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Abstract: Aging is a complex and inevitable biological process characterized by a gradual decline in 

physiological function, including increased oxidative stress, chronic inflammation, and mitochondrial 

dysfunction. While aging is a natural part of life, it is often accompanied by various disorders collectively 

known as age-related diseases (ARDs) or aging disorders. These include neurodegenerative diseases like 

Parkinson’s (PD), cardiovascular diseases, diabetes, osteoporosis, and frailty, among others. As the global 

population ages, the prevalence of ARDs such as PD and frailty is rising, necessitating innovative approaches 

to enhance healthy aging.  Nutraceuticals are natural bioactive compounds in foods that offer health benefits 

beyond essential nutrition, which is pivotal in preventing and managing aging-related disorders. 

Nutraceuticals, with their antioxidant, anti-inflammatory, and neuroprotective properties, offer promising 

strategies to counteract these processes and promote healthy aging. This review highlights the potential of 

nutraceuticals as valuable adjuncts in managing PD and frailty, two conditions intricately linked to ARD. By 

examining the differential impacts of these bioactive compounds on the underlying mechanisms of each 

condition, this study underscores the promise of nutraceuticals in promoting healthy aging. The review aims 

to inform future research and clinical strategies by advocating for developing novel bioactive compounds, 

using advanced delivery technologies, and integrating personalized approaches based on genetic and 

epigenetic profiles. These efforts will pave the way for more precise, effective, and individualized 

interventions, ultimately extending health span and preventing ARD. 

Keywords: aging; precision medicine; Parkinson’s disease; frailty; nutraceuticals; bioactive 
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1. Introduction 

Over the past decade, the global population has experienced a notable increase in average age, 

leading to a surge in the elderly demographic [1]. In 2020, the number of individuals aged 70 and 

older reached approximately 457.96 million worldwide (World Population Ageing 2020 Highlights). 

As people live longer, many face significant health challenges, with a majority suffering from one or 

more chronic, age-related diseases (ARDs)  such as cardiovascular diseases, diabetes,      

neurodegenerative conditions and frailty [2–7]. 

The prevalence of neurodegenerative disorders like Parkinson's disease (PD), alongside the 

geriatric syndrome of frailty, has become a significant public health concern [8,9]. PD is a 

neurodegenerative disorder that manifests clinically through symptoms such as bradykinesia, resting 

tremor, rigidity, and disturbances in posture and gait, all of which are commonly observed in the 

elderly [10,11]. In addition to these motor symptoms, PD is also associated with a range of non-motor 

symptoms, including depression, anxiety, cognitive impairment, and dementia [12–14]. The global 

prevalence of PD is steadily increasing, with aging identified as a significant risk factor for its onset 
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[15]. The physiological changes associated with aging contribute to the disease's development and 

progression [8]. Frailty, on the other hand, is a geriatric syndrome characterized by a state of 

increased vulnerability, where an individual's health teeters between robustness and disability [16]. 

This syndrome is influenced by various physiological stressors accompanying aging and 

encompasses physical and psychological and social dimensions [17,18]. Both conditions share 

common pathways related to aging, yet they manifest differently, necessitating more effective and 

sustainable strategies, including preventive approaches and innovative interventions like 

nutraceuticals [19–23].  

Nutraceuticals, a term coined by Stephen DeFelice, are food-derived products that offer health 

benefits beyond essential nutrition [24]. They encompass a wide range, including naturally nutrient-

rich foods like garlic, isolated nutrients, and herbal products [25–27]. Growing interest is in managing 

ARDs using nutraceutical bioactive compounds derived from food sources [25]. Nutraceuticals, with 

their antioxidant, anti-inflammatory, and neuroprotective properties, offer promising adjuncts to 

conventional treatments [21]. In PD, compounds such as curcumin, resveratrol, and omega-3 fatty 

acids have shown the potential to slow disease progression and alleviate symptoms by targeting 

oxidative stress and mitochondrial dysfunction [20]. 

Similarly, in frailty, these substances may help enhance muscle function, reduce inflammation, 

and improve overall resilience against physical and psychological stressors [28]. This review aims to 

explore the distinct effects of nutraceuticals on PD and frailty, evaluating their ability to influence the 

core mechanisms behind these conditions. Moreover, it underscores the importance of advancing 

research and clinical approaches, emphasizing the development of novel bioactive compounds, using 

cutting-edge delivery technologies, and incorporating personalized strategies based on genetic and 

epigenetic insights. These advancements will contribute to more precise, effective, and 

individualized treatments, allowing precision medicine to extend health span and mitigate age-

related diseases ARDs [29]. 

2. Aged People Dysfunction: Parkinson's vs. Frailty: A Comparison of Aging-Related Conditions 

Aging is a natural and inevitable process that affects every living organism, leading to a gradual 

decline in physical and cognitive functions [30,31]. As people age, they experience cellular, molecular, 

and systemic changes, often resulting in various ARDs: increased protein synthesis, apoptosis 

resistance, and cellular function alterations mark this process [32,33]. The accumulation of senescent 

cells in tissues becomes more pronounced, leading to a heightened susceptibility to ARDs [34]. For 

instance, the buildup of senescent cells in joints can result in osteoarthritis, characterized by joint 

degeneration and impaired mobility [35,36]. Aging also affects various organ systems, leading to 

physiological changes such as reduced cell turnover, diminished function of mucous membranes, 

muscle wasting, and a higher risk of conditions like atherosclerosis, contributing to geriatric frailty 

[37,38]. Cellular senescence, characterized by a progressive decline in physiological function and the 

release of inflammatory factors, plays a crucial role in aging by hindering tissue regeneration and 

altering the local environment [39,40]. While interventions targeting senescent cells have shown 

promise, they can also cause unintended complications, such as elevated urea levels and 

thrombocytopenia in experimental models [41]. Aging is also linked to the gradual loss of muscle 

mass and strength (sarcopenia), impaired immune function, and increased vulnerability to infections 

and other illnesses [42–44]. 

Cognitive decline, ranging from mild memory lapses to severe forms of dementia, becomes more 

prevalent with age [45]. 

Additionally, the aging process is accompanied by reduced physiological resilience, making it 

harder for elderly individuals to recover from illness, injury, or stress [46,47]. Common conditions 

associated with aging include neurodegenerative diseases such as PD and frailty [9]. These conditions 

diminish the quality of life and increase healthcare burdens, as elderly individuals often require more 

medical care and assistance [31]. Common conditions associated with aging include 

neurodegenerative diseases such as PD and frailty [9]. These conditions diminish the quality of life 
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and increase healthcare burdens, as elderly individuals often require more medical care and 

assistance [38]. 

2.1. Parkinson’s Disease 

PD is a complex neurodegenerative disorder primarily characterized by the loss of dopaminergic 

neurons in the Substantia Nigra pars compacta (SNpc), and brain accumulation of Lewy bodies (LB), 

which are aggregates of alpha-synuclein (αS) [12–48]. The diagnosis of PD is based on patient history 

and neurological examination [49,50]. Although primarily designed for research purposes, the 

diagnostic criteria established by the International Parkinson and Movement Disorder Society can 

aid clinicians in confirming the diagnosis [51,52]. The TRAP mnemonic can be helpful in diagnosis, 

as it includes tremors (T), rigidity (R), akinesia (A), and postural instability (P) [53,54]. However, PD 

also presents a wide range of less visible, non-motor symptoms, such as cognitive decline, depression, 

and pain, which contribute significantly to the overall disability experienced by patients [13,14]. 

These non-motor symptoms can be assessed using a specialized rating scale to quantify their [13,14]. 

