021), 2004413. <https://doi.org/10.1002/adma.202004413>
5. Eldy S. Lazaro Vasquez, Lily M Gabriel, Mikhaila Friske, Shanel Wu, Sasha De Koninck, Laura Devendorf, and Mirela Alistar. 2023. Designing Dissolving Wearables. In *Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing (Cancun, Quintana Roo, Mexico) (UbiComp/ISWC '23 Adjunct)*. Association for Computing Machinery, New York, NY, USA, 286–290. <https://doi.org/10.1145/3594739.3610781>
6. Qiuyu Lu, Semina Yi, Mengtian Gan, Jihong Huang, Xiao Zhang, Yue Yang, Chenyi Shen, and Lining Yao. 2024. Degrade to Function: Towards Eco-friendly Morphing Devices that Function Through Programmed Sequential Degradation. In *Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST '24)*. Association for Computing Machinery, New York, NY, USA, 24 pages. <https://doi.org/10.1145/3654777.3676464>
7. Katherine W Song and Eric Paulos. 2021. Unmaking: Enabling and Celebrating the Creative Material of Failure, Destruction, Decay, and Deformation. In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI '21)*. Association for Computing Machinery, New York, NY, USA, 1–12. <https://doi.org/10.1145/3411764.3445529>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.