Early indicators include symptoms like constipation (the most common early sign), acting out dreams 

during REM sleep (indicative of REM sleep behavior disorder), loss of smell (hyposmia), 

asymmetrical shoulder pain, and depression [55–58]. It is essential to recognize that general 

practitioners cannot be faulted for missing a diagnosis in the early stages, as these symptoms are 

often nonspecific and overlap with many other conditions [51,52]. The exact cause of PD remains 

elusive, but it is believed to result from a combination of genetic predispositions and environmental 

factors. Mutations in genes such as Leucine-rich repeat kinase 2 (LRRK2), Parkin7 (PARK7), and 

αSynuclein (αS) have been linked to familial forms of PD, while environmental exposures to toxins, 

such as pesticides, have been associated with an increased risk of the disease [59–62]. Additionally, 

mitochondrial dysfunction, oxidative stress, and neuroinflammation are critical contributors to the 

pathogenesis of PD. These factors lead to the accumulation of reactive oxygen species (ROS), which 

damage cellular components, further exacerbating neuronal death [63–66]. 

2.1.1. Current Therapeutic Approaches 

Despite the wide range of treatment options, including pharmacological, non-pharmacological, 

and surgical interventions like brain, spinal, and vagus nerve stimulators, patients still suffer from 

ongoing muscle weakness, and no therapy has proven to be a definitive disease-modifying solution 

[67,68]. 

Conventional Pharmacological Treatments 

Levodopa and Derivatives: Levodopa remains a central treatment for PD, converting to 

dopamine in the brain to alleviate motor symptoms like tremors and [69,70]. Its effectiveness 

diminishes over time, leading to side effects like dyskinesia [69,70]. Co-administration with 

carbidopa improves its efficacy and reduces peripheral side effects. However, as the disease 

progresses, the effectiveness of levodopa diminishes, and patients often experience motor 

fluctuations and dyskinesias (involuntary movements) [69–71]. 

MAO-B Inhibitors: Monoamine oxidase B inhibitors delay levodopa breakdown, extending its 

benefits in early-stage PD [72,73]. Though less potent than levodopa, they pose fewer risks of 

inducing dyskinesias [71]. These drugs are commonly combined with other therapies to enhance 

motor symptom management, especially as PD progresses [72–74]. 

COMT Inhibitors: Catechol-O-methyltransferase inhibitors increase levodopa's availability in 

the brain by reducing its breakdown [74,75]. Drugs like entacapone and opicapone extend levodopa's 

effects. However, they may cause adverse effects such as dyskinesia and confusion. Tolcapone, 

though effective, is rarely used due to the risks of liver failure [74,75]. 

Anticholinergic Agents: These drugs, including trihexyphenidyl and benztropine, reduce 

tremors, particularly in younger patients [76,77]. However, their use is limited due to side effects like 

blurred vision and urinary retention [76,77]. 
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Non-Conventional Pharmacological Treatments 

Antidiabetic Agents: Medications such as glucagon-like peptide 1 (GLP-1) agonists and 

Dipeptidyl peptidase 4 (DPP-4) inhibitors may offer neuroprotective effects in PD by reducing 

neuroinflammation and oxidative stress [78–80]. Studies have shown potential benefits in improving 

motor and cognitive symptoms in PD patients [81]. 

Intranasal Insulin: Insulin administered intranasally has shown promise in protecting 

dopaminergic neurons and improving motor function without affecting blood glucose levels [82,83]. 

Biguanides (Metformin): Though primarily used for type 2 diabetes, metformin has potential 

neuroprotective effects in PD [84,85]. Some studies suggest it reduces the risk of PD, while others 

raise concerns about its link to vitamin B12 deficiency, which may contribute to cognitive decline [86]. 

Non-Pharmacological Treatments 

Stem Cell Therapy: Using pluripotent stem cells to regenerate damaged dopaminergic neurons 

offers a promising future therapy for PD. Early trials using fetal cell transplants have shown long-

term benefits but also carry risks like dyskinesia [87–89]. 

Gene Therapy: Gene therapies targeting defective genes like AADC and neurotrophic factors 

are being explored to modify disease progression in PD [90,91]. While promising in animal models, 

clinical application has faced gene distribution and efficacy challenges [90,91]. 

Surgical Treatments 

Lesioning Procedures: Ablative surgeries, like pallidotomy and thalamotomy, target specific 

brain areas to alleviate motor symptoms [92]. Though effective, these procedures are reserved for 

patients unresponsive to medication, with risks of neurological side effects [92]. 

Deep Brain Stimulation (DBS): DBS is widely used to control PD motor symptoms by 

delivering electrical impulses to the brain [93,94]. It improves motor function and reduces reliance on 

medications, though it requires careful management to avoid side effects like dyskinesia and 

cognitive impairment [93,94]. 

Focused Ultrasound (FUS): FUS is a non-invasive method that uses ultrasound waves to target 

deep brain tissues, offering a promising alternative to traditional surgery for motor symptom relief 

in PD [95]. 

Gamma Knife Thalamotomy (GKT): GKT uses targeted gamma radiation to treat tremors in 

PD. It is minimally invasive, with fewer long-term complications, though risks such as radiation-

induced neurological changes remain [96,97]. 

2.1.2. Limitations of Conventional Treatments 

Despite the availability of various treatments for PD, limitations and side effects persist across 

both pharmacological and non-pharmacological approaches [98]. Levodopa, a cornerstone therapy 

that converts to dopamine to alleviate motor symptoms like tremors and rigidity, loses effectiveness 

over time and can lead to side effects such as dyskinesia and motor fluctuations [99]. While MAO-B 

inhibitors help delay levodopa's breakdown and extend its benefits, they are less potent and usually 

require a combination with other treatments [100]. COMT inhibitors increase levodopa availability 

but may induce dyskinesia and confusion, with some drugs, like tolcapone, posing risks of liver 

failure [101]. Anticholinergic agents, used for tremor control, particularly in younger patients, come 

with side effects like blurred vision and urinary retention, limiting their use [102]. Non-conventional 

pharmacological treatments also present challenges [98]. Antidiabetic agents like GLP-1 agonists and 

DPP-4 inhibitors show potential for reducing neuroinflammation, but their off-target effects remain 

under investigation [103]. Intranasal insulin may protect dopaminergic neurons and improve motor 

function, though it is still in early-stage research [103]. Metformin, an antidiabetic drug, has been 

associated with a reduced risk of PD but raises concerns about vitamin B12 deficiency and possible 

cognitive decline. Non-pharmacological and surgical options carry their risks [104,105]. Stem cell 

therapy offers promise for regenerating dopaminergic neurons but carries the risk of dyskinesia and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2024                   doi:10.20944/preprints202409.2082.v1

https://doi.org/10.20944/preprints202409.2082.v1


 5 

 

ethical challenges [106]. Gene therapy faces obstacles in gene distribution and efficacy in clinical 

applications [107]. Surgical approaches, like lesioning procedures, are reserved for patients 

unresponsive to medication and come with neurological side effects [108]. DBS, although effective in 

controlling motor symptoms, can lead to dyskinesia and cognitive impairment [109]. Newer 

techniques, like FUS and GKT, offer less invasive alternatives, though they carry risks of tissue 

damage and radiation-induced neurological changes [110] (Table1). 

Table 1. Overview of Therapeutic Approaches for PD. 

Category Treatment Mechanism Benefits 
Limitations/ 

Side Effects 
Ref 

 

 

Levodopa  

and  

Derivatives 

Converts to 

dopamine to 

alleviate motor 

symptoms 

Effective for 

tremors and 

rigidity 

Diminished effectiveness 

over time, dyskinesia, 

motor fluctuations 

[69–71] 

     

Conventional 

Pharmacological 

Treatments 

MAO-B  

Inhibitors 

Delays breakdown 

of levodopa, 

extending benefits 

Fewer 

dyskinesias, 

used in early-

stage  

PD 

Less potent than 

levodopa, often used in 

combination with other 

therapies 

[69–74] 

COMT 

Inhibitors 

Increases levodopa 

availability by 

reducing 

breakdown 

Extends 

levodopa's 

effects 

Dyskinesia, confusion, 

tolcapone risk of liver 

failure 

[101] 

 

 

GLP-1 

DPP-4 

 

 

It may reduce 

neuroinflammation 

and oxidative 

stress 

 

Potential 

neuroprotective 

effects, motor 

and cognitive 

improvements 

Potential off-target effects; 

still under study 
[78–81] 

     

Non-

Conventional 

Pharmacological 

Treatments 

Intranasal 

Insulin 

Protects 

dopaminergic 

neurons and 

improves motor 

function 

No effect on 

blood glucose 

levels 

Early-stage research 

requires further clinical 

validation 

[82,83] 

Biguanides 

(Metformin) 

Potential 

neuroprotective 

effects 

Neuroprotective 

effects in PD 

Risk of vitamin 

 B12 deficiency, potential 

cognitive decline 

[84–86] 

 

 

  Non- 

Pharmacological 

Treatments 

 

Stem Cell 

Therapy 

 

Regenerates 

dopaminergic 

neurons 

 

Long-term 

motor benefits 

Risks of dyskinesia, 

ethical concerns, early-

stage research 

[87–89] 

     

 
Gene 

Therapy 

Targets defective 

genes and 

neurotrophic 

factors 

Promising 

disease-

modifying 

potential 

Gene distribution 

challenges, efficacy 

concerns in clinical 

application 

[90–92] 

 

 

 

 

 

 

 

 

Lesioning 

Procedures 

 

 

 

 

Targets specific 

brain areas to 

alleviate motor 

symptoms 

 

 

 

 

Effective for 

motor symptom 

relief 

 

 

 

 

Neurological side effects, 

reserved for medication-

unresponsive patients 

 

    [92] 
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Surgical 

Treatments 

DBS 

Delivers electrical 

impulses to control 

motor symptoms 

Improves motor 

function, 

reduces 

medication 

reliance 

Risk of dyskinesia and 

cognitive impairment 

requires careful 

management 

[93,94] 

FUS 

 

Non-invasive 

ultrasound to 

target brain tissue 

A promising 

alternative to 

traditional 

surgery 

Still under study, the 

potential for tissue 

damage 

[95] 

 

 

 

 

 

 

 

 

GKT 

Uses gamma 

radiation to treat 

tremors 

Minimally 

invasive, fewer 

long-term 

complications 

Radiation-induced 

neurological changes 

possible 

[96,97] 

2.2. Frailty 

Frailty is a clinical syndrome characterized by a reduction in physiological reserve and increased 

vulnerability to stressors, leading to adverse health outcomes such as falls, hospitalization, disability, 

and death [111,112]. It is often seen in older adults and is associated with a decline in multiple body 

systems [111,112]. Clinically, frailty is diagnosed using criteria like the Fried Frailty Phenotype, which 

includes unintentional weight loss, self-reported exhaustion, weakness (grip strength), slow walking 

speed, and low physical activity [113,114]. Three or more criteria indicate frailty, while one or two 

suggest a pre-frail state [115,116]. Frailty is not merely a consequence of aging but a distinct clinical 

entity that significantly impacts an individual’s quality of life and functional independence [115,116]. 

It is associated with a higher risk of adverse outcomes, particularly in the presence of acute illnesses 

or surgical interventions [117]. The pathophysiology of frailty is multifaceted, involving complex 

interactions between various biological systems [111,112]. Chronic inflammation plays a central role, 

with elevated levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis 

factor-alpha (TNFα) contributing to muscle catabolism, reduced muscle mass and strength, a 

condition known as sarcopenia, which is a core component of frailty [118–120].  

Additionally, hormonal imbalances, including decreased levels of anabolic hormones like 

testosterone and growth hormone, exacerbate the decline in muscle and bone health [121]. 

Mitochondrial dysfunction is also critical in frailty, leading to decreased energy production and 

increased oxidative stress, further accelerating cellular aging and tissue damage [122]. Additionally, 

frailty is associated with insulin resistance, dysregulated glucose metabolism, and impaired 

autophagy, all contributing to the decline in cellular and systemic resilience [123]. 

2.2.1. Current Therapeutic Approaches 

Patients affected by the clinical syndromes of frailty have limited options to effectively slow 

disease progression outside of exercise training [124]. Given the difficulty in reversing disability in 

older adults, its impact is both severe for individuals and costly for society [125]. Therefore, 

developing new strategies to maintain functional capacity and independence in later life is crucial, 

particularly in chronic illness [126]. A combined approach involving exercise, nutrition, and 

pharmacological interventions may help mitigate the onset and progression of frailty [126].  

Drug Therapy 

Hormone Therapies: Among the potential pharmacological treatments extensively studied in 

preclinical settings are hormone therapies and myostatin inhibitors [127]. Hormone therapies include 

the administration of testosterone, growth hormone (GH), ghrelin, insulin, and thyroid hormones 

[128–131]. 
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Testosterone replacement therapy, given its known metabolic and anabolic effects, has been 

explored as a possible treatment for frailty [132]. Clinical trials have shown that testosterone can 

modestly improve muscle function and overall physical capacity in frailty patients [133,134]. 

However, side effects like the risk of prostatic hyperplasia necessitate further large-scale studies to 

validate its safety and efficacy [133,134]. While showing promise in preclinical studies for its anabolic, 

anti-inflammatory, and antioxidant benefits, GH therapy has yet to demonstrate clinical effectiveness 

[135]. Ghrelin is another potential treatment due to its ability to stimulate appetite and enhance 

gastric motility [136].  

Insulin: Increasing amino acid delivery and intramuscular blood flow promotes muscle protein 

synthesis [137]. Thyroid hormone, a critical metabolic regulator targeting skeletal muscle, has been 

linked to muscle wasting and diminished function in overt and latent thyroid dysfunction cases [138]. 

Myostatin: Myostatin, a cytokine within the Transforming growth factor-β (TGF-β) family, is 

highly expressed in skeletal muscles and regulates muscle growth [139,140]. However, several trials 

of myostatin inhibitors have yielded underwhelming results, showing limited therapeutic benefit 

[141]. Nevertheless, a study involving bimagrumab, a myostatin inhibitor, demonstrated positive 

outcomes, improving functional capacity and independence in elderly sarcopenic individuals [142]. 

GDF-15: Another promising target has recently gained attention: growth differentiation factor 

15 (GDF-15), a key regulator in muscle pathophysiology and a global stress mediator [143,144]. 

Evidence indicates that GDF-15 is associated with reduced muscle mass, impaired performance, and 

heightened inflammation [145]. Neutralizing GDF-15 has shown promise in reversing these effects, 

helping to restore muscle function and physical capacity [146]. In experimental models, anti-GDF-15 

treatment significantly increased muscle mass by boosting appetite and food intake, improving 

physical function [147]. 

Exercise: Exercise is now recognized as the most effective therapy for slowing the progression 

of frailty [148,149]. Well-structured and closely supervised exercise training programs are designed 

to combat muscle atrophy, stimulate muscle growth, and preserve muscle function as individuals 

age [148,149]. Resistance exercise benefits muscle health through various physiological mechanisms 

and signaling pathways, including vasodilation, antithrombotic effects, reduced oxidative stress, 

anti-inflammatory responses, activation of mechanistic target of rapamycin complex-1 (mTORC1), 

enhanced mitochondrial biogenesis, increased Insulin-like Growth Factor 1 (IGF-1), stimulation of 

peroxisomes, and improved insulin sensitivity [150,151]. These molecular adaptations show that 

skeletal muscle is highly responsive and adaptable to activity. Low-intensity training enhances 

mitochondrial efficiency and oxygen utilization, while high-intensity exercise stimulates muscle cell 

proliferation and increases contractile protein production [152]. Exercise also upregulates gene 

transcription related to calcium (Ca2+) signaling via the Adenosine monophosphate-activated 

protein kinase (AMPK) pathway, influencing the energy status of muscle cells [153]. 

Nutrition: Malnutrition encompasses various forms of undernutrition, such as wasting, 

stunting, underweight, vitamin and mineral deficiencies, obesity, and related non-communicable 

diseases [154]. Nutritional deficiencies in micronutrients (e.g., vitamins and minerals) and 

macronutrients (such as energy stores and substrates) contribute to a worsening catabolic state in 

conditions like frailty [155–157]. For example, vitamin D deficiency can impair muscle function, alter 

calcium flow, and promote inflammation. However, it also reduces muscle mass and poor physical 

performance in older adults [158]. Consequently, vitamin D supplementation is potentially a 

therapeutic option for managing frailty [159,160]. New insights into the link between muscle health 

and nutrition reveal that proper nutrition supports muscle function, stimulates muscle growth 

(anabolism), and regulates muscle protein synthesis, glucose, insulin levels, and neuromuscular and 

vascular functions [161]. Nutrition also plays a crucial role in nutrient sensing, mitochondrial 

efficiency, and communication between muscles and the immune system. When combined, 

nutritional interventions and exercise can have additive effects, particularly when resistance training 

is paired with protein supplementation, improving muscle mass and function [162]. Dietary protein 

is vital for maintaining muscle structure, function, and a healthy balance between anabolic and 

catabolic processes in frail elderly individuals [163]. Essential amino acids, like leucine, trigger strong 
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anabolic responses by activating muscle signaling pathways that enhance mRNA translation and 

muscle protein synthesis [164]. Omega-3 polyunsaturated fatty acids also offer a potential benefit due 

to their anti-inflammatory properties [165]. Despite their crucial role in managing frailty, nutritional 

interventions face challenges. These include the complexity of food and nutrient interactions, 

difficulty in blinding treatments, low patient adherence, and the influence of factors like ethnicity, 

genetics, and physiological condition, along with dietary habits and food culture variations [154]. 

2.2.2. Limitations of Conventional Treatments 

Pharmacological and nutritional interventions for treating frailty have notable limitations and 

potential side effects [166].  Testosterone therapy, despite its ability to improve muscle function, 

carries risks such as prostatic hyperplasia, necessitating large-scale trials to confirm its safety [167]. 

Though promising in preclinical studies, GH treatment has yet to demonstrate clinical efficacy [128–

131]. Ghrelin and insulin therapies, while showing potential in improving muscle function and 

protein synthesis, may pose risks, with insulin linked to poorer outcomes in heart failure (HF) 

patients with diabetes  [136]. Thyroid hormone interventions face challenges in managing muscle 

wasting, particularly in cases of thyroid dysfunction [167]. Myostatin inhibition trials, including those 

with bimagrumab, have yielded limited therapeutic benefits, and further research is needed [168]. 

Nutritional interventions like protein and vitamin D supplementation also require careful 

consideration, particularly in frail patients with chronic kidney disease or heart failure [169]. 

Additionally, compliance with dietary interventions remains low, and factors like ethnicity, genetics, 

and food culture introduce significant variability, making treatment outcomes less predictable [170]. 

(Table2). 

Table 2. Overview of Therapeutic Approaches for Frailty. 

Category Treatment Mechanism Benefits 
Limitations/ 

Side Effects 
Ref 

 

 

 

 

 

 

 

Testosterone 

Increases 

anabolic and 

metabolic 

activity, 

promoting 

muscle growth 

and improving 

physical 

capacity. 

Modestly 

improves 

muscle 

function and 

overall 

physical 

capacity in 

frailty 

patients. 

Requires large-scale studies 

for safety and efficacy 

validation. Risk of prostatic 

hyperplasia. 

[132–135] 

     

 

 

 

 

 

 

 

 

 

 

Hormone Therapy 

 

 

 

GH 

Anabolic, anti-

inflammatory, 

and antioxidant 

effects in 

preclinical 

models. 

 

Shows 

promise in 

preclinical 

studies for 

muscle 

growth and 

function. 

Has not demonstrated 

clinical 

effectiveness.Uncertain due 

to lack of clinical efficacy 

data. 

[127] 

Ghrelin 

 

Stimulates 

appetite and 

enhances 

gastric motility. 

Potential to 

improve 

muscle mass 

and 

nutritional 

status by 

stimulating 

appetite. 

Clinical benefits are not 

fully validated. 
[136] 

 
 

Insulin 

 

Promotes 

muscle protein 

synthesis by 

 

It enhances 

muscle 

protein 

Associated with poorer 

outcomes in heart failure 

patients with diabetes. Risk 

[137] 
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increasing 

amino acid 

delivery and 

blood flow to 

muscles. 

synthesis and 

may prevent 

muscle 

wasting. 

of adverse effects in 

patients with heart failure. 

     

 

Thyroid 

Hormone 

Critical 

metabolic 

regulator 

affecting 

skeletal muscle. 

Linked to 

improved 

muscle 

metabolism 

and function. 

Limited effectiveness in 

cases of overt and latent 

thyroid dysfunction. 

Potential to worsen muscle 

wasting in thyroid 

dysfunction cases. 

[138] 

  

     

 

 

 

 

Myostatin 

 

Blocks 

myostatin, a 

cytokine that 

regulates 

muscle growth, 

to promote 

muscle mass 

increase. 

 

Positive 

outcomes in 

improving 

muscle 

function and 

independence 

in elderly 

sarcopenic 

individuals. 

Limited therapeutic benefit 

in many clinical trials. 

Unknown due to limited 

clinical success. 

[139–142] 

     

 GDF-15 

Neutralizing 

GDF-15, 

associated with 

reduced muscle 

mass and 

heightened 

inflammation, 

restores muscle 

function. 

Significantly 

increases 

muscle mass, 

boosts 

appetite, and 

improves 

physical 

function in 

experimental 

models. 

Experimental requires 

further validation in clinical 

settings. 

[145–147] 

Exercise 

 

Resistance 

Training 

 

Involves 

mTORC1 

activation, 

mitochondrial 

biogenesis, 

increased IGF-

1, and 

enhanced 

insulin 

sensitivity, 

reducing 

oxidative stress 

and 

inflammation. 

 

Preserves and 

enhances 

muscle mass, 

strength, and 

function in 

frail 

individuals. 

 

Requires structured 

programs and close 

supervision, making 

adherence challenging.Risk 

of injury in frail patients if 

not appropriately 

supervised. 

[148–153] 

     

 

 

 

 

 

Nutrition 

     

Vitamin D 

Regulates 

calcium flow 

and reduces 

inflammation, 

impacting 

muscle 

function. 

May improve 

muscle mass 

and physical 

performance 

in older 

adults with 

deficiency. 

Effectiveness limited by 

patient adherence and 

variability in dietary 

habits.Uncertain in patients 

with chronic kidney disease 

or heart failure. 

[158–160] 
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Protein 

 

Stimulates 

muscle protein 

synthesis and 

anabolism, 

particularly 

through 

essential amino 

acids like 

leucine. and 

inflammation. 

 

Helps 

maintain 

muscle 

structure and 

function, and 

improves 

muscle mass 

in frail 

elderly 

individuals 

 

Compliance issues due to 

variability in diet, ethnicity, 

and genetics. 

[161] 

 

 

Omega-3 Fatty 

Acids 

 

 

Anti-

inflammatory 

properties that 

support muscle 

health. 

 

 

May reduce 

inflammation 

and support 

muscle 

function in 

frailty. 

Challenges include low 

adherence and complex 

interactions with other 

nutrients 

[165] 

3. Unvelling the differences: Nutraceutical vs. Conventional Food  

Interest in nutraceuticals and functional foods is rising, driven by ongoing research into their 

properties and applications and increasing consumer demand [171,172]. Nutraceuticals or functional 

foods are often viewed as "foods that resemble conventional items in the diet and are consumed 

regularly but offer additional benefits beyond basic nutrition [171,172]. These benefits may include 

reducing the risk of chronic diseases or improving overall health, with generally lower toxicity than 

synthetic drugs" [173]. Understanding the distinction between "functional foods" and "nutraceuticals" 

is crucial [174,175]. The concept of functional foods began in Japan in the late 1970s, driven by an 

aging population and increasing health concerns [176]. This led to a national project for systematic 

food research and development, culminating in the establishment of the Food for Specified Health 

Use (FOSHU) policy by the Ministry of Health and Welfare (MHW) in 1991 [177]. FOSHU foods were 

defined as "foods that contribute to health maintenance based on scientific data related to food 

components and consumer health" [177]. The first FOSHU product, a hypoallergenic food, was 

approved in 1993, and by 2001, the market had expanded significantly, with 192 products gaining 

approval [178]. The concept gained international attention following a 1993 article, "Japan explores 

the boundary between food and medicine," marking the first use of functional foods and highlighting 

the sector's rapid growth in the US [179]. In the United States of America (U.S.A), functional foods 

are regulated under the Federal Food, Drug, and Cosmetic (FD&C) Act and the Dietary Supplement 

Health and Education Act (DSHEA), overseen by the Food and Drug Administration (FDA) [180,181]. 

These products are categorized as nutraceuticals, dietary supplements, or conventional foods but not 

as medicines [182]. In Europe, various agencies regulate functional foods and provide scientific 

support. Functional foods are "products that demonstrate beneficial effects on one or more body 

functions beyond basic nutrition, improving health and reducing disease risk" [183–185]. The 

regulatory framework includes the Framework Directive (90/496/CEE) and the General Food Law 

[Regulation (EC) 178/2002], which set standards for labeling and health claims [183,184,186]. 

Regulatory agencies and researchers generally agree that functional foods are consumed as part of a 

regular diet and offer health benefits beyond essential nutrition [171,172]. Some definitions of 

nutraceuticals specify that they are formulated products taken in specific doses (e.g., capsules, pills, 

or tablets) [187]. Others consider functional foods to supply essential nutrients like vitamins, proteins, 

and carbohydrates [187]; however, when these foods provide additional health benefits such as 

disease prevention or treatment, they are classified as nutraceuticals, even if consumed as ordinary 

food [188]. Functional foods can originate from common foods containing naturally occurring 

bioactive substances (e.g., dietary fiber) [189] , from foods enriched with bioactive compounds (e.g., 

probiotics and antioxidants) [190], or from ingredients derived from certain foods that are added to 
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other conventional foods (e.g., prebiotics) [191]. Several factors contribute to the expanding functional 

food market, notably current population and health trends [171,172]. Globally, populations are aging, 

with life expectancy continuing to rise and older adults comprising a growing segment [192]. 

Additionally, obesity has become a worldwide concern, with its prevalence increasing in many 

countries [193]. Individuals take dietary supplements and consume foods formulated or fortified 

with health-promoting components to enhance health outcomes [194]. This trend is also supported 

by increased public education, as people today are more knowledgeable about nutrition than ever 

before, with their growing interest in health-related information being addressed through various 

educational resources [194]. The growing interest in nutraceuticals stems from their potential for 

improved quality of life, addressing modern challenges and consumer demand for alternatives [195]. 

Regardless of their origin, these compounds can provide various health benefits, from antioxidant 

and anti-inflammatory properties to supporting specific health conditions [196]. Despite their 

potential, nutraceuticals face several challenges. Their diverse composition and varied modes of 

action make it difficult to develop standardized delivery methods [197]. Additionally, low 

bioavailability and potential interactions with other food components hinder their practical use [197]. 

Researchers are exploring encapsulation technologies [197]. Encapsulating nutraceuticals within 

protective structures can improve their stability, solubility, and bioavailability [198,199]. Various 

methods, including micro and nano-encapsulation, are being investigated to optimize the delivery of 

these valuable compounds [198,199]. Ultimately, nutraceuticals' successful development and 

utilization depend on a clear understanding of their properties, effective delivery systems, and robust 

regulatory frameworks [197].  

3.1. Categories of Nutraceuticals: A Comprehensive Overview 

Nutraceuticals are categorized according to their applications into various classes, including 

traditional, non-traditional, fortified, recombinant, phytochemicals, herbal products, functional 

foods, dietary supplements, probiotics, and prebiotics [200]. Each class of nutraceuticals offers 

distinct applications and benefits, depending on its specific characteristics [200]. The classification of 

nutraceuticals often overlaps, as their chemical composition and health-promoting functions are 

similar [188]. According to the Institute of Food Technologists (IFT), functional foods are “foods and 

food components that provide a health benefit beyond basic nutrition” [201]. This category includes 

conventional foods, fortified, enriched, enhanced, and dietary supplements [200]. 

3.1.1. Traditional Nutraceuticals  

Functional Foods 

Functional foods contain ingredients that enhance antioxidant and anti-inflammatory activities 

[176,184]. Examples include rice, wheat, beans, soybeans, lentils, chocolate, citrus fruits, nuts, and 

fermented milk [176,184]. Rice, for instance, is a staple food rich in carbohydrates and low in fat, salt, 

and sugar. It also contains resistant starch, which supports gut health [202]. Similarly, wheat is valued 

for its fiber-rich bran, which promotes gastrointestinal health [203]. Other examples, like carrots and 

broccoli, contain active components such as sulforaphane and lycopene, which are known for their 

health benefits [204]. However, more scientific studies are needed to validate these product labels' 

health claims. 

Carotenoids: carotenoids are natural pigments found in plants, fruits, vegetables, and algae, 

known for their antioxidant and anti-inflammatory properties [205]. These compounds, including β-

carotene and lutein, offer various health benefits, such as improving vision, cognitive function, and 

heart health, while helping prevent cancer [206]. Their antioxidant activity is due to their chemical 

structure, which allows them to neutralize free radicals [176,184,205,206].  

Collagen Hydrolysate: collagen hydrolysate, derived from collagen found in animal connective 

tissues, has several health benefits, including antioxidant, anti-aging, and anti-inflammatory effects 

[207,208]. Studies have shown that collagen hydrolysate can boost the immune system, improve skin 

hydration elasticity, and reduce wrinkles, especially in cases of photoaged skin [209,210]. 
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Dietary Fibers: dietary fibers are non-digestible carbohydrates in vegetables, fruits, and whole 

grains [203]. They are classified into soluble and insoluble fibers, each offering specific health benefits 

[211]. For example, soluble fibers can help manage digestive health by delaying gastric emptying, 

while insoluble fibers can alleviate constipation [203]. High-fiber diets are also linked to a reduced 

risk of inflammatory bowel diseases [203]. 

Fatty Acids: fatty acids in oils, fats, and fish supplements are crucial for energy storage and offer 

anti-inflammatory and immune-boosting benefits [212]. Omega-3 polyunsaturated fatty acids 

(PUFAs), in particular, have been shown to reduce the severity of symptoms in conditions like 

rheumatoid arthritis when taken in sufficient doses [213] . 

Phytochemicals: phytochemicals are bioactive compounds derived from plants that support 

various biochemical and metabolic functions in the body [214]. They offer neuroprotective benefits 

and can reduce the risk of cancers, heart disease, and neurodegenerative disorders through their 

antioxidant properties [214]. 

Herbs: herbs like garlic, ginger, and aloe have been used for centuries for their health benefits, 

which include reducing cholesterol, promoting wound healing, and offering antioxidant properties 

[215]. The effectiveness of herbs can vary depending on how they are processed and consumed  

[215]. 

Probiotics: Probiotics are beneficial microbes commonly found in fermented foods, especially 

dairy products, that promote digestive health and support the immune system [216]. Lactobacillus, 

Bifidobacterium, and Streptococcus are among the most commonly used probiotic strains known to 

maintain a healthy balance of gut bacteria  [216]. 

Prebiotics: prebiotics are non-digestible ingredients that stimulate the activity of probiotics in 

the gut [217]. They act as a fertilizer for beneficial gut bacteria, enhancing the health benefits provided 

by probiotics [218]. Fructo-oligosaccharides and inulin are prebiotics used in functional foods to 

improve digestive health [219]. 

Dietary Supplements: dietary supplements, available in various forms like tablets, capsules, 

and powders, are intended to supplement the diet and ensure adequate nutrient intake [220]. Joint 

supplements include omega-3 fatty acids, vitamins, and minerals, which can prevent nutrient 

deficiencies and support overall health [221,222].  

3.1.2. Non-Traditional Nutraceuticals 

Non-traditional nutraceuticals are artificially synthesized food products that enhance health 

through biotechnology and agricultural breeding [200]. Based on their processing, these 

nutraceuticals can be categorized into fortified and recombinant types [200]. Examples include rice 

enriched with β-carotene and cereals fortified with vitamins and minerals, which boost antioxidant 

activity and provide essential nutrients like provitamin A [200]. 

Fortified Nutraceuticals: Fortified nutraceuticals are foods enhanced with additional vitamins 

or micronutrients to improve their nutritional value [223]. For instance, orange juice fortified with 

calcium or milk enriched with vitamin D helps prevent deficiencies and support overall health [224]. 

Such products can also offer specific benefits, like enhanced glycemic control when calcium is added 

to orange juice [225]. 

Recombinant Nutraceuticals: Recombinant nutraceuticals are genetically modified foods created 

through biotechnology to include beneficial compounds [188,226]. Examples include iron-fortified 

rice, golden rice, and multivitamin corn [227]. These products contain genes that enhance their 

nutritional content, such as increasing levels of vitamins, carotenoids, and proteins [228,229]. Gold 

kiwifruit, for example, has been modified to boost its vitamin C, carotenoid, and lutein content, 

making it a rich source of essential nutrients [230]. 

4. Mechanisms of Nutraceutical Action in Frailty and Parkinson’s Disease 

Nutraceuticals are believed to enhance human health, extend life expectancy, and delay the 

onset of aging and chronic diseases [231]. Numerous nutraceutical supplements have positively 

affected conditions like PD and frailty [22,232]. Their ability to address oxidative stress, inflammation, 
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mitochondrial dysfunction, and protein aggregation underscores their potential as complementary 

strategies in promoting healthy aging and mitigating disease progression [233]. 

4.1. Anti-Inflammatory Activity 

Nutraceuticals are known for their anti-inflammatory properties, which are crucial in preventing 

and treating diseases associated with chronic inflammation [234]. One significant advantage of using 

nutraceuticals as anti-inflammatory agents is that they can complement traditional anti-inflammatory 

drugs, allowing for lower drug dosages and reducing potential side effects [235]. Chronic 

inflammation is a leading cause of several major diseases, including frailty and PD [236,237]. 

Nutraceuticals can help mitigate this inflammation by suppressing inflammatory cytokines like 

interleukins, Tumor Necrosis Factor-alpha (TNF-α), and cyclooxygenase-2 (COX-2) [238]. For 

example, curcumin, the active compound in turmeric, has potent anti-inflammatory properties. It 

works by inhibiting key inflammatory pathways, including the Nuclear factor kappa B  (NF-κB) and 

COX-2 pathways, and reducing the production of pro-inflammatory cytokines like TNF-α, 

interleukins-6 (IL-6), and IL-1β. These cytokines are implicated in muscle degradation and systemic 

inflammation in frailty [239,240]. Despite its apparent pharmacokinetic limitations, curcumin, a well-

known anti-inflammatory compound, has been shown to exhibit a wide range of pharmacological 

activities and demonstrate effectiveness against numerous diseases [241]. These include its 

anticarcinogenic effects [242], hepatoprotective properties [243],  thrombosuppressive action [245], 

cardioprotective benefits [245], antiarthritic effects [246], and its role in combating infections [247]. 

The study of the chemical biology of aging is expected to reveal candidate compounds and 

fundamental mechanisms that will drive the development of treatments for age-related diseases 

[248]. Curcumin exemplifies this concept due to its multiple in vitro benefits. It has been shown to 

extend lifespan in C. elegans and Drosophila, although similar effects have not been observed in mice 

[249,250]. Still, considerable evidence suggests that curcumin may aid in treating neurodegenerative 

and other age-related diseases, potentially enhancing health span [251]. Polyunsaturated fatty acids 

(PUFAs) are another class of nutraceuticals that effectively manage inflammatory disorders: 

docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to reduce inflammation by 

inhibiting the production of pro-inflammatory cytokines and eicosanoids such as prostaglandins and 

leukotrienes [252]. They also promote the production of specialized pro-resolving mediators (SPMs) 

like resolvins and protectins, which help resolve inflammation [253]. PUFA treatment has been 

shown to decrease the expression of NF-κB and reduce proinflammatory markers while increasing 

anti-inflammatory markers like IL-10 in patients with conditions such as Duchenne muscular 

dystrophy [254]. 

Additionally, DHA has demonstrated neuroprotective effects in various animal models of 

neurodegenerative diseases [255,256]. While there is less research on DHA consumption and its 

impact on PD, recent epidemiological studies suggest that a high intake of unsaturated fatty acids 

may lower the risk of developing PD and offer protection against pesticide-induced neurotoxicity 

[255,256]. Research in the MPTP animal model of PD has also highlighted the protective effects of 

PUFAs against MPTP-induced neurotoxicity [257]. Although the exact mechanisms behind these 

effects are not fully understood, several studies have shown that PUFAs enhance the release of 

neurotrophic factors, regulate genes involved in oxidative stress and apoptosis, and reduce 

inflammation associated with PD [258]. 

Polyphenols are bioactive compounds in fruits, vegetables, and teas [259,260]. They exhibit 

intense anti-inflammatory and antioxidant activities by modulating signaling pathways like NF-κB 

and Nrf2 and reducing oxidative stress [259,260]. Resveratrol in red grapes and quercetin in apples 

and onions inhibit inflammatory mediators and support muscle health [259,261]. Indeed, it activates 

SIRT1 and improves mitochondrial function, protecting against cognitive decline [262]. 

Lycopene (LYC), a natural carotenoid pigment primarily found in red fruits and vegetables such 

as tomatoes, papayas, pink grapefruits, pink guavas, and watermelons, has gained significant 

attention for its diverse biological activities [263,264]. LYC is an unsaturated acyclic carotenoid with 

11 linear conjugated and two non-conjugated double bonds [265]. Studies have demonstrated that 
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LYC exhibits potent antioxidant and anti-inflammatory properties both in vitro and in vivo, and it 

can also cross the blood-brain barrier [266,267]. Furthermore, higher serum levels of carotenoid 

pigments like lycopene, lutein, and zeaxanthin have been associated with a reduced risk of 

neurodegenerative diseases [268]. 

The discovery of a proinflammatory shift in the gut microbiota associated with PD and its 

potential involvement in the progression of this neurodegenerative disorder has sparked interest in 

exploring gut microbiota-modulating treatments, such as probiotics, as possible therapeutic options 

for PD [12,269]. Probiotics provide these health benefits through various mechanisms, such as 

restoring balance to a disrupted intestinal microbiome [270], enhancing the function of the intestinal 

barrier [271], and activating enzymes that produce metabolites, which help regulate both peripheral 

and central energy metabolism and inflammation, in addition to promoting neurogenesis, 

neurotransmission, and even behavioral changes [272]. 

Animal studies of PD, for instance, have demonstrated that probiotics can lower levels of 

inflammatory cytokines like IL-1β and IL-6, which in turn helps prevent neuroinflammation [273]. 

Indeed, probiotics exhibit anti-inflammatory effects by modulating the NF-κB signaling pathway, 

inflammatory cytokines, and the regulatory T-cell response [274]. A combination of probiotics such 

as Lactobacillus rhamnosus, Bifidobacterium lactis, and Bifidobacterium longum has been shown to induce 

IL-10 production and reduce proinflammatory cytokines [275,276]. Prebiotics, like β-(1,3)-glucan, also 

demonstrate anti-inflammatory and immunomodulatory effects [277]. In animal studies, pre-

treatment with β-(1,3)-glucan prevented symptoms of inflammatory bowel disease and inhibited 

inflammatory cytokines and reactive oxygen species (ROS) [278]. 

Other nutraceuticals, including ginger, cinnamon, and peppermint, also possess potent anti-

inflammatory activities [279]. Emerging evidence from both in vivo and in vitro studies highlights 

the neuroprotective properties of ginger and its vital active components, zingerone, 6-shogaol, and 

6-gingerol, in PD [280]. These protective effects are primarily linked to the regulation of 

neuroinflammation, oxidative stress, intestinal permeability, dopamine synaptic transmission, and 

potentially mitochondrial dysfunction [280]. Several transcription factors and signaling pathways are 

involved in mediating these benefits, including NF-κB, p38 mitogen-activated protein kinase 

(MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK) 1/2, 

and AMP-activated protein kinase (AMPK)/proliferator-activated receptor gamma coactivator one 

alpha (PGC1α) [281]. These pathways contribute to ginger's neuroprotective effects in PD [282]. 

Cinnamon and peppermint extracts have similarly shown strong anti-inflammatory effects by 

significantly reducing the expression of inflammatory cytokines IL-1 and IL-6 in experimental animal 

models and individuals with various CNS complications like PD and frailty [283]. 

Ginkgolides, bioactive compounds derived from the Ginkgo biloba tree, have been used in 

traditional Chinese medicine for centuries [283]. Extensive research has validated their 

neuroprotective properties, making them a valuable component of treatments for various 

neurological disorders, including PD [283]. Ginkgolides exert a multifaceted influence on the CNS. 

They modulate neurotransmitter activity, such as glutamate and dopamine, and inhibit platelet-

activating factors (PAF), a critical inflammatory mediator [283]. These actions contribute to their 

neuroprotective effects [283]. 

4.2. Anti-Oxidant Activity 

Curcumin increases antioxidant defense mechanisms by upregulating transcription and 

expression levels of antioxidant enzymes and improving mitochondrial function [284]. Studies in 

vitro showed that curcumin presented senolytic properties with reduced hallmarks of senescence 

(i.e., p16, IL-6, IL-8, MMP3, and MMP13) [285]. However, curcumin has lower bioavailability, 

compromising its senolytic activity [286]. Combining piperine, alginates, or nanocapsules improves 

its stability and bioavailability [287]. PD is characterized by a chronic, low-grade inflammatory 

process in which activated microglia release cytotoxic compounds, most notably peroxynitrite, that 

contribute to the death and dysfunction of nearby dopaminergic neurons [288]. As neurons die, they 

release damage-associated molecular pattern proteins like high mobility, activating microglia 
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through various receptors, amplifying the inflammatory response [289]. Since peroxynitrite is central 

to this destructive cycle, nutraceutical approaches that either reduce microglial peroxynitrite 

production or enhance the scavenging of peroxynitrite-derived oxidants could be valuable for 

preventing and managing PD [289]. Peroxynitrite formation can be mitigated by inhibiting microglial 

NADPH oxidase activity, which produces its precursor, superoxide, or by down-regulating signaling 

pathways that stimulate microglial expression of inducible nitric oxide synthase (iNOS) [289]. 

Nutrients and compounds such as phycocyanobilin from spirulina, ferulic acid, long-chain omega-3 

fatty acids, adequate vitamin D levels, hydrogen sulfide-promoting substances like taurine and N-

acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic fiber, and probiotics may help reduce 

microglial iNOS induction [289]. 

Additionally, scavenging peroxynitrite-derived radicals can be enhanced through 

supplementation with zinc or inosine. Astaxanthin may protect the mitochondrial respiratory chain 

from peroxynitrite damage and environmental toxins [288]. Plant-based diets low in protein and 

possibly diets rich in corn and spermidine might offer protection by enhancing mitophagy and 

supporting mitochondrial health. 

Furthermore, low-protein diets can help maintain a more stable response to levodopa therapy 

[288]. Exogenous antioxidants like vitamins C, E, and phenolic compounds are crucial in neutralizing 

free radicals [291]. In contrast to traditional antioxidants like vitamins C, E, and β-carotene, natural 

compounds such as flavonoids (quercetin, curcumin, luteolin, and catechins) and magnolol/honokiol 

have demonstrated superior efficacy in inhibiting oxidative processes in various in vitro and in vivo 

models of aging and PD [291] : vitamin C is highly effective at scavenging harmful free radicals such 

as hydroxyl and superoxide anion radicals and helps protect cells and DNA from oxidative damage 

[292]. Alongside vitamin C, vitamin E also contributes to safeguarding cells by preventing lipid 

peroxidation [293]. 

Gingerols, the bioactive compounds found in ginger, have demonstrated various 

neuroprotective properties, including antioxidant and anti-amyloidogenic [294]. 6-Gingerol, a key 

component of ginger, has been shown to inhibit astrocyte overactivation and reduce inflammation in 

microglia [295]. Both environmental and genetic factors, including iron accumulation and oxidative 

stress, contribute to PD development [60]. Through its active compounds, ginger may offer potential 

benefits for individuals with PD [280]. Ginger could potentially mitigate cognitive dysfunction 

associated with this condition by inhibiting inflammation, increasing nerve growth factor, and 

promoting synapse formation [280]. In conclusion, the antioxidant properties of nuts offer a 

promising approach to mitigating the health challenges associated with aging, making them a 

valuable dietary addition for older individuals [296]. 

Saffron, a prized spice derived from the Crocus sativus plant, has long been valued for its 

culinary and cosmetic applications [297]. Recent research has unveiled its potential therapeutic 

benefits, particularly in neurological disorders [297]. Saffron's antioxidant properties have shown 

promise in mitigating the effects of neurodegenerative conditions [297]. Saffron and its components 

have been found to enhance antioxidant defenses against reactive oxygen species, lipid peroxidation, 

and other oxidative damage [297]. While preclinical studies have provided encouraging results, 

further clinical research is essential to fully elucidate the mechanisms underlying saffron's 

antioxidant actions and validate its potential as a therapeutic agent for neurological disorders [297] . 

4.3. Promoting Healthy Aging 

Significant research focuses on identifying nutraceuticals that can prevent diseases, especially 

age-related diseases (ARDs), or mimic the anti-aging effects of drugs like metformin and rapamycin 

without side effects [298]. New candidates like allantoin, ginsenoside, and epigallocatechin gallate 

have shown promise and are undergoing experimental validation [298]. The intriguing idea that 

food-derived bioactive compounds could extend health span by modulating the senescence-

associated secretory phenotype (SASP) opens up new strategies to delay the onset and progression 

of ARDs [299,300]. 
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While it is long known that nutrition influences health, the molecular pathways through which 

food impacts health still need to be fully understood [298]. Some bioactive compounds act as 

epigenetic modifiers, affecting gene expression, chromatin structure, DNA methylation, and non-

coding RNA expression [301]. Studies have indicated that polyphenol-rich foods can modulate the 

activity of DNA writers and readers like DNA methyltransferases (DNMTs), histone deacetylases 

(HDACs), histone acetyltransferases (HATs), and HDAC SIRTs, highlighting a new mechanism that 

might contribute to healthy aging [302]. It is also suggested that certain compounds can influence the 

development and persistence of cellular senescence, with this epigenetic profile potentially being 

inherited by future cell generations [303]. 

Emerging evidence supports the ability of different phytochemical classes to modulate the 

senescence process, underscoring the importance of nutraceutical research for promoting healthy 

aging [303]. Data on the anti-aging effects of various natural and synthetic compounds are available 

in databases like Geroprotectors (http://geroprotectors.org/resources) and DrugAge 

(https://ngdc.cncb.ac.cn/databasecommons/database/id/4466). 

The scientific evaluation of the anti-aging effects of natural compounds is still in its early stages, 

and evidence regarding their senolytic properties is limited [298]. Tocotrienols, members of the 

vitamin E family, possess antioxidant properties and play roles in cell signaling, immune response, 

and apoptosis [304]. Recently, they have gained attention for their senolytic properties, stimulating 

senescence in cancer cells and reducing the accumulation of senescent cells in healthy tissues, thereby 

slowing the aging process [305]. Combining quercetin and dasatinib has significantly enhanced the 

health span in various mouse models [306]. Derived from Piper longum, Piperlongumine (PL) is 

known for its anticancer properties. It suppresses cancer stemness and has been shown to 

preferentially kill senescent human fibroblasts, making it a promising anticancer agent with potential 

senolytic effects [298]. 

5. Emerging Nutraceuticals and Future Directions 

The field of nutraceuticals is rapidly evolving, with novel compounds and advanced 

technologies paving the way for more effective anti-aging interventions [21,197]. Novel compounds 

with potential anti-aging effects are at the forefront of current research  [298]. For instance, 

pterostilbene, a compound structurally similar to resveratrol but with superior bioavailability, is 

gaining attention for its potent antioxidant and anti-inflammatory properties, which could play a 

crucial role in slowing the aging process and combating neurodegenerative diseases [307]. Similarly, 

urolithin A, a metabolite derived from ellagitannins found in pomegranates, has shown promise in 

enhancing mitochondrial function and promoting mitophagy, thereby supporting cellular health and 

longevity [308]. 

However, integrating nanotechnology in nutraceutical formulations is overcoming these 

barriers [309]. Nanoparticles, liposomes, and nanoemulsions are employed to encapsulate bioactive 

compounds, protecting them from degradation and improving their absorption and bioavailability 

[309,310]. For example, nano curcumin, a nanoparticle form of curcumin, has enhanced stability and 

bioavailability, leading to more pronounced anti-inflammatory and neuroprotective effects [249]. 

These cutting-edge delivery systems could revolutionize the effectiveness of nutraceutical 

interventions, making them more potent and reliable for preventing and managing age-related 

diseases [249,286]. 

Moreover, the future of nutraceuticals is moving toward personalized interventions tailored to 

an individual's genetic and epigenetic profile [311]. As our understanding of genomics and 

epigenetics deepens, it is becoming increasingly clear that the efficacy of nutraceuticals can vary 

significantly based on an individual's unique genetic makeup [311]. For instance, specific gene 

variants may influence how well a person metabolizes specific nutrients, impacting the effectiveness 

of nutraceuticals like omega-3 fatty acids or polyphenols [312]. By integrating genetic testing and 

epigenetic analysis, healthcare providers could tailor nutraceutical regimens to optimize their anti-

aging effects [313]. This personalized approach could also involve monitoring epigenetic markers, 
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such as DNA methylation patterns or microRNA expression, to adjust nutraceutical interventions 

dynamically, ensuring they remain effective as individuals age [313]. 

In summary, the future of nutraceuticals lies in developing novel bioactive compounds, 

applying advanced delivery technologies, and shifting toward personalized interventions based on 

genetic and epigenetic data [314]. These advancements promise to significantly enhance the role of 

nutraceuticals in promoting healthy aging and preventing age-related diseases, offering a more 

precise, effective, and individualized approach to health span extension [21,197]. 

6.0. Challenges and Limitations 

While nutraceuticals hold great promise for promoting health and combating age-related 

diseases, several challenges and limitations must be addressed to realize their full potential [299,314]. 

A primary concern is the bioavailability and pharmacokinetics of nutraceuticals [315]. Many bioactive 

compounds in nutraceuticals, such as polyphenols, curcumin, and omega-3 fatty acids, have 

inherently low bioavailability due to poor absorption, rapid metabolism, and quick bodily 

elimination [315]. For example, despite its potent anti-inflammatory and antioxidant properties, 

curcumin is notorious for its poor bioavailability, as it is quickly metabolized in the liver and 

intestines [316]. This limitation severely reduces its effectiveness when consumed orally, leading to 

the need for higher doses or the development of advanced delivery systems, such as nanoparticles or 

liposomes, to enhance absorption and prolong circulation in the bloodstream [316].  

Additionally, the pharmacokinetics of nutraceuticals, which involve their absorption, 

distribution, metabolism, and excretion, can vary widely among individuals due to age, genetics, gut 

microbiota composition, and overall health [317]. This variability complicates the standardization of 

dosing regimens and makes it challenging to predict therapeutic outcomes consistently [317]. 

Another significant issue is nutraceuticals' safety and long-term efficacy [317]. Although generally 

considered safe due to their natural origin, the long-term use of specific nutraceuticals may carry 

risks, particularly at high doses or in combination with other medications [317]. 

For instance, prolonged high-dose consumption of certain antioxidants like vitamin E has been 

associated with an increased risk of hemorrhagic stroke, highlighting the need for caution and proper 

dosage guidelines [318]. Moreover, the long-term efficacy of nutraceuticals remains an open question. 

While short-term studies often demonstrate beneficial effects, the robustness of clinical trials still 

needs to be improved to confirm that these benefits persist over years or decades of use  [317]. The 

potential for cumulative side effects or interactions with other dietary supplements or medications 

over prolonged periods must be explored [317]. This gap in knowledge underscores the necessity for 

more extensive longitudinal studies to assess both the safety and sustained effectiveness of 

nutraceuticals in diverse populations  [317]. 

Lastly, nutraceuticals' regulatory and ethical considerations present significant challenges [182]. 

The regulatory landscape for nutraceuticals varies considerably between countries, with some 

regions having stringent regulations similar to those for pharmaceuticals while others offer minimal 

oversight [182]. Nutraceuticals are often classified as dietary supplements rather than drugs, meaning 

they are not subject to the same rigorous testing for efficacy, safety, and quality [182]. This can lead 

to consistency in product quality, with variations in the concentration of active ingredients or the 

presence of contaminants. Furthermore, the marketing of nutraceuticals often includes claims not 

fully supported by scientific evidence, potentially misleading consumers about their health benefits 

[182]. Ethical concerns also arise from the commercialization of nutraceuticals, mainly when 

vulnerable populations are targeted with exaggerated promises of anti-aging or disease-preventive 

effects [182]. As the industry grows, there is a pressing need for more stringent regulations to ensure 

product safety, efficacy, accurate labeling, and ethical guidelines to govern the marketing and 

distribution of these products [182]. 

7.0. Conclusion: 

This review highlights the critical role of nutraceuticals in addressing age-related conditions, 

focusing on PD and frailty. PD is a multifactorial pathology with non-motor symptoms that begins 
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and is caused by inflammation and a reduction in neuronal capacity at least 20 years before 

(prodromal phase). The prodromal symptomatology is not easy to understand and is not always 

attributable to PD. In old age, we see a sum of dysfunctions; frailty mirrors many of the dysfunctional 

elements present in PD. It is still not well defined, so much so that geriatric frailty is spoken of as a 

multisite dysfunction coupled with aging.  

In this scenario, nutriceuticals represent a way to guarantee an improvement in health at any 

stage of life, mainly when these dysfunctions manifest. Correct lifestyle, physical exercise, and diet 

are added to pharmacological therapies and prevention when dysfunctional pictures are not yet 

defined.  

Nutraceuticals offer a promising avenue, targeting the underlying mechanisms of aging and 

neurodegeneration, such as oxidative stress, mitochondrial dysfunction, and inflammation. Despite 

the potential benefits, significant challenges remain, including bioavailability, long-term safety, and 

the need for robust regulatory frameworks. Advances in delivery systems and personalized 

approaches based on genetic and epigenetic profiles may pave the way for more effective and tailored 

nutraceutical interventions. However, nutraceuticals offer a promising avenue for addressing age-

related conditions, mainly when used in conjunction with conventional therapies: their ability to 

target multiple biological pathways suggests that they may be able to enhance treatment outcomes 

and potentially reduce medication side effects. 
